Constructing Strategies and Applications of Nitrogen-Rich Energetic Metal–Organic Framework Materials
Abstract
1. Introduction
2. The Family of EMOF Materials
2.1. Materials of 1D, 2D and 3D EMOFs
2.2. Neutral, Cationic and Anion EMOFs
3. Constructing Strategies of N-Rich EMOFs
3.1. Energetic Ligands
3.2. Ion-Exchange Modification
3.3. GO-Cu(II) Modification
4. Applications of Nitrogen-Rich EMOFs
4.1. Green Primary Explosives
4.2. Heat-Resistant Explosives
4.3. EMOFs-Based Metastable Composites
4.4. Catalysts
5. Conclusions and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yaghi, O.M.; Li, H.L.; Davis, C.; Richardson, D.; Groy, T.L. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 1998, 31, 474–484. [Google Scholar] [CrossRef]
- Wang, B.; Cote, A.P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. Colossal cages in zeoliticimidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008, 453, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.H.; Li, N.; Xu, J.; Hu, T.L.; Bu, X.H. Governing metal-organic frameworks towards high stability. Chem. Commun. 2016, 52, 8501–8513. [Google Scholar]
- Chen, Q.; Chang, Z.; Song, W.C.; Song, H.; Song, H.B.; Hu, T.L.; Bu, X.H. A controllable gate effect in cobalt(II) organic frameworks by reversible sturcture transformations. Angew. Chem. Int. Ed. Engl. 2013, 52, 11550–11553. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Tao, Y.; Yu, Q.; Bu, X.H.; Sakamoto, H.; Kitagawa, S. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-riched chiral open channels. Chem. Eur. J. 2008, 14, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.Y.; Leblanc, R.J.; Xie, S.Y.; Yue, Y.F. Recent progress in the syntheses of mesoporous metal-organic framework materials. Coordin. Chem. Rev. 2018, 369, 76–90. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.Y.; Feng, X.; Wang, B. Explosives in the cage: Metal-organic frameworks for high-Energy materials sensing and desensitization. Adv. Mater. 2017, 29, 1701898. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhu, Q.L.; Zou, R.Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef]
- He, Y.B.; Chen, F.L.; Li, B.; Qian, G.D.; Zhou, W.; Chen, B.L. Porous metal-organic frameworks for fuel storage. Coordin. Chem. Rev. 2018, 373, 167–198. [Google Scholar] [CrossRef]
- Junghans, U.; Kobalz, M.; Erhart, O.; Preißler, H.; Lincke, J.; Möllmer, J.; Krautscheid, H.; Gläser, R. A series of robust copper-based triazolylisophthalateMOFs: Impact of linker functionalization on gas sorption and catalytic activity. Materials 2017, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.X.; Doonan, C.J.; Furukawa, H.; Ferreira, R.B.; Towne, J.; Knobler, C.B.; Wang, B.; Yaghi, O.M. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.C.; Saines, P.J.; Bithell, E.G.; Cheetham, A.K. Hybrid nanosheets of an inorganic-organic framework material: Facile synthesis, structure, and elastic properties. ACS Nano 2012, 6, 615–621. [Google Scholar] [CrossRef]
- Xiang, Z.H.; Leng, S.H.; Cao, D.P. Functional group modification of metal-organic frameworks for CO2 capture. J. Phys. Chem. C 2012, 116, 10573–10579. [Google Scholar] [CrossRef]
- Desiraju, G.R. Crystal engineering: From molecules to materials. J. Mol. Struct. 2003, 67, 5–15. [Google Scholar] [CrossRef]
- Sun, T.J.; Ren, X.Y.; Hu, J.L.; Wang, S.D. Expanding pore size of Al-BDC metal-organic frameworks as a way to achieve high adsorptionselectivity for CO2/CH4 separation. J. Phys. Chem. C 2014, 118, 15630–15639. [Google Scholar] [CrossRef]
- Yang, L.Z.; Xu, C.L.; Ye, W.C.; Liu, W.S. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens. Actuators B Chem. 2015, 215, 489–496. [Google Scholar] [CrossRef]
- Singha, D.K.; Mahata, P. Highly selective and sensitive luminescence turn-on-based sensing of Al3+ ions in aqueous medium using a MOF with free functional sites. Inorg. Chem. 2015, 54, 6373–6379. [Google Scholar] [CrossRef]
- Shi, L.B.; Zhu, X.; Liu, T.T.; Zhao, H.L.; Lan, M.B. Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sens. Actuators B Chem. 2016, 227, 583–590. [Google Scholar] [CrossRef]
- Yadav, M.; Bhunia, A.; Roesky, P.W.; Roesky, P.W. Manganese-and lanthanide-based 1D chiral coordination polymers as an enantioselective catalyst for sulfoxidation. Inorg. Chem. 2016, 55, 2701–2708. [Google Scholar] [CrossRef]
- Kim, B.R.; Oh, J.S.; Kim, J.; Lee, C.Y. Robust aerobic alcohol oxidation catalyst derived from metal-organic frameworks. Catal. Lett. 2016, 146, 734–743. [Google Scholar] [CrossRef]
- Xu, S.; Meng, W.; Dai, L.; He, Z.X.; Wang, L. Application of porous materials with metal-organic framework. Chin. J. North China Univ. Sci. Techno. (Nat. Sci. Ed.) 2016, 38, 45–56. [Google Scholar]
- Zhang, H.B.; Zhang, M.J.; Lin, P.; Malgras, V.; Tang, J.; Alshehri, S.M.; Yamauchi, Y.; Du, S.W.; Zhang, J. A highly energetic N-rich metal-organic framework as a new high energy density material. Chem. Eur. J. 2016, 22, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Shreeve, J.M. 3D Nitrogen-rich metal–organic frameworksopportunities for safer energetics. Dalton. Trans. 2016, 45, 2363–2368. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Jin, B.; Zhang, Q.C.; Shang, Y. Nitrogen-rich energetic metal-organic framework: Synthesis, structure, properties, and thermal behaviors of Pb(II) complex based on N,N-bis(1H-tetraxole-5-yl)-amine. Materials 2016, 9, 681. [Google Scholar] [CrossRef]
- Yang, Q.; Lu, J.Y. A new tri-nuclear Ag(I) MOF as potential energetic materials constructed using (1e)-N’-hydroxy-2-(1H-1,2,4-triazol-1-yl)ethanimidamide. Inorg. Chem. Commun. 2017, 84, 33–35. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, S.; Zhang, W.D.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.P.; Gao, S.L.; Lu, J.Y. 3D solvent-free energetic metal-organic framework achieved by removing inclusion molecules from a new coordination polymer. CrystEngComm 2019, 21, 583–588. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, S.; Sun, L.; Yang, Q.; Han, J.; Wei, Q.; Xie, G.; Chen, S.P.; Gao, S.L. Solvent-free dense energetic metal-organic framework (EMOF): To improve stability and energetic performance via in situ microcalorimetry. Chem. Commun. 2017, 53, 3034–3037. [Google Scholar] [CrossRef]
- Friedrich, M.; Gálvez-Ruiz, J.C.; Klapötke, T.M.; Mayer, P.; Weber, B.; Weigand, J.J. BTA copper complexes. Inorg. Chem. 2005, 44, 8044–8052. [Google Scholar] [CrossRef]
- Joo, Y.H.; Shreeve, J.M. High-density energetic mono-or bis(oxy)-5-nitroiminotetrazoles. Angew. Chem. Int. Ed. 2010, 49, 7320–7323. [Google Scholar] [CrossRef]
- Cudzilo, S.; Nita, M. Synthesis and explosive properties of copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole bridging ligand, stanisławcudziło, marcinnita. J. Hazard. Mater. 2010, 177, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Y.; Liu, X.Y.; Duan, L.Q.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.P.; Yang, X.W.; Gao, S.L. In situ synthesized 3D heterometallic metal-organic framework(MOF)as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity. Dalton. Trans. 2015, 44, 2333–2339. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.D.; Li, Y.H.; Xu, J.G.; Zheng, F.K.; Guo, G.C.; Lv, R.X.; He, W.C.; Huang, Z.Z.; Liu, J.F. Stabilizing volatile axido in a 3D nitrogen-rich energetic metal-organic framework with excellent energetic performance. J. Solid State Chem. 2018, 265, 42–49. [Google Scholar] [CrossRef]
- Liu, X.; Qu, X.; Zhang, S.; Ke, H.S.; Yang, Q.; Shi, Q.; Wei, Q.; Xie, G.; Chen, S.P. High-performance energetic characteristics and magnetic properties of a three-dimensional Cobalt(Ⅱ) metal-organic framework assembled with azido and triazole. Inorg. Chem. 2015, 54, 11520–11525. [Google Scholar] [CrossRef]
- Guo, D.Z.; An, Q. Thermal stability and detonation properties of potassium 4,4′-bis(dinitromethyl)-3,3′-azofurazanate, an environmentally friendly energetic three-dimensional metal-organic framework. ACS Appl. Mater. Interfaces 2019, 11, 1512–1519. [Google Scholar] [CrossRef]
- Bushuyev, O.S.; Brown, P.; Maiti, A.; Gee, R.H.; Peterson, G.R.; Weeks, B.L.; Hope-Weeks, L.J. Ionic polymers as a new structural motif for high-energy-density materials. J. Am. Chem. Soc. 2012, 134, 1422–1425. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Liu, X.Y.; Qu, X.N.; Wei, Q.; Xie, G.; Chen, S.P.; Gao, S.L. High-energy metal-organic framework(HE-MOFs): Synthesis, structure and energetic performance. Chem. Soc. Rev. 2016, 307, 292–312. [Google Scholar] [CrossRef]
- Zhang, J.C. Synthesis and Properties Study of Energetic Metal-Organic-Frameworks Materials. Ph.D. Thesis, Beijing Institute of Technology, Beijing, China, 2016. [Google Scholar]
- Yang, L.; Wu, B.D.; Zhang, T.L. Preparation, crystal structure, thermal decomposition and explosive properties of [Cd(en) (N3)2]n. Propell. Explos. Pyrot. 2010, 35, 521–528. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, J.G.; Liu, Z.H.; Zhang, T.L.; Yang, L.; Qiao, X.J. Synthesis, structural characterization and thermal analysis of a high nitrogen-contented cadmium(II) coordination polymer based on 1,5-diaminotetrazole. J. Mol. Struct. 2011, 1004, 8–12. [Google Scholar] [CrossRef]
- Ignacio, C.D.; Javier, E.; Carolina, M.; Fritz, R.A.; Vega, A.; Serafini, D.; Herrera., F.; Singh, D.P. Azide-based high-energy metal-oganic frameworks with enhanced thermal stability. ACS Omega 2019, 4, 14398–14403. [Google Scholar]
- Seth, S.; Matzger, A.J. Coordination polymerization of 5,5′-Dinitro-2 H, 2 H′-3,3′-bi-1,2,4-triazole leads to a dense explosive with high thermal stability. Inorg. Chem. 2017, 56, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Bushuyev, O.S.; Peterson, G.R.; Brown, P.; Maiti, A.; Gee, R.H.; Weeks, B.L.; Hope-Weeks, L.J. Metal-organicframeworks (MOFs) as safer, structurally reinforced energetic. Chem. Eur. J. 2013, 19, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Gao, W.J.; Sun, P.P.; Su, Z.Y.; Chen, S.P.; Wei, Q.; Xie, G.; Gao, S.L. Environmentally friendly high-energy MOFs: Crystal structures, thermostability, insensitivity and remarkable detonation performances. Green Chem. 2015, 17, 831–836. [Google Scholar] [CrossRef]
- Li, S.H.; Wang, Y.; Qi, C.; Zhao, J.Z.; Zhang, J.C.; Pang, S.P. 3D energetic metal-organic frameworks: Synthesis and properties of high energy materials. Ang. Chem. Int. Ed. 2013, 52, 14031–14035. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.N.; Zhang, S.; Wang, B.Z.; Yang, Q.; Han, J.; Wei, Q.; Xie, G.; Chen, S.P. Ag(I)Energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole: Synthesis, structure and energetic performance. Dalton. Trans. 2016, 45, 6968–6973. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.X.; He, C.L.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Potassium 4,4-bis(dinitromethyl)-3,3-azofurazanate:a highly energetic 3D metal-organic framework as a promising primary explosive. Ang. Chem. Int. Ed. 2016, 55, 5565–5567. [Google Scholar] [CrossRef] [PubMed]
- Pettinari, C.; Tǎbǎcaru, A.; Galli, S. Coordination polymers and metal-organic frameworks based on poly(pyrazole)-containing ligands. Coordin. Chem. Rev. 2016, 307, 1–31. [Google Scholar] [CrossRef]
- Feng, Y.G.; Bi, Y.G.; Zhao, W.Y.; Zhang, T.L. Anionic metal-organic frameworks lead the way to eco-friendly high-energy-density materials. J. Mater. Chem. A 2016, 4, 7596–7600. [Google Scholar] [CrossRef]
- Gao, W.J.; Liu, X.Y.; Su, Z.Y.; Zhang, S.; Yang, Q.; Wei, Q.; Chen, S.P.; Xie, G.; Yang, X.W.; Gao, S.L. High-energy-density materials with remarkable thermostability and insensitivity: Syntheses, structures and physicochemical properties of Pb(II) compounds with 3-(tetrazol-5-yl) triazole. J. Mater. Chem. A 2014, 2, 11958–11965. [Google Scholar] [CrossRef]
- Qiao, M.; Niu, J.R.; Zhong, W.Z.; Hou, Y.Q.; Li, Y.H.; Li, Z.X.; Zhou, B. Preparation and application of metal-organic frameworks. Chin. Hebei J. Indust. Sci. Technol. 2018, 35, 72–76. [Google Scholar]
- Karmakar, A.; Desai, A.V.; Ghosh, S. KIonic metal-organic frameworks (iMOFs): Design principles and applications. Coordin. Chem. Rev. 2016, 307, 313–341. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, W.; Li, C.; Gao, H.Q.; Tang, L.W.; Zhou, Z.M. (E)-1,2-bis(3,5-dinitro-1H-pyrazol-4-yl)diazene:Its 3D potassium metal organic framework and organic salts with super-heat -resistant properties. Eur. J. Inorgan. Chem. 2017, 2017, 2883–2891. [Google Scholar] [CrossRef]
- Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater. 2008, 151, 289–305. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhou, H.L.; Zhou, D.D.; Liao, P.Q.; Chen, X.M. Controlling flexibility of metal-organic frameworks. Natl. Sci. Rev. 2018, 5, 907–919. [Google Scholar] [CrossRef]
- Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S.M.; Kim, H.H.; Tacon, M.L.; Daemen, L.L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A.J.; et al. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. Nat. Commun. 2017, 8, 14496. [Google Scholar] [CrossRef]
- Wang, R.H.; Xu, H.Y.; Guo, Y.; Sa, R.J.; Shreeve, J.M. Bis[3 -(5-nitroimino-1,2,4-triazolate)]-based energetic salts: Synthesis and promising properties of a new family of high-density insensitive materials. J. Am. Chem. Soc. 2010, 132, 11904–11905. [Google Scholar] [CrossRef]
- Fischer, D.; Klapötke, T.M.; Stierstorfer, J. Potassium 1,1′-dinitramino-5,5′-bistetrazolate: A primary explosive with fast detonation and high initiation power. Ang. Chem. Int. Ed. 2014, 53, 8172–8175. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.X.; Shreeve, J.M. Azole-based energetic salts. Chem. Rev. 2011, 111, 7377–7436. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Martin, F.A.; Stierstorfer, J. C2N14: An energetic and highly sensitive binary azidotetrazole. Ang. Chem. Int. Ed. 2011, 50, 4227–4229. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, J.; He, C.; Parrish, D.A.; Shreeve, J.M. Polynitro-substituted pyrazoles and triazoles as potential energetic materials and oxidizers. J. Mater. Chem. A 2014, 2, 3200–3209. [Google Scholar] [CrossRef]
- Martinez, M.R.; Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routs towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480. [Google Scholar] [CrossRef]
- Li, Y.C.; Qi, C.; Li, S.H.; Li, Y.C.; Qi, C.; Li, S.H.; Zhang, H.J.; Sun, C.H.; Yu, Y.Z.; Pang, S.P. 1,1’-Azobis-1,2,3-triazole: A high-nitrogen compound with stable N8 structure and photochromism. J. Am. Chem. Soc. 2010, 132, 12172–12173. [Google Scholar] [CrossRef] [PubMed]
- Deblitz, R.; Hrib, C.G.; Blaurock, S.; Jones, P.G.; Plenikowski, G.; Edelmann, F.T. Explosive werner-type cobalt(iii) complexes. Inorg. Chem. Front. 2014, 1, 621–640. [Google Scholar] [CrossRef]
- Evans, J.D.; Garai, B.; Reinsch, H.; Li, W.J.; Dissegna, S.; Bon, V.; Senkovska, I.; Fisher, R.A.; Kaskel, S.; Janiak, C.; et al. Metal-organic frameworks in germany: From synthesis to function. Coordin. Chem. Rev. 2019, 380, 378–418. [Google Scholar] [CrossRef]
- Liang, L.X.; Huang, H.F.; Wang, K.; Bian, C.M. Oxy-bridged bis(1H-tetrazol-5-yl)furazan and its energetic salts paired with nitrogen-rich cations: Highly thermally stable energetic materials with low sensitivity. J. Mater. Chem. 2012, 22, 21954–21964. [Google Scholar] [CrossRef]
- Liang, L.; Wang, K.; Bian, C.; Ling, L.M.; Zhou, Z.M. 4-Nitro-3-(5-tetrazole)furoxan and its salts: Synthesis, characterization, and energetic properties. Chem. Eur. J. 2013, 19, 14902–14910. [Google Scholar] [CrossRef]
- Zhang, J.G.; Li, J.Y.; Zang, Y.; Zhang, T.L.; Yang, L.; Power, P.P. Synthesis and characterization of a novel energetic complex [Cd(DAT)6](NO3)2 (DAT=1,5-diamino-tetrazole) with high nitrogen content. Z. Anorg. Allg. Chem. 2010, 636, 1147–1151. [Google Scholar] [CrossRef]
- Tong, W.C.; Liu, J.C.; Wang, Q.Y.; Yang, L.; Zhang, T.L. Eco-friendly trifoliate stable energetic zinc nitrate coordination compounds: Synthesis, structures, thermal and explosive properties. Z. Anorg. Allg. Chem. 2014, 640, 2991–2997. [Google Scholar] [CrossRef]
- Zhang, T.L.; Wu, B.D.; Yang, L.; Zhou, Z.N.; Zhang, J.G. Recent research progresses in energetic coordination compounds. Chin. J. Energ. Mater. 2013, 21, 137–151. [Google Scholar]
- Bi, F.Q.; Fan, X.Z.; Xu, C.; Wang, B.Z.; Zheng, Y.F.; Ge, Z.X.; Liu, Q. Review on insensitive non-metallic energetic ionic compounds of tetrazolateanions. Chin. J. Energ. Mater. 2012, 20, 805–811. [Google Scholar]
- Zhang, X.J.; Li, Y.C.; Liu, W.; Yang, Y.Z.; Peng, L. Review on triazines energetic compounds. Chin. J. Energ. Mater. 2012, 20, 491–500. [Google Scholar]
- Ju, R.H.; Fan, X.Z.; Wei, H.J.; Bi, F.Q.; Li, J.Z.; Wang, H.; Fu, X.L. Research progress in application of tetrazine-based energetic compounds. Chem. Propell. Polymeric Mater. 2013, 11, 23–28. [Google Scholar]
- Xue, J.Q.; Shang, B.K.; Wang, W.; Liu, F.; Wang, L.X. Research advances in tetrazine-based high-nitrogen molecular and ionic energetic compounds. Chem. Propell. Polymeric Mater. 2011, 9, 1–8. [Google Scholar]
- Zhang, S.Z.; Feng, X.J.; Zhu, T.B.; Miao, C.C.; Ma, H.Q. Research progress in novel energetic materials-furazan-based compounds. Chem. Propell. Polymeric Mater. 2013, 11, 1–5. [Google Scholar]
- Wang, Z.; Wang, Y.; Wang, K.C.; Zhang, Q.H. Research progress in energetic metal-organic frameworks. Chin. J. Energ. Mater. 2017, 25, 442–450. [Google Scholar]
- Qu, X.N.; Zhai, L.J.; Wang, B.Z.; Wei, Q.; Xie, G.; Chen, S.P.; Gao, S.L. Copper-based energetic MOFs with 3-nitro-1H-1,2,4-triazole:solvent-dependent syntheses, structures and energetic performances. Dalton. Trans. 2016, 45, 17304–17311. [Google Scholar] [CrossRef]
- Wu, B.D.; Li, X.Y.; Liang, J.; Geng, X.H.; Huang, H.S.; Huang, H.; Wang., J.Y. 1D energetic metal organic frameworks assembled with energetic combination of furazan and tetrazole. Polyhedron 2018, 39, 148–154. [Google Scholar] [CrossRef]
- Wu, B.D.; Bin, Y.G.; Zhou, M.R.; Zhang, T.L.; Yang, L.; Zhou, Z.N.; Zhang, J.G. Stale high-nitrogen energetictrinuclear compounds based on 4-amino-3,5dimethyl-1,2,4- triazole: Synthesis, structures, thermal and explosive properties. Z. Anorg. Allg. Chem. 2014, 640, 1467–1473. [Google Scholar] [CrossRef]
- Zhang, J.; Du, Y.; Dong, K.; Su, H.; Zhang, S.W.; Li, S.H.; Pang, S.P. Tamingdinitramide anions within an energetic metal-organic framework: A new strategy for synthesis and tunable properties of high energy materials. Chem. Mater. 2016, 28, 1472–1480. [Google Scholar] [CrossRef]
- Calogero, G.P.; Angelos, P.; Maud, S.; Dusan, B.; Stefan, L. Synthesis of metal-organic frameworks for energetic applications. In Proceedings of the 49th International AnnualConference of the Fraunhofer ICT, Convention Center, Gartenhalle, Karlsruhe, Germany, 26–29 June 2018; p. 102. [Google Scholar]
- Xu, M.; Chai, J.; Hu, N.; Huang, D.; Wang, Y.X.; Huang, X.L.; Wei, H.; Yang, Z.; Zhang, Y.F. Facile synthesis of soluble functional grapheme by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions. Nanotechnology 2014, 25, 395602. [Google Scholar] [CrossRef]
- Cohen, A.; Yang, Y.Z.; Yan, Q.L.; Shlomovich, A.; Petrutik, N.; Burstein, L.; Pang, S.P.; Gozin, M. Highly thermostable and insensitive energetic hybrid coordination polymers based on grapheneoxide-Cu(Ⅱ)complex. Chem. Mater. 2016, 28, 6118–6126. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, D.; Jing, D.; Fan, G.J.; He, L.; Li, H.Z.; Wang, W.T.; Nie, F. Access to green primary explosives via constructing coordination polymers based on bis-tetrazole oxide and non-lead metals. Green Chem. 2019, 21, 1947–1955. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, B.J.; Zhang, M.; Li, C.; Gao, H.Q.; Zhang, J.; Zhou, Z.M. 3,4-Dinitro-1-(1H-tetrazol-5-yl)-1H-pyrazol-5-amine (HANTP) and its salts primary and secondary explosives. J. Mater. Chem. A 2017, 5, 5044–5054. [Google Scholar] [CrossRef]
- Shen, C.; Liu, Y.; Zhu, Z.Q.; Xu, Y.Q.; Lu, M. Self-assembly of silver(I)-based high-energy metal-organic frameworks(HE-MOFs) at ambient temperature and pressure: Synthesis, structure and superior explosive performance. Chem. Commun. 2017, 53, 7489–7492. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Song, X.X.; Yang, G.L.; Xie, G.; Chen, S.P.; Gao, S.L.l. The Invention Relates to a Heat Resistant High Density Energy-Containing Metal-Organic Skeleton Material and a Preparation Method. China Patent CN106977744A, 25 July 2017. [Google Scholar]
- Li, C.; Zhang, M.; Chen, Q.S.; Li, Y.Y.; Gao, H.Q.; Fu, W.; Zhou, Z.M. Three-dimensional metal-organic framework as super heat-resistant explosive: Potassium 4-(5-amino-3 -nitro-1H-1,2,4-triazol-1-yl)-3,5-dinitropyrazole. Chem. Eur. J. 2017, 23, 1490–1493. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Wang, S.; Feng, X.; Wu, L.; Zhang, G.Y.; Zhou, M.R.; Wang, B.; Li, Y. A heat-resistant and energetic metal-organic framework assembled by chelating ligand. Appl. Mater. Inter. 2017, 9, 37542–37547. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhao, F.Q.; Yi, J.H.; Xuan, C.L.; Luo, Y. Research progress of MOFs as combustion catalysts and high energy additives for solid propellants. Chin. J. Energ. Mater. 2016, 24, 1225–1231. [Google Scholar]
- Su, H.; Zhang, J.C.; Du, Y.; Zhang, P.C.; Li, S.H.; Fang, T.; Pang, S.P. New roles of metal-organic frameworks: Fuels for aluminum-free energetic thermites with low ignition temperatures, high peak pressures and high activity. Combust. Flame 2018, 191, 32–38. [Google Scholar] [CrossRef]
- Jian, G.Q.; Feng, J.Y.; Jacob, R.J.; Egan, G.; Zachariah, M. Super-reactive nanoenergetic gas generators based on periodate salts. Angew. Chem. Int. Ed. 2013, 52, 9743–9746. [Google Scholar] [CrossRef]
- Slocik, J.M.; Crouse, C.A.; Spowart, J.E.; Naik, R.R. Biologically tunable reactivity of energetic nanomaterials using protein cages. Nano Lett. 2013, 13, 2535–2540. [Google Scholar] [CrossRef]
- Comet, M.; Vidick, G.; Schnell, F.; Suma, Y.; Baps, B.; Spitzer, D. Sulfates-basednanothermites: An expanding horizon for metastable interstitial composites. Angew. Chem. Int. Ed. 2015, 54, 4458–4462. [Google Scholar] [CrossRef] [PubMed]
- Petrantoni, M.; Rossi, C.; Salvagnac, L.; Conédéra, V.; Estève, A.; Tenailleau, C.; Alphonse, P.; Chabal, Y.J. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro. J. Appl. Phys. 2010, 108, 084323. [Google Scholar] [CrossRef]
- Zhang, W.C.; Yin, B.Q.; Shen, R.Q.; Ye, J.H. Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl. Mater. Interfaces 2013, 5, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.G.; Yang, Y.; Cheng, H.; Li, Y.Y.; Zhang, K.L. Integration of nano-Al with Co3O4nanorods to realize high-exothermic core–shell nanoenergetic materials on a silicon substrate. Combust. Flame 2012, 159, 2202–2209. [Google Scholar] [CrossRef]
- Li, D.Y. The Preparation of Core-Shell Structure Nano Energetic Materials and Research on Their Performance. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2016. [Google Scholar]
- He, W.; Ao, W.; Yang, G.C.; Yang, Z.J.; Guo, Z.Q.; Liu, P.J.; Yan, Q.L. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chem. Eng. J. 2020, 381, 122623. [Google Scholar] [CrossRef]
- He, W.; Li, Z.H.; Chen, S.W.; Yang, G.C.; Yang, Z.J.; Liu, P.J.; Yan, Q.L. Energetic metastable n-Al@PVDF/EMOF composite nanofibers with improved combustion performances. Chem. Eng. J. 2020, 383, 123146. [Google Scholar] [CrossRef]
- Singh, R.P.; Verma, R.D.; Meshri, D.T.; Shreeve, J. Energetic nitrogen-rich salts and ionic liquids. Ang. Chem. Int. Ed. 2006, 45, 3584–3601. [Google Scholar] [CrossRef]
- Xia, Z.Q.; Chen, S.P.; Wei, Q.; Qiao, C.F. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane. J. Solid State Chem. 2011, 184, 1777–1783. [Google Scholar] [CrossRef]
- Ma, X.H.; Cai, C.; Sun, W.J.; Song, W.M.; Ma, Y.L.; Liu, X.Y.; Xie, G.; Chen, S.P.; Gao, S.L. Enhancing energetic performance of multinuclear Ag(I)-cluster MOF-based high-energy-density materials by thermal dehydration. Appl. Mater. Int. 2019, 11, 9233–9238. [Google Scholar] [CrossRef]
Compound | ρ/g·cm−3 | N/% | Td./°C | ΔHdet/kJ··g−1 | P/GPa | D/km·s−1 | IS (J),FS (N),ES (J) |
---|---|---|---|---|---|---|---|
Pb(N3)2 [47] | 4.800 | 28.9 | 315 | - | 33.4 | 5.877 | 2.5–4,0.1–1,- |
{[Cu(ATZ)](ClO4)2}n [31] | 1.400 | 32.66 | >250 | - | - | 6.5 | 1,10,- |
{[Zn(ATZ)3](PA)2·2.5H2O}n [31] | 1.757 | 30.89 | 276.3 | - | - | - | 27.8,-,- |
[Mn2(HATr)4(NO3)4·2H2O]n [37] [Cd2(HATr)4(NO3)4·H2O]n [37] | 1.864 2.021 | 46.12 41.4 | 260 295 | - - | - - | - - | -,-,- -,-,- |
CHHP [43] ZnHHP [43] | 2.000 2.117 | 23.58 23.61 | 231 293 | 6.277 6.202 | 17.96 23.58 | 6.205 7.016 | 0.8,-,- -,-,- |
[Cu(atrz)3(NO3)2]n [45] [Ag(atrz)1.5(NO3)]n [45] | 1.680 2.160 | 53.35 43.76 | 243 257 | 4.562 5.802 | 35.68 29.7 | 9.16 7.773 | 22.5,112,- 30,-,- |
{[Cu(tztr)]·H2O}n [44] [Cu(tztr)]n [44] | 2.316 2.216 | - - | 80/325 360 | 5.524 14.229 | 31.99 40.02 | 7.920 8.429 | >40,>360,>24.7,>32, >360,>24.75 |
K2DNMAF [47] | 2.039 | 31.1 | 229 | - | 30.1 | 8.137 | 2,20,- |
[Ag2(DNMAF)·(H2O)2]n [86] [Ag2(DNMAF)]n [86] | 2.545 2.796 | - - | 230 212 | 8.160 9.165 | 50.01 58.30 | 9.673 10.242 | 10,160,- 8,120,- |
[Pb(bta)(H2O)]n [87] | 3.412 | 33.50 | 314 | - | - | - | - |
TNT | 1.654 | 18.5 | 295 | 4.144 | 19.53 | 6.881 | 15,350,0.57 |
HMX | 1.950 | 37.84 | 287 | 5.525 | 38.39 | 8.900 | 7.4,-,0.2 |
RDX | 1.800 | 34.31 | 210 | 5.710 | 34.1 | 8.906 | 7.9,120,0.15 |
CL-20 | 2.035 | 38.36 | 245 | 6.168 | 44.9 | 9.385 | 4,54,0.13 |
PETN | 1.778 | - | 202 | 6.404 | 32.1 | 8.665 | 3,60,- |
FOX-7 | 1.885 | - | 240 | - | 36.6 | 9.09 | -,-,- |
TATB | 1.930 | - | 330 | 4.445 | 31.2 | 8.114 | 50,-,- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Qiao, J.; Xu, S.; Zhao, X.; Gong, W.; Huang, T. Constructing Strategies and Applications of Nitrogen-Rich Energetic Metal–Organic Framework Materials. Catalysts 2020, 10, 690. https://doi.org/10.3390/catal10060690
Xu L, Qiao J, Xu S, Zhao X, Gong W, Huang T. Constructing Strategies and Applications of Nitrogen-Rich Energetic Metal–Organic Framework Materials. Catalysts. 2020; 10(6):690. https://doi.org/10.3390/catal10060690
Chicago/Turabian StyleXu, Luping, Juan Qiao, Siyu Xu, Xiaoyu Zhao, Wanjun Gong, and Taizhong Huang. 2020. "Constructing Strategies and Applications of Nitrogen-Rich Energetic Metal–Organic Framework Materials" Catalysts 10, no. 6: 690. https://doi.org/10.3390/catal10060690
APA StyleXu, L., Qiao, J., Xu, S., Zhao, X., Gong, W., & Huang, T. (2020). Constructing Strategies and Applications of Nitrogen-Rich Energetic Metal–Organic Framework Materials. Catalysts, 10(6), 690. https://doi.org/10.3390/catal10060690