VOC Removal from Manure Gaseous Emissions with UV Photolysis and UV-TiO2 Photocatalysis
Abstract
:1. Introduction
- (1)
- Transfer of the reactants to the surface;
- (2)
- Adsorption of at least one of the reactants to the catalytic site;
- (3)
- Reaction or reactions in the adsorbed phase;
- (4)
- Desorption of the product(s) from the active site(s);
- (5)
- Removal of the products from the interface.
2. Results and Discussion
2.1. UV Treatment of Odorous VOCs in Synthetic Mixture
2.1.1. Effects of UV Light dose, Wavelength, and Catalyst on VOC Conversion
2.1.2. Effect of UV Treatment Time on Odor Reduction
2.1.3. Effect of Relative Humidity and Air Temperature on UV Treatment
2.2. UV/TiO2 Photocatalysis of Real Poultry Atmosphere
2.2.1. Potential Effectiveness of VOCs Removal
2.2.2. Potential Effectiveness of Ammonia Removal
2.2.3. Coeffect of Spontaneously Produced Ozone
2.2.4. Total Odor Removal
3. Materials and Methods
3.1. UV Photolysis and UV/TiO2 Photocatalysis of Target VOCs in a Synthetic Odorous Air Mixture
3.1.1. Generation of Synthetic Odorous Air Mixture
3.1.2. Photolysis Treatment
3.1.3. Photocatalysis Treatment
3.2. UV Dosage and VOC Mass Conversion
3.3. UV/TiO2 Photocatalysis of Real Poultry Atmosphere
3.4. Sampling and Analyses of Odorous VOCs and Odor
4. Conclusions
- (1)
- Experiments confirmed that it is feasible to substantially remove odorous VOCs with both photolysis and photocatalysis (synthetic VOCs air mixture) or photocatalysis (real manure atmosphere) during reaction times of only seconds.
- (2)
- For synthetic VOCs mixtures: (I) The treatment effectiveness of four treatment options followed an order of UV185+254 + TiO2 > UV254 + TiO2 > UV185+254; no catalyst > UV254; no catalyst. (II) Significant percent conversion (R) of VOCs (>80%) and linear dependence on UV dose was achieved when light energy was >60 J L−1. Up to ~80% of odor removal was also observed. (III) Deep UV (UV185+254) improved R, particularly when photolysis was the primary treatment. (IV) The use of photocatalyst (TiO2), especially at deep UV, resulted in increased R for all VOCs and VFAs particularly, whose concentrations increased from reaction intermediates. Still, the effect of catalysts and deep UV should be considered independently. (V) Mass conversion rate (mass per energy) of p-cresol, a characteristic offensive barn odor compound (78.8–111 ng J−1) among all nine odorous VOCs. (VI) No apparent effects of RH on R were observed. However, a significant decrease in VOC mass removed was observed with high RH. (VII) No apparent effects of air temperature on R were observed for p-cresol and most of the VFAs. An apparent increase of both R and mass converted was observed for mercaptans with a temperature increase to 25 °C.
- (3)
- For real manure atmosphere: (I) between ~80% and 100% removal of target VOCs at a treatment time of at least ~6 s was observed. (II) Ammonia removal was not effective. (III) Odor removal of 77% was observed for emission from fresh odorous manure, but no odor removal was detected at low emission from aged manure. Ozone was generated with photocatalysis. The determination of ozone contributions to the overall treatment is warranted.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akdeniz, N.; Jacobson, L.D.; Hetchler, B.P.; Bereznicki, S.D.; Heber, A.J.; Koziel, J.A.; Cai, L.; Zhang, S.; Parker, D.B. Odor and odorous chemical emissions from animal buildings: Part 2—Odor emissions. Trans. ASABE 2012, 55, 2335–2345. [Google Scholar] [CrossRef]
- Cai, L.; Koziel, J.A.; Zhang, S.; Heber, A.J.; Cortus, E.L.; Parker, D.B.; Hoff, S.J.; Sun, G.; Heathcote, K.Y.; Jacobson, L.D.; et al. Odor and odorous chemical emissions from animal buildings: Part 3—Chemical emissions. Trans. ASABE 2015, 58, 1333–1347. [Google Scholar] [CrossRef][Green Version]
- Parker, D.B.; Koziel, J.A.; Cai, L.; Jacobson, L.; Akdeniz, N.; Bereznicki, S.; Lim, T.T.; Caraway, E.; Zhang, S.; Hoff, S.J.; et al. Odor and odorous chemical emissions from animal buildings: Part 6—Odor activity value. Trans. ASABE 2012, 55, 2357–2368. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, L.; Koziel, J.A.; Hoff, S.; Schmidt, D.; Clanton, C.; Jacobson, L.; Parker, D.; Heber, A. Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tube GC-MS/Olfactometry. Sens. Actuators B Chem. 2010, 146, 427–432. [Google Scholar] [CrossRef]
- Trabue, S.; Scoggin, K.; Li, H.; Burns, R.; Xin, H.; Hatfield, J. Speciation of volatile organic compounds from poultry production. Atmos. Environ. 2010, 44, 3538–3546. [Google Scholar] [CrossRef][Green Version]
- Lo, Y.C.; Koziel, J.A.; Cai, L.; Hoff, S.J.; Jenks, W.S.; Xin, H. Simultaneous chemical and sensory characterization of VOCs and semi-VOCs emitted from swine manure using SPME and multidimensional gas chromatography-mass spectrometry-olfactometry system. J. Environ. Qual. 2008, 37, 521–534. [Google Scholar] [CrossRef]
- Woodbury, B.L.; Gilley, J.E.; Parker, D.B.; Marx, D.B.; Eigenberg, R.A. VOC emissions from beef feedlot pen surfaces as affected by within-pen location, moisture and temperature. Biosyst. Eng. 2015, 134, 31–41. [Google Scholar] [CrossRef][Green Version]
- Shaw, S.L.; Mitloehner, F.M.; Jackson, W.; Depeters, E.J.; Fadel, J.G.; Robinson, P.H.; Holzinger, R.; Goldstein, A. Volatile organic compound emissions from dairy cows and their waste as measured by proton-transfer-reaction mass spectrometry. Environ. Sci. Technol. 2007, 41, 1310–1316. [Google Scholar] [CrossRef]
- Laor, Y.; Koziel, J.A.; Cai, L.; Ravid, U. Enhanced characterization of dairy manure odor by time-increased headspace solid phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry. J. Air Waste Manag. Assoc. 2008, 58, 1187–1197. [Google Scholar] [CrossRef][Green Version]
- Hales, K.E.; Parker, D.B.; Cole, N.A. Potential odorous volatile organic compound emissions from feces and urine from cattle fed corn-based diets with wet distillers grains and solubles. Atmos. Environ. 2012, 60, 292–297. [Google Scholar] [CrossRef]
- McGinn, S.M.; Janzen, H.H.; Coates, T. Atmospheric ammonia, volatile fatty acids, and other odorants near beef feedlots. J. Environ. Qual. 2003, 32, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Feilberg, A.; Liu, D.; Adamsen, A.P.; Hansen, M.J.; Jonassen, K.E. Odorant emissions from intensive pig production measured by on-line proton-transfer-reaction mass spectrometry. Environ. Sci. Technol. 2010, 44, 5894–5900. [Google Scholar] [CrossRef] [PubMed]
- Ngwabie, N.; Schade, G.; Custer, T.; Hinz, S. Abundance and fluxes estimates of volatile organic compounds from a dairy cowshed in Germany. J. Environ. Qual. 2008, 37, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Bulliner, E.A.; Koziel, J.A.; Cai, L.; Wright, D. Characterization of livestock odors using steel plates, solid phase microextraction, and multidimensional—gas chromatography-mass spectrometry-olfactometry. J. Air Waste Manag. Assoc. 2006, 56, 1391–1403. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cai, L.; Koziel, J.A.; Davis, J.; Lo, Y.C.; Xin, H. Characterization of VOCs and odors by in vivo sampling of beef cattle rumen gas using SPME and GC-MS-olfactometry. Anal. Bioanal. Chem. 2006, 386, 1791–1802. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cai, L.; Koziel, J.A.; Nguyen, A.T.; Liang, Y.; Xin, H. Evaluation of zeolite for control of odorants emissions from simulated poultry manure storage. J. Environ. Qual. 2007, 36, 184–193. [Google Scholar] [CrossRef][Green Version]
- Koziel, J.A.; Cai, L.; Wright, D.; Hoff, S.J. Solid-phase microextraction as a novel air sampling technology for improved, GC-Olfactometry-based, assessment of livestock odors. J. Chromatogr. Sci. 2006, 44, 451–457. [Google Scholar] [CrossRef][Green Version]
- Varma, V.S.; Shabtay, A.; Yishay, M.; Mizrahi, I.; Shterzer, N.; Freilich, S.; Medina, S.; Agmon, R.; Laor, Y. Diet supplementation with pomegranate peel extract altered odorants emission from fresh and incubated calves’ feces. Front. Sustain. Food Syst. 2018, 2, 33. [Google Scholar] [CrossRef]
- Schaefer, J. Sampling, characterization and analysis of malodours. Agric. Environ. 1977, 3, 121–127. [Google Scholar] [CrossRef]
- Willig, S.; Lacorn, M.; Claus, R. Development of a rapid and accurate method for the determination of key compounds of pig odor. J. Chromatogr. A 2004, 1038, 11–18. [Google Scholar] [CrossRef]
- Maurer, D.; Koziel, J.A.; Harmon, J.D.; Hoff, S.J.; Rieck-Hinz, A.M.; Andersen, D.S. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air Management Practices Assessment Tool (AMPAT). Data Brief 2016, 7, 1413–1429. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wi, J.; Lee, S.; Kim, E.; Lee, M.; Koziel, J.A.; Ahn, H. Evaluation of Semi-Continuous Pit Manure Recharge System Performance on Mitigation of Ammonia and Hydrogen Sulfide Emissions from a Swine Finishing Barn. Atmosphere 2019, 10, 170. [Google Scholar] [CrossRef][Green Version]
- Maurer, D.; Koziel, J.; Kalus, K.; Andersen, D.; Opalinski, S. Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability 2017, 9, 929. [Google Scholar] [CrossRef][Green Version]
- Parker, D.B.; Hayes, M.; Brown-Brandl, T.; Woodbury, B.; Spiehs, M.; Koziel, J.A. Surface application of soybean peroxidase and calcium peroxide for reducing odorous VOC emissions from swine manure slurry. Appl. Eng. Agric. 2016, 32, 389–398. [Google Scholar]
- Kalus, K.; Opaliński, S.; Maurer, D.; Rice, S.; Koziel, J.A.; Korczyński, M.; Dobrzański, Z.; Kołacz, R.; Gutarowska, B. Odour reducing microbial-mineral additive for poultry manure treatment. Front. Environ. Sci. Eng. 2017, 11, 7. [Google Scholar] [CrossRef][Green Version]
- Maurer, D.L.; Koziel, J.A.; Bruning, K.; Parker, D.B. Farm-scale testing of soybean peroxidase and calcium peroxide for surficial swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions. Atmos. Environ. 2017, 166, 467–478. [Google Scholar] [CrossRef][Green Version]
- Parker, D.B.; Pandrangi, S.; Greene, L.; Almas, L.; Cole, N.; Rhoades, M.; Koziel, J. Rate and frequency of urease inhibitor application for minimizing ammonia emissions from beef cattle feedyards. Trans. ASAE 2005, 48, 787–793. [Google Scholar] [CrossRef]
- Parker, D.B.; Rhoades, M.B.; Koziel, J.A.; Baek, B.-H.; Waldrip, H.M.; Todd, R.W. Urease inhibitor for reducing ammonia emissions from an open-lot beef cattle feedyard in the Texas High Plains. Appl. Eng. Agric. 2016, 32, 823–832. [Google Scholar]
- Chen, L.; Hoff, S.; Cai, L.; Koziel, J.; Zelle, B. Evaluation of wood chip-based biofilters to reduce odor, hydrogen sulfide, and ammonia from swine barn ventilation air. J. Air Waste Manag. Assoc. 2009, 59, 520–530. [Google Scholar] [CrossRef]
- Chen, L.; Hoff, S.J.; Koziel, J.A.; Cai, L.; Zelle, B.; Sun, G. Performance evaluation of a wood-chip based biofilter using solid-phase microextraction and gas chromatography–mass spectroscopy–olfactometry. Bioresour. Technol. 2008, 99, 7767–7780. [Google Scholar] [CrossRef][Green Version]
- Yang, X.; Koziel, J.A.; Cai, L.; Hoff, S.J.; Harmon, J.D.; van Leeuwen, H.; Jenks, W.S.; Jeffrey, J.; Zimmerman, J.J.; Cutler, T.D. Novel Treatment of VOCs and Odor Using Photolysis. In Proceedings of the 2007 ASABE Annual International Meeting, Minneapolis, MN, USA, 17–20 June 2007. Paper No. 074139. [Google Scholar]
- Yang, X.; Koziel, J.A.; Cutler, T.; van Leeuwen, H.; Zhang, S.; Hoff, S.J.; Jenks, W.; Zimmerman, J. Treatment of Livestock Odor and Pathogens with Ultraviolet Light. In Proceedings of the 2008 ASABE Annual International Meeting, Providence, RI, USA, 29 June–2 July 2008. Paper No. 085198. [Google Scholar]
- Laor, Y.; Ravid, U.; Amon, R.; Saadi, I.; Ozer, Y.; Koziel, J.A.; Yang, X. UV-TiO2 treatment of odorants and odors associated with poultry manure. Chem. Eng. Trans. 2010, 23, 321–326. [Google Scholar]
- Zhu, W.; Koziel, J.A.; Maurer, D.L. Mitigation of livestock odors using a black light and a new titanium dioxide-based catalyst: Proof-of-concept. Atmosphere 2017, 8, 103. [Google Scholar] [CrossRef][Green Version]
- Maurer, D.L.; Koziel, J.A. On-farm pilot-scale testing of black ultraviolet light and photocatalytic coating for mitigation of odor, odorous VOCs, and greenhouse gases. Chemosphere 2019, 221, 778–784. [Google Scholar] [CrossRef]
- Guarino, M.; Costa, A.; Porro, M. Photocatalytic TiO2 coating-to reduce ammonia and greenhouse gases concentration and emission from animal husbandries. Bioresour. Technol. 2008, 99, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Chiarello, G.L.; Selli, E.; Guarino, M. Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. J. Environ. Manag. 2012, 96, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Rockafellow, E.M.; Koziel, J.A.; Jenks, W.S. UV treatment of ammonia for livestock and poultry barn exhaust applications. J. Environ. Qual. 2012, 41, 281–288. [Google Scholar] [CrossRef][Green Version]
- Lee, M.; Wi, J.; Koziel, J.A.; Ahn, H.; Li, P.; Chen, B.; Meiirkhanuly, Z.; Banik, C.; Jenks, W. Effects of UV-A Light Treatment on Ammonia, Hydrogen Sulfide, Greenhouse Gases, and Ozone in Simulated Poultry Barn Conditions. Atmosphere 2020, 11, 283. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.; Murphy, J.P.; Maghirang, R.; DeRouchey, J. Mitigation of Air Emissions from Swine Buildings through the Photocatalytic Technology using UV/TiO2. In Proceedings of the ASABE 2015 Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015. Paper No. 152189332. [Google Scholar]
- Cutler, T.; Wang, C.; Qin, Q.; Zhou, F.; Warren, K.; Yoon, K.-J.; Hoff, S.J.; Ridpath, J.; Zimmerman, J. Kinetics of UV254 inactivation of selected viral pathogens in a static system. J. Appl. Microbiol. 2011, 111, 389–395. [Google Scholar] [CrossRef][Green Version]
- Herrmann, J.M. Heterogeneous photocatalysis: State of the art and present applications. Top. Catal. 2005, 34, 49–65. [Google Scholar] [CrossRef]
- Jo, W.K. Coupling of titania with multiwall carbon nanotubes for decomposition of gas-phase pollutants under simulated indoor conditions. J. Air Waste Manag. Assoc. 2013, 63, 963–970. [Google Scholar] [CrossRef]
- Hajimohammadi, M.; Schwarzinger, C.; Knör, G. Controlled multistep oxidation of alcohols and aldehydes to carboxylic acids using air, sunlight and a robust metalloporphyrin sensitizer with a pH-switchable photoreactivity. RSC Adv. 2012, 2, 3257–3260. [Google Scholar] [CrossRef]
- Cao, L.X.; Gao, Z.; Suib, S.L.; Obee, T.N.; Hay, S.O.; Freihaut, J.D. Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. J. Catal. 2000, 196, 253–261. [Google Scholar] [CrossRef]
- Haagen-Smit, A.J. Chemistry and physiology of LA smog. Ind. Eng. Chem. Res. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Committee on Tropospheric Ozone Formation and Measurement; Board on Environmental Studies and Toxicology; Board on Atmospheric Sciences and Climate; Commission on Geosciences, Environment, and Resources, National Research Council. Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academy Press: Washington, DC, USA, 1991; Available online: https://www.nap.edu/read/1889/chapter/1 (accessed on 22 April 2020).
- Kebede, M.A.; Varner, M.E.; Scharko, N.K.; Gerber, R.B.; Raff, J.D. Photooxidation of ammonia on TiO2 as source of NO and NO2 under atmospheric conditions. J. Am. Chem. Soc. 2013, 135, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Monge, M.E.; George, C.; D’Anna, B.; Doussin, J.F.; Jammoul, A.; Wang, J.; Eyglunent, G.; Solignac, G.; Daele, V.; Mellouki, A. Ozone formation from illuminated titanium dioxide surfaces. J. Am. Chem. Soc. 2010, 132, 8234–8235. [Google Scholar] [CrossRef]
- Devos, M.; Patte, F.; Rouault, J.; Laffort, P.; Van Gemert, L.J. Standardized Human Olfactory Thresholds; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Flavornet. Available online: http://www.flavornet.org/ (accessed on 22 April 2020).
- LRI. Available online: http://www.odour.org.uk/ (accessed on 22 April 2020).
- Spinhirne, J.P.; Koziel, J.A. Generation and calibration of standard gas mixtures for volatile fatty acids using permeation tubes and solid phase microextraction. Trans. ASABE 2003, 46, 1639–1646. [Google Scholar] [CrossRef]
- Zoschke, K.; Börnick, H.; Worch, E. Vacuum-UV radiation at 185 nm in water treatment—A review. Water Res. 2014, 52, 131–145. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, W.; Koziel, J.A.; Cai, L.; Jenks, W.; Laor, Y.; van Leeuwen, H.; Hoff, S.J. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography—mass spectrometry. J. Chromatogr. A 2015, 1414, 31–40. [Google Scholar] [CrossRef][Green Version]
- Laor, Y.; Parker, D.; Pagé, T. Measurement, prediction, and monitoring of odors in the environment: A critical review. Rev. Chem. Eng. 2014, 30, 139–166. [Google Scholar] [CrossRef]
- ASTM. E697-91 Standard practice for determining odor and taste thresholds by force-choice concentration series method of limits. In Annual Book of ASTM Standards; American Society for Testing and Materials (ASTM): Philadelphia, PA, USA, 2001. [Google Scholar]
- CEN. EN13725:2003 Determination of Odor Concentration by Dynamic Olfactometry; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
Compound Name | p-Values of Paired t-Test | |||
---|---|---|---|---|
Effect of Deep UV (UV185+254) | Effect of Catalyst | |||
UV185+254 > UV254 (with TiO2) | UV185+254 > UV254 (no catalyst) | TiO2 > No TiO2 (UV185+254) | TiO2 > No TiO2 (UV254) | |
Methyl mercaptan | 0.023 | 0.001 | 0.0033 | 0.000041 |
Ethyl mercaptan | 0.019 | 0.00163 | 0.0077 | 0.0004 |
Dimethyl sulfide | 0.052 | 0.0027 | 0.0079 | 0.0011 |
Butyl mercaptan | 0.021 | 0.0072 | 0.028 | 0.0093 |
Acetic acid | 0.21 | 0.0031 | 0.0037 | 0.0045 |
Propanoic acid | 0.10 | 0.17 | 0.0021 | 0.0081 |
Butyric acid | 0.24 | 0.17 | 0.0046 | 0.0041 |
Isovaleric acid | 0.12 | 0.23 | 0.0067 | 0.0013 |
p-Cresol | 0.008 | 0.007 | 0.085 | 0.0022 |
Compound Name | UV185+254 + TiO2 | UV185+254, No Catalyst | UV254 + TiO2 | UV254, No Catalyst | ||||
---|---|---|---|---|---|---|---|---|
ng J−1 | nmole J−1 | ng J−1 | nmole J−1 | ng J−1 | nmole J−1 | ng J−1 | nmole J−1 | |
Methyl mercaptan | 4.72 | 0.100 | 5.23 | 0.111 | 4.43 | 0.0943 | 1.20 | 0.0255 |
Ethyl mercaptan | 14.6 | 0.236 | 15.6 | 0.252 | 13.6 | 0.219 | 4.04 | 0.0652 |
Dimethyl sulfide | 4.94 | 0.0796 | 4.49 | 0.0724 | 4.32 | 0.0697 | 1.48 | 0.0239 |
Butyl mercaptan | 8.68 | 0.0965 | 9.37 | 0.104 | 9.46 | 0.105 | 3.76 | 0.0418 |
Acetic acid | 11.6 | 0.193 | −12.0 | −0.200 | 11.3 | 0.188 | −3.61 | −0.0601 |
Propanoic acid | 8.65 | 0.117 | −0.326 | −0.00440 | 8.41 | 0.114 | −1.38 | −0.0186 |
Butyric acid | 15.7 | 0.179 | 1.25 | 0.0142 | 16.2 | 0.184 | −0.299 | −0.00340 |
Isovaleric acid | 49.2 | 0.482 | 9.99 | 0.0979 | 49.9 | 0.489 | 12.0 | 0.1174 |
p-Cresol | 78.8 | 0.730 | 98.0 | 0.907 | 111 | 1.03 | 94.0 | 0.870 |
VOCs | ODT a in Air (ppbv) [50] | Odor Descriptor | |
---|---|---|---|
Flavornet [51] | LRI [52] | ||
Methyl mercaptan | 1.05 | sulfur, gasoline, garlic | rotten cabbage, sulfurous |
Ethyl mercaptan | 1.07 | N/A | earthy, egg, garlic, onion |
Dimethyl sulfide | 2.24 | cabbage, sulfur, gasoline | asparagus, cabbage, sulfurous |
Butyl mercaptan | 1.41 | N/A | diffusive, skunky, sulfurous |
Acetic acid | 363 | sour | acetic, vinegar |
Propanoic acid | 35.5 | pungent, rancid, soy | N/A |
Butyric acid | 3.89 | rancid, cheese, sweat | butter, cheese, musty, oily |
Isovaleric acid | 2.45 | sweat, acid, rancid | cheese, old hop, old socks, sweaty |
p-Cresol | 1.86 | medicine, phenol, smoke | medicinal, phenolic, smoky, tarry |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Koziel, J.A.; Laor, Y.; Zhu, W.; van Leeuwen, J.; Jenks, W.S.; Hoff, S.J.; Zimmerman, J.; Zhang, S.; Ravid, U.; Armon, R. VOC Removal from Manure Gaseous Emissions with UV Photolysis and UV-TiO2 Photocatalysis. Catalysts 2020, 10, 607. https://doi.org/10.3390/catal10060607
Yang X, Koziel JA, Laor Y, Zhu W, van Leeuwen J, Jenks WS, Hoff SJ, Zimmerman J, Zhang S, Ravid U, Armon R. VOC Removal from Manure Gaseous Emissions with UV Photolysis and UV-TiO2 Photocatalysis. Catalysts. 2020; 10(6):607. https://doi.org/10.3390/catal10060607
Chicago/Turabian StyleYang, Xiuyan, Jacek A. Koziel, Yael Laor, Wenda Zhu, J. (Hans) van Leeuwen, William S. Jenks, Steven J. Hoff, Jeffrey Zimmerman, Shicheng Zhang, Uzi Ravid, and Robert Armon. 2020. "VOC Removal from Manure Gaseous Emissions with UV Photolysis and UV-TiO2 Photocatalysis" Catalysts 10, no. 6: 607. https://doi.org/10.3390/catal10060607