Mercury(II)-Catalyzed Cleavage, Isomerization and Depurination of RNA and DNA Model Compounds and Desulfurization of Their Phosphoromonothioate Analogs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Reaction Kinetics
2.2.1. Cleavage and Isomerization of Adenylyl-3′,5′-(2′,3′-O-Methyleneadenosine) (1a)
2.2.2. Depurination of 2′-Deoxyadenosine
2.2.3. Desulfurization of Adenylyl-3′,5′-(2′,3′-O-Methyleneadenosine) Phosphoromonothioate (2a)
3. Materials and Methods
3.1. General
3.2. Materials
3.3. Kinetic Measurements
3.4. 2′-O-(tert-Butyldimethylsilyl)-5′-O-(4,4′-dimethoxytrityl)-adenylyl-3′,5′-(2′,3′-O-methyleneadenosine) (4)
3.5. 2′-O-(tert-Butyldimethylsilyl)-5′-O-(4,4′-dimethoxytrityl)-adenylyl-3′,5′-(2′,3′-O-methyleneadenosine) phosphoromonothioate (5)
3.6. Adenylyl-3′,5′-(2′,3′-O-methyleneadenosine) (1a)
3.7. Adenylyl-3′,5′-(2′,3′-O-methyleneadenosine) phosphoromonothioate (2a)
3.8. N6,N6-dibenzoyl-2′,3′-O-methyleneadenosine (3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dallas, A.; Vlassov, A.V.; Kazakov, S.A. Principles of Nucleic Acid Cleavage by Metal Ions. In Artificial Nucleases; Zenkova, M.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 61–88. [Google Scholar]
- Lönnberg, T. Understanding Catalysis of Phosphate-Transfer Reactions by the Large Ribozymes. Chem. Eur. J. 2011, 17, 7140–7153. [Google Scholar] [CrossRef] [PubMed]
- Forconi, M.; Herschlag, D. Metal ion-based RNA cleavage as a structural probe. Methods Enzymol. 2009, 468, 91–106. [Google Scholar] [PubMed]
- Pyle, A.M. Ribozymes: A distinct class of metalloenzymes. Science 1993, 261, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Sigel, R.K.O.; Sigel, H. 3.21-Metal-Ion Interactions with Nucleic Acids and Their Constituents. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 623–660. [Google Scholar]
- Ghidini, A.; Murtola, M.; Strömberg, R. Oligonucleotide Based Artificial Ribonucleases (OBANs). DNA Supramol. Chem. Nanotechnol. 2014. [Google Scholar] [CrossRef]
- Komiyama, M. Cut-and-paste of DNA using an artificial restriction DNA cutter. Int. J. Mol. Sci. 2013, 14, 3343–3357. [Google Scholar] [CrossRef] [Green Version]
- Aiba, Y.; Sumaoka, J.; Komiyama, M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem. Soc. Rev. 2011, 40, 5657–5668. [Google Scholar] [CrossRef]
- Kuzuya, A.; Komiyama, M. Site-selective artificial ribonucleases and their applications. Curr. Org. Chem. 2007, 11, 1450–1459. [Google Scholar] [CrossRef]
- Morrow, J.R.; Iranzo, O. Synthetic metallonucleases for RNA cleavage. Curr. Opin. Chem. Biol. 2004, 8, 192–200. [Google Scholar] [CrossRef]
- Mikkola, S.; Lönnberg, T.; Lönnberg, H. Phosphodiester models for cleavage of nucleic acids. Beilstein J. Org. Chem. 2018, 14, 803–837. [Google Scholar] [CrossRef] [Green Version]
- Ora, M.; Lönnberg, T.; Lönnberg, H. Thio Effects as a Tool for Mechanistic Studies of the Cleavage of RNA Phosphodiester Bonds: The Chemical Basis. In From Nucleic Acids Sequences to Molecular Medicine; Erdmann, V.A., Barciszewski, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–65. [Google Scholar]
- Harris, M.E. Identification and Characterization of Metal Ion Coordination Interactions with RNA by Quantitative Analysis of Thiophilic Metal Ion Rescue of Site-Specific Phosphorothioate Modifications. In Handbook of RNA Biochemistry, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2014; Volumes 1 and 2, pp. 285–299. [Google Scholar]
- Forconi, M.; Herschlag, D. Use of phosphorothioates to identify sites of metal-ion binding in RNA. Methods Enzymol. 2009, 468, 311–333. [Google Scholar]
- Frederiksen, J.K.; Piccirilli, J.A. Identification of catalytic metal ion ligands in ribozymes. Methods 2009, 49, 148–166. [Google Scholar] [CrossRef] [Green Version]
- Christian, E.L. Identification and Characterization of Metal Ion Binding by Thiophilic Metal Ion Rescue. In Handbook of RNA Biochemistry; Wiley-VCH: Weinheim, Germany, 2008; pp. 319–344. [Google Scholar]
- Huang, P.-J.J.; Wang, F.; Liu, J. Cleavable Molecular Beacon for Hg2+ Detection Based on Phosphorothioate RNA Modifications. Anal. Chem. 2015, 87, 6890–6895. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, S. Metal-Complexes with Mixed-Ligands 11 formation of ternary mononuclear and polynuclear mercury (II) complexes in system Hg2+-Cl-OH-potentiometric study in 3.0 M (Na)ClO4, Cl media. Acta Chem. Scand. 1977, 31, 705–717. [Google Scholar] [CrossRef] [Green Version]
- Lönnberg, H. Mechanisms for the solvolytic decompositions of nucleoside analogs.4. The effect of metal-ions on the acidic hydrolysis of 9-(1-ethoxyethyl) purine. Acta Chem. Scand. 1980, 34, 703–708. [Google Scholar] [CrossRef]
- Almer, H.; Stawinski, J.; Strömberg, R.; Thelin, M. Synthesis of diribonucleoside phosphorothioates via stereospecific sulfuration of H-phosphonate diesters. J. Org. Chem. 1992, 57, 6163–6169. [Google Scholar] [CrossRef]
- Järvinen, P.; Oivanen, M.; Lönnberg, H. Interconversion and phosphoester hydrolysis of 2′,5′-and 3′,5′-dinucleoside monophosphates: Kinetics and mechanisms. J. Org. Chem. 1991, 56, 5396–5401. [Google Scholar] [CrossRef]
- Simpson, R.B. Association Constants of Methylmercuric and Mercuric Ions with Nucleosides. J. Am. Chem. Soc. 1964, 86, 2059–2065. [Google Scholar] [CrossRef]
- Leroy, J.L.; Guéron, M. Demonstration of different complexation modes between cobalt and 5′ AMP, by direct NMR observation of the low-temperature complex. Biochimie 1982, 64, 297–299. [Google Scholar] [CrossRef]
- Leroy, J.L.; Guéron, M. Demonstration and characterization of two complexes of cobalt(II) to mononucleotides by phosphorus-31 and proton NMR. J. Am. Chem. Soc. 1986, 108, 5753–5759. [Google Scholar] [CrossRef]
- Collins, A.D.; Demeester, P.; Goodgame, D.M.L.; Skapski, A.C. Site of metal-ion binding in a nickel derivative of adenosine 5′-monophosphate-X-ray study. Biochim. Biophys. Acta 1975, 402, 1–6. [Google Scholar] [CrossRef]
- Chapman, W.H.; Breslow, R. Selective Hydrolysis of Phosphate Esters, Nitrophenyl Phosphates and UpU, by Dimeric Zinc Complexes Depends on the Spacer Length. J. Am. Chem. Soc. 1995, 117, 5462–5469. [Google Scholar] [CrossRef]
- Wall, M.; Hynes, R.C.; Chin, J. Double Lewis Acid Activation in Phosphate Diester Cleavage. Angew. Chem. Int. Ed. 1993, 32, 1633–1635. [Google Scholar] [CrossRef]
- Liu, S.D.; Hamilton, A. Rapid and highly base selective RNA cleavage by a dinuclear Cu(II) complex. Chem. Commun. 1999, 587–588. [Google Scholar] [CrossRef]
- Iranzo, O.; Elmer, T.; Richard, J.P.; Morrow, J.R. Cooperativity between Metal Ions in the Cleavage of Phosphate Diesters and RNA by Dinuclear Zn(II) Catalysts. Inorg. Chem. 2003, 42, 7737–7746. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Mareque-Rivas, J.C.; Williams, N.H. Comparing a mononuclear Zn(ii) complex with hydrogen bond donors with a dinuclear Zn(ii) complex for catalysing phosphate ester cleavage. Chem. Commun. 2006, 1845–1847. [Google Scholar] [CrossRef]
- Feng, G.; Natale, D.; Prabaharan, R.; Mareque-Rivas, J.C.; Williams, N.H. Efficient Phosphodiester Binding and Cleavage by a ZnII Complex Combining Hydrogen-Bonding Interactions and Double Lewis Acid Activation. Angew. Chem. Int. Ed. 2006, 45, 7056–7059. [Google Scholar] [CrossRef]
- Linjalahti, H.; Feng, G.; Mareque-Rivas, J.C.; Mikkola, S.; Williams, N.H. Cleavage and Isomerization of UpU Promoted by Dinuclear Metal Ion Complexes. J. Am. Chem. Soc. 2008, 130, 4232–4233. [Google Scholar] [CrossRef]
- Korhonen, H.; Mikkola, S.; Williams, N.H. The Mechanism of Cleavage and Isomerisation of RNA Promoted by an Efficient Dinuclear Zn2+ Complex. Chem. Eur. J. 2012, 18, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Breslow, R.; Huang, D.L. Effects of metal ions, including Mg2+ and lanthanides, on the cleavage of ribonucleotides and RNA model compounds. Proc. Natl. Acad. Sci. USA 1991, 88, 4080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oivanen, M.; Ora, M.; Almer, H.; Strömberg, R.; Lönnberg, H. Hydrolytic Reactions of the Diastereomeric Phosphoromonothioate Analogs of Uridylyl(3′,5′)uridine: Kinetics and Mechanisms for Desulfurization, Phosphoester Hydrolysis, and Transesterification to the 2′,5′-Isomers. J. Org. Chem. 1995, 60, 5620–5627. [Google Scholar] [CrossRef]
- Norman, D.G.; Reese, C.B.; Serafinowska, H.T. 2′,3′-O-Methylene derivatives of ribonucleosides. Synthesis 1985, 1985, 751–754. [Google Scholar] [CrossRef]
- Busca, P.; Etheve-Quelquejeu, M.; Valéry, J.-M. Synthesis of 2′-O,3′-O bicyclic adenosine analogues using ring closing metathesis. Tetrahedron Lett. 2003, 44, 9131–9134. [Google Scholar] [CrossRef]
k0/10−7 s−1 | kHg/10−6 M−n s−1 | n | |
---|---|---|---|
k1 | 2.8 ± 0.1 | 7 ± 2 | 3 ± 10 |
k2 + k−2 | 14 ± 1 | 1.3 ± 0.2 | 3 ± 6 |
Hg(II) | kH/M−1 s−1 | kW/10−8 s−1 | kOH/M−1 s−1 | |||
---|---|---|---|---|---|---|
− | + | − | + | − | + | |
k1 | n.a. | 1.0 ± 0.3 | 9 ± 2 | n.a. | 0.30 ± 0.04 | 6 ± 1 |
k2 + k−2 | n.a. | n.a. | 107 ± 8 | 140 ± 10 | n.a. | n.a. |
k2 | n.a. | n.a. | 59 ± 4 | n.a. | n.a. | n.a. |
k−2 | n.a. | n.a. | 48 ± 4 | n.a. | n.a. | n.a. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, L.Y.; Ora, M.; Lönnberg, T. Mercury(II)-Catalyzed Cleavage, Isomerization and Depurination of RNA and DNA Model Compounds and Desulfurization of Their Phosphoromonothioate Analogs. Catalysts 2020, 10, 219. https://doi.org/10.3390/catal10020219
Saleh LY, Ora M, Lönnberg T. Mercury(II)-Catalyzed Cleavage, Isomerization and Depurination of RNA and DNA Model Compounds and Desulfurization of Their Phosphoromonothioate Analogs. Catalysts. 2020; 10(2):219. https://doi.org/10.3390/catal10020219
Chicago/Turabian StyleSaleh, Lange Yakubu, Mikko Ora, and Tuomas Lönnberg. 2020. "Mercury(II)-Catalyzed Cleavage, Isomerization and Depurination of RNA and DNA Model Compounds and Desulfurization of Their Phosphoromonothioate Analogs" Catalysts 10, no. 2: 219. https://doi.org/10.3390/catal10020219
APA StyleSaleh, L. Y., Ora, M., & Lönnberg, T. (2020). Mercury(II)-Catalyzed Cleavage, Isomerization and Depurination of RNA and DNA Model Compounds and Desulfurization of Their Phosphoromonothioate Analogs. Catalysts, 10(2), 219. https://doi.org/10.3390/catal10020219