In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2-Pt/Al2O3 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermogravimetric Results
2.2. Decomposition of Pt-Precursor
2.3. Decomposition of Ce-Precursor
2.4. Catalytic Performance
2.5. XRD and H2 Temperature-Programmed Reduction (H2-TPR) Analysis
3. Materials and Methods
3.1. Materials and Catalyst Preparation
3.2. Characterization
3.3. Catalytic Performance Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marcinkowski, M.D.; Darby, M.T.; Liu, J.; Wimble, J.M.; Lucci, F.R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E.C.H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef] [PubMed]
- Herreros, J.M.; Gill, S.S.; Lefort, I.; Tsolakis, A.; Millington, P.; Mossb, E. Enhancing the low temperature oxidation performance over a Pt and a Pt–Pd diesel oxidation catalyst. Appl. Catal. B Environ. 2014, 147, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Chen, X.; Zhou, Y.; Zhu, Q.; Huang, H.; Lu, H. Propene and CO oxidation on Pt/Ce-Zr-SO42− diesel oxidation catalysts: Effect of sulfate on activity and stability. Chin. J. Catal. 2017, 38, 607–616. [Google Scholar] [CrossRef]
- Mathieu, O.; Lavy, J.; Jeudy, E. Investigation of hydrocarbons conversion vver a Pt-based automotive diesel oxidation catalyst: Application to exhaust port fuel injection. Top. Catal. 2009, 52, 1893–1897. [Google Scholar] [CrossRef]
- AL-Harbi, M.; Hayes, R.; Votsmeier, M.; Epling, W.S. Competitive no, co and hydrocarbon oxidation reactions over a diesel oxidation catalyst. Can. J. Chem. Eng. 2012, 90, 1527–1538. [Google Scholar] [CrossRef]
- Wang, C.; Tan, J.; Harle, G.; Gong, H.; Xia, W.; Zheng, T.; Yang, D.; Ge, Y.; Zhao, Y. Ammonia formation over Pd/Rh three-way catalysts during lean-to-rich fluctuations: The effect of the catalyst aging, exhaust temperature, Lambda, and duration in rich conditions. Environ. Sci. Technol. 2019, 53, 12621–12628. [Google Scholar] [CrossRef]
- He, J.; Wang, C.; Zheng, T.; Zhao, Y. Thermally induced deactivation and the corresponding strategies for improving durability in automotive three-way catalysts. Johns. Matthey Technol. Rev. 2016, 60, 196–203. [Google Scholar] [CrossRef]
- Jones, J.; Xiong, H.; DeLaRiva, A.T.; Peterson, E.J.; Pham, H.; Challa, S.R.; Qi, G.; Oh, S.; Wiebenga, M.H.; Hernández, X.I.P.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Feng, F.; Du, J.; Zheng, T.; Pan, Z.; Zhao, Y. Activation of surface lattice oxygen in ceria supported Pt/Al2O3 catalyst for low-temperature propane oxidation. ChemCatChem 2019, 11, 2054–2057. [Google Scholar] [CrossRef]
- Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X.I.P.; DeLaRiva, A.; Wang, M.; Engelhard, M.H.; Kovarik, L.; et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423. [Google Scholar] [CrossRef] [Green Version]
- Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J.; et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem. Int. Ed. 2014, 53, 10525–10530. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ding, X.; Dai, J.; Zhao, M.; Zhong, L.; Wang, J.; Chen, Y. Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce. Catal. Today 2019, 327, 64–72. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Li, J.; Wang, N.; An, C.; Sun, L. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: Effect of cerium addition. Fuel Process. Technol. 2014, 128, 283–288. [Google Scholar] [CrossRef]
- Silva, F.A.; Martinez, D.S.; Ruiz, J.A.C.; Mattos, L.V.; Hori, C.E.; Noronha, F.B. The effect of the use of cerium-doped alumina on the performance of Pt/CeO2/Al2O3 and Pt/CeZrO2/Al2O3 catalysts on the partial oxidation of methane. Appl. Catal. A Gen. 2008, 335, 145–152. [Google Scholar] [CrossRef]
- Son, I.H.; Lane, A.M. Promotion of Pt/γ-Al2O3 by Ce for preferential oxidation of CO in H2. Catal. Lett. 2001, 76, 151–154. [Google Scholar] [CrossRef]
- Son, I.H. Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs: Effect of gases. J. Power Source 2006, 159, 1266–1273. [Google Scholar] [CrossRef]
- Wells, P.P.; Crabb, E.M.; King, C.R.; Fiddy, S.; Amieiro-Fonseca, A.; Thompsett, D.; Russell, A.E. Reduction properties of Ce in CeOx/Pt/Al2O3 catalysts. Catal. Struct. React. 2015, 1, 88–94. [Google Scholar] [CrossRef]
- Onn, T.M.; Zhang, S.; Arroyo-Ramirez, L.; Xia, Y.; Wang, C.; Pan, X.; Graham, G.W.; Gorte, R.J. High-surface-area ceria prepared by ALD on Al2O3 support. Appl. Catal. B Environ. 2017, 201, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Damyanova, S.; Bueno, J.M.C. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl. Catal. A Gen. 2003, 253, 135–150. [Google Scholar] [CrossRef]
- Dawody, J.; Skoglundh, M.; Wall, S.; Fridell, E. Role of Pt-precursor on the performance of Pt/BaCO3/Al2O3 NOx storage catalysts. Appl. J. Mol. Catal. A Chem. 2005, 225, 259–269. [Google Scholar] [CrossRef]
- van den Tillaart, J.A.A.; Leyrer, J.; Eckhoff, S.; Lox, E.S. Effect of support oxide and noble metal precursor on the activity of automotive diesel catalysts. Appl. Catal. B Environ. 1996, 10, 53–68. [Google Scholar] [CrossRef]
- Falco, M.G.; Canavese, S.A.; Fígoli, N.S. The calcination temperature after platinum addition and its effect on Pt/WOx–ZrO2 properties. Catal. Commun. 2001, 2, 207–211. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, X.; Nord, R.; Härelind, H.; Weng, D. Sulphation and ammonia regeneration of Pt/MnOx-CeO2/Al2O3 catalyst for NOx-assisted soot oxidation. Catal. Sci. Technol. 2018, 8, 1621–1631. [Google Scholar] [CrossRef]
- Mueller, R.; Kammler, H.K.; Wegner, K.; Pratsinis, S.E. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 2003, 19, 160–165. [Google Scholar] [CrossRef]
- Dou, D.; Liu, D.J.; Williamson, W.B.; Kharas, K.C.; Robota, H.J. Structure and chemical properties of Pt nitrate and application in three-way automotive emission catalysts. Appl. Catal. B Environ. 2001, 30, 11–24. [Google Scholar] [CrossRef]
- Aldiyarov, A.; Aryutkina, M.; Drobyshev, A.; Kurnosov, V. IR spectroscopy of ethanol in nitrogen cryomatrices with different concenteration ratios. Low Temp. Phys. 2011, 37, 524–531. [Google Scholar] [CrossRef]
- Cabritaa, J.F.; Viana, A.S.; Mourato, A.; Montforts, F.P.; Abrantes, L.M. Self-assembled monolayers of metalloporphyrin phosphonates on electrochemically modified HOPG. Catal. Today 2012, 187, 70–76. [Google Scholar] [CrossRef]
- Wallin, M.; Byberg, M.; Grönbeck, H.; Skoglundh, M.; Eriksson, M.; Spetz, A.L. Vibrational analysis of H2 and NH3 adsorption on Pt/SiO2 and Ir/SiO2 model sensors. In Proceedings of the IEEE Sensors 2007, Atlanta, GA, USA, 28–31 October 2007; pp. 1315–1317. [Google Scholar]
- Carlsson, P.A.; Österlund, L.; Thormählen, P.; Palmqvist, A.; Fridell, E.; Jansson, J.; Skoglundh, M. A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts. J. Catal. 2004, 226, 422–434. [Google Scholar] [CrossRef]
- Solymosi, F.; Sárkány, J.; Schauer, A. Study of the formation of isocyanate surface complexes on Pt/AI2O3 catalysts. J. Catal. 1977, 46, 297–307. [Google Scholar] [CrossRef]
- O’Brien, C.P.; Lee, I.C. A detailed spectroscopic analysis of the growth of oxy-carbon species on the surface of Pt/Al2O3 during propane oxidation. J. Catal. 2017, 347, 1–8. [Google Scholar] [CrossRef]
- Ermini, V.; Finocchio, E.; Sechi, S.; Busca, G. An FT-IR and flow reactor study of the conversion of propane on γ-Al2O3 in oxygen-containing atmosphere. Appl. Catal. A Gen. 2000, 190, 157–167. [Google Scholar] [CrossRef]
- Azambre, B.; Zenboury, L.; Koch, A.; Weber, J.V. Adsorption and desorption of NOx on commercial ceria-zirconia (CexZr1-xO2) mixed oxides: A combined TGA, TPD-MS, and DRIFTS study. J. Phys. Chem. C 2009, 113, 13287–13299. [Google Scholar] [CrossRef]
- Azambre, B.; Zenboury, L.; Delacroix, F.; Weber, J.V. Adsorption of NO and NO2 on ceria–zirconia of composition Ce0.69Zr0.31O2: A DRIFTS study. Catal. Today 2008, 137, 278–282. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 2007, 42, 71–144. [Google Scholar] [CrossRef]
- Wendlandt, W.W.; Bear, J.L. Thermal decomposition of the heavier rare-earth metal nitrate hydrates: Thermobalance and differential thermal analysis studies. J. Inorg. Nucl. Chem. 1960, 12, 276–280. [Google Scholar] [CrossRef]
- Oh, H.; Luo, J.; Epling, W.S. NO oxidation inhibition by hydrocarbons over a diesel oxidation catalyst: Reaction between surface nitrates and hydrocarbons. Catal. Lett. 2011, 141, 1746–1751. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, T.; Lu, J.; Wu, X.; Hochstadt, H.; Zhao, Y. Three-way catalytic reactions on Rh-based catalyst: Effect of Rh/ceria interfaces. Appl. Catal. A Gen. 2017, 544, 30–39. [Google Scholar] [CrossRef]
Samples | CO | NO | C3H6 | C3H8 | ||||
---|---|---|---|---|---|---|---|---|
T50a | T90b | T50 | T90 | T50 | T90 | T50 | T90 | |
Pt/Al2O3 | 210.6 | 241.3 | 262.2 | nd c | 243.3 | 252.0 | 384.0 | 456.8 |
CeO2-Pt/Al2O3 | 177.7 | 200.1 | 209.5 | nd | 208.8 | 217.6 | 335.5 | 364.8 |
Reference catalyst | 201.2 | 244.7 | nd | nd | 245.2 | 264.0 | 329.1 | 390.4 |
∆1 d | 32.9 | 41.2 | 52.7 | nd | 34.5 | 34.4 | 48.5 | 92.0 |
∆2 e | 23.5 | 44.6 | nd | nd | 36.4 | 46.4 | -6.4 | 25.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Ren, D.; Du, J.; Qin, Q.; Zhang, A.; Chen, L.; Cui, H.; Chen, J.; Zhao, Y. In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2-Pt/Al2O3 Catalyst. Catalysts 2020, 10, 143. https://doi.org/10.3390/catal10020143
Wang C, Ren D, Du J, Qin Q, Zhang A, Chen L, Cui H, Chen J, Zhao Y. In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2-Pt/Al2O3 Catalyst. Catalysts. 2020; 10(2):143. https://doi.org/10.3390/catal10020143
Chicago/Turabian StyleWang, Chengxiong, Dezhi Ren, Junchen Du, Qinggao Qin, Aimin Zhang, Li Chen, Hao Cui, Jialin Chen, and Yunkun Zhao. 2020. "In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2-Pt/Al2O3 Catalyst" Catalysts 10, no. 2: 143. https://doi.org/10.3390/catal10020143
APA StyleWang, C., Ren, D., Du, J., Qin, Q., Zhang, A., Chen, L., Cui, H., Chen, J., & Zhao, Y. (2020). In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2-Pt/Al2O3 Catalyst. Catalysts, 10(2), 143. https://doi.org/10.3390/catal10020143