“Storage-Discharge” Ethanol Cold Plasma for Synthesizing High Performance Pd/Al2O3 Catalysts
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Synthesis of Pd/Al2O3 Catalysts
3.3. Characterization
3.4. Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Di, L.B.; Li, Z.; Lee, B.; Park, D.W. An alternative atmospheric-pressure cold plasma method for synthesizing Pd/P25 catalysts with the assistance of ethanol. Int. J. Hydrogen Energy 2017, 42, 11372–11378. [Google Scholar] [CrossRef]
- Di, L.B.; Zhang, X.L.; Xu, Z.J.; Wang, K. Atmospheric-pressure cold plasma for preparation of high performance Pt/TiO2 photocatalyst and its mechanism. Plasma Chem. Plasma Process. 2013, 34, 301–311. [Google Scholar] [CrossRef]
- Dao, V.D.; Choi, Y.; Yong, K.; Larina, L.L.; Shevaleevskiy, O.; Choi, H.S. A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells. J. Power Sources 2015, 274, 831–838. [Google Scholar] [CrossRef]
- Kim, T.; Lee, D.H.; Jo, S.; Pyun, S.H.; Kim, K.T.; Song, Y.H. Mechanism of the accelerated reduction of an oxidized metal catalyst under electric discharge. ChemCatChem 2016, 8, 685–689. [Google Scholar] [CrossRef]
- Peng, H.; Ma, Y.; Liu, W.; Xu, X.; Fang, X.; Lian, J.; Wang, X.; Li, C.; Zhou, W.; Yuan, P. Methane dry reforming on Ni/La2Zr2O7 treated by plasma in different atmospheres. J. Energy Chem. 2015, 24, 416–424. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Song, L.; Chu, W.; Dai, X.; Yin, Y. Modification of Ni/SiO2 catalysts by means of a novel plasma technology. Plasma Sci. Technol. 2008, 10, 551–555. [Google Scholar]
- Di, L.B.; Zhang, J.S.; Ma, C.; Tu, X.; Zhang, X.L. Atmospheric-pressure dielectric barrier discharge cold plasma for synthesizing high performance Pd/C formic acid dehydrogenation catalyst. Catal. Today 2019, 337, 201–207. [Google Scholar] [CrossRef]
- Du, C.; Mo, J.; Tang, J.; Huang, D.; Mo, Z.; Wang, Q.; Ma, S.; Chen, Z. Plasma reforming of bio-ethanol for hydrogen rich gas production. Appl. Energy 2014, 133, 70–79. [Google Scholar] [CrossRef]
- Greluk, M.; Slowik, G.; Rotko, M.; Machocki, A. Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel 2016, 183, 518–530. [Google Scholar] [CrossRef]
- Bej, B.; Bepari, S.; Pradhan, N.C.; Neogi, S. Production of hydrogen by dry reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst. Catal. Today 2017, 291, 58–66. [Google Scholar] [CrossRef]
- Spallina, V.; Matturro, G.; Ruocco, C.; Meloni, E.; Palma, V.; Fernandez, E.; Melendez, J.; Tanaka, A.P.; Sole, J.V.; Annaland, M.V.S.; et al. Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design. Energy 2018, 143, 666–681. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Xian, Y.; Fang, Z.; Lu, X.; Bazaka, K.; Bogaerts, A.; Ostrikov, K. Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature. Chem. Eng. J. 2020, 382, 122745. [Google Scholar] [CrossRef]
- Ulejczyk, B.; Nogal, L.; Mlotek, M.; Krawczyk, K. Hydrogen production from ethanol using dielectric barrier discharge. Energy 2019, 174, 261–268. [Google Scholar] [CrossRef]
- Bardos, L.; Baránková, H.; Bardos, A. Production of hydrogen-rich synthesis gas by pulsed atmospheric plasma submerged in mixture of water with ethanol. Plasma Chem. Plasma Process. 2016, 37, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Sun, B.; Zhu, X.; Yan, Z.; Zhao, X.; Sun, X.; Ohshima, T. Characteristics and pathways of hydrogen produced by pulsed discharge in ethanol-water mixtures. Int. J. Hydrogen Energy 2020, 45, 1588–1596. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.S.; Wang, H.Y.; Li, Z.; Zhang, X.L.; Di, L.B. Preparation of Pd/C by atmospheric-pressure ethanol cold plasma and its preparation mechanism. Nanomaterials 2019, 9, 1437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.L.; Nie, L.H.; Xu, Y.; Shi, C.; Yang, X.F.; Zhu, A.M. Plasma oxidation for achieving supported TiO2 photocatalysts derived from adsorbed TiCl4 using dielectric barrier discharge. J. Phys. D Appl. Phys. 2007, 40, 1763–1768. [Google Scholar] [CrossRef]
- Kim, H.H.; Oh, S.M.; Ogata, A.; Futamura, S. Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Appl. Catal. B Environ. 2005, 56, 213–220. [Google Scholar] [CrossRef]
- Van Durme, J.; Dewulf, J.; Leys, C.; Van Langenhove, H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Catal. B Environ. 2008, 78, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Ogata, A.; Futamura, S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl. Catal. B Environ. 2008, 79, 356–367. [Google Scholar] [CrossRef]
- Shi, C.; Chen, B.B.; Li, X.S.; Crocker, M.; Wang, Y.; Zhu, A.M. Catalytic formaldehyde removal by “storage-oxidation” cycling process over supported silver catalysts. Chem. Eng. J. 2012, 200, 729–737. [Google Scholar] [CrossRef]
- Yao, X.; Gao, M.; Wei, Z.; Chen, M.; Shangguan, W. Removal of hexanal in cooking fume by combination of storage and plasma-catalytic oxidation on alkali-modified Co-Mn solid solution. Chemosphere 2019, 220, 738–747. [Google Scholar] [CrossRef]
- Chen, B.; Wu, L.; Wu, B.; Wang, Z.; Yu, L.; Crocker, M.; Zhu, A.; Shi, C. Catalytic materials for low concentration VOCs removal through “storage-regeneration” cycling. ChemCatChem 2019, 11, 3646–3661. [Google Scholar] [CrossRef]
- Di, L.B.; Duan, D.Z.; Park, D.W.; Ahn, W.S.; Lee, B.J.; Zhang, X.L. Cold plasma for synthesizing high performance bimetallic PdCu catalysts: Effect of reduction sequence and Pd/Cu atomic ratios. Top. Catal. 2017, 60, 925–933. [Google Scholar] [CrossRef]
- Xu, W.J.; Zhan, Z.B.; Di, L.B.; Zhang, X.L. Enhanced activity for CO oxidation over Pd/Al2O3 catalysts prepared by atmospheric-pressure cold plasma. Catal. Today 2015, 256, 148–152. [Google Scholar] [CrossRef]
- Di, L.B.; Xu, W.J.; Zhan, Z.B.; Zhang, X.L. Synthesis of alumina supported Pd-Cu alloy nanoparticles for CO oxidation via a fast and facile method. RSC Adv. 2015, 5, 71854–71858. [Google Scholar] [CrossRef]
- Di, L.B.; Li, Z.; Zhang, X.L.; Wang, H.Y.; Fan, Z.Y. Reduction of supported metal ions by a safe atmospheric pressure alcohol cold plasma method. Catal. Today 2019, 337, 55–62. [Google Scholar] [CrossRef]
- Vitiello, G.; Clarizia, L.; Abdelraheem, W.; Esposito, S.; Bonelli, B.; Ditaranto, N.; Vergara, A.; Nadagouda, M.; Dionysiou, D.D.; Andreozzi, R.; et al. Near UV-irradiation of CuOx-impregnated TiO2 providing active species for H2 production through methanol photoreforming. ChemCatChem 2019, 11, 4314–4326. [Google Scholar] [CrossRef]
- Baylet, A.; Marecot, P.; Duprez, D.; Castellazzi, P.; Groppi, G.; Forzatti, P. In situ Raman and in situ XRD analysis of PdO reduction and Pd degrees oxidation supported on gamma-Al2O3 catalyst under different atmospheres. Phys. Chem. Chem. Phys. 2011, 13, 4607–4613. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, J.; Zhu, B.; Yu, J.; Zou, S.; Zhang, Z.; Gao, Y.; Wang, Y. In situ TEM studies of the shape evolution of Pd nanocrystals under oxygen and hydrogen environments at atmospheric pressure. Chem. Commun. 2017, 53, 13213–13216. [Google Scholar] [CrossRef]
- Qi, B.; Di, L.B.; Xu, W.J.; Zhang, X.L. Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. J. Mater. Chem. A 2014, 2, 11885–11890. [Google Scholar] [CrossRef]
- Cui, W.; Li, S.; Wang, D.; Deng, Y.; Chen, Y. High reactivity and sintering resistance of CH4 oxidation over modified Pd/Al2O3. Catal. Commun. 2019, 119, 86–90. [Google Scholar] [CrossRef]
- Bi, Y.S.; Dang, G.Y.; Zhao, X.H.; Meng, X.F.; Lu, H.J.; Jin, J.T. Preparation, characterization and catalytic properties of Pd-Fe-zeolite and Pd-Ce-zeolite composite catalysts. J. Hazard. Mater. 2012, 229, 245–250. [Google Scholar] [CrossRef]
- Wollbrink, A.; Volgmann, K.; Koch, J.; Kanthasamy, K.; Tegenkamp, C.; Li, Y.; Richter, H.; Kämnitz, S.; Steinbach, F.; Feldhoff, A.; et al. Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity. Carbon 2016, 106, 93–105. [Google Scholar] [CrossRef]
- Zhao, X.; Zhua, H.; Yang, X. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 2014, 6, 10680–10685. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Guo, Y.; Wang, H.; Wang, L.; Lou, Y.; Guo, Y.; Lu, G.; Wang, Y. The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation. Catal. Sci. Technol. 2014, 4, 3973–3980. [Google Scholar] [CrossRef]
- Meng, L.; Jia, A.P.; Lu, J.Q.; Luo, L.F.; Huang, W.X.; Luo, M.F. Synergetic effects of PdO species on CO oxidation over PdO–CeO2 catalysts. J. Phys. Chem. C 2011, 115, 19789–19796. [Google Scholar] [CrossRef]
- Wang, S.Y.; Li, N.; Zhou, R.M.; Jin, L.Y.; Hu, G.S.; Lu, J.Q.; Luo, M.F. Comparing the CO oxidation activity of free PdO and Pd2+ ions over PdO-CeO2/SiO2 catalysts. J. Mol. Catal. A Chem. 2013, 374–375, 53–58. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.J. Preparation and characterization of SBA-15 supported Pd catalyst for CO oxidation. Appl. Catal. B Environ. 2011, 106, 672–680. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Vp (cm3·g−1) | Dp (nm) | DPd (nm) |
---|---|---|---|---|
Al2O3 | 196.0 | 0.508 | 7.92 | |
Pd/Al2O3-EP | 203.8 | 0.434 | 7.92 | 3.2 |
Pd/Al2O3-EP-C | 187.8 | 0.471 | 7.90 | 3.7 |
Pd/Al2O3-HP | 196.3 | 0.438 | 7.94 | 3.0 |
Sample | Pd Composition (%) | Pd/Al | Ochem % | |
---|---|---|---|---|
Pd0 | Pd2+ | |||
Pd/Al2O3-EP | 95.6 | 4.4 | 0.0128 | 27.2 |
Pd/Al2O3-EP-C | 54.9 | 45.1 | 0.0248 | 46.9 |
Pd/Al2O3-HP | 98.8 | 1.2 | 0.0229 | 15.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, T.; Zhou, Y.; Zhang, X.; Di, L. “Storage-Discharge” Ethanol Cold Plasma for Synthesizing High Performance Pd/Al2O3 Catalysts. Catalysts 2020, 10, 907. https://doi.org/10.3390/catal10080907
Wang H, Zhang T, Zhou Y, Zhang X, Di L. “Storage-Discharge” Ethanol Cold Plasma for Synthesizing High Performance Pd/Al2O3 Catalysts. Catalysts. 2020; 10(8):907. https://doi.org/10.3390/catal10080907
Chicago/Turabian StyleWang, Hongyang, Tengda Zhang, Yufa Zhou, Xiuling Zhang, and Lanbo Di. 2020. "“Storage-Discharge” Ethanol Cold Plasma for Synthesizing High Performance Pd/Al2O3 Catalysts" Catalysts 10, no. 8: 907. https://doi.org/10.3390/catal10080907
APA StyleWang, H., Zhang, T., Zhou, Y., Zhang, X., & Di, L. (2020). “Storage-Discharge” Ethanol Cold Plasma for Synthesizing High Performance Pd/Al2O3 Catalysts. Catalysts, 10(8), 907. https://doi.org/10.3390/catal10080907