Oxygen Adsorption and Activation on Cobalt Center in Modified Keggin Anion-DFT Calculations
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pope, M.T. Heteropoly and Isopoly Oxometalates; Springer: New York, NY, USA, 1983. [Google Scholar]
- Kozhevnikov, I.V. Catalysis by polyoxometalates. In Catalysts for Fine Chemical Synthesis; John Wiley and Sons Ltd.: Hoboken, NJ, USA; The Atrium: Chichester, UK, 2002; Volume 2. [Google Scholar]
- Misono, M. Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten. Catal. Rev. Sci. Eng. 1987, 29, 269–321. [Google Scholar] [CrossRef]
- Timofeeva, M.N. Acid Catalysis by Heteropoly Acids. Appl. Catal. A Gen. 2003, 256, 19–35. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, J.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J.M. Catalytic Oxidation of Light Alkanes (C1–C4) by Heteropoly Compounds. Chem. Rev. 2014, 114, 981–1019. [Google Scholar] [CrossRef] [PubMed]
- Oms, O.; Delbecq, A.; Mialane, P. Diversity in structures and properties of 3d-incorporating polyoxotungstates. Chem. Soc. Rev. 2012, 41, 7497–7536. [Google Scholar] [CrossRef] [PubMed]
- Shikata, S.; Okuhara, T.; Misono, M. Catalysis by hetropoly compounds. Part XXVI. Gas phase synthesis of methyl tert-butyl ether over heteropolyacids. J. Mol. Catal. A Chem. 1995, 100, 49–59. [Google Scholar] [CrossRef]
- Hu, C.; Hashimoto, M.; Okuhara, T.; Misono, M. Catalysis by Heteropoly Compounds. XXII. Reactions of Esters and Esterification Catalyzed by Heteropolyacids in a Homogeneous Liquid-Phase Effects of the Central Atom of Heteropolyanions Having Tungsten as the Addenda Atom. J. Catal. 1993, 143, 437–448. [Google Scholar] [CrossRef]
- Habibi, M.H.; Tangestaninejad, S.; Mirkhani, V.; Yadollahi, B. Catalytic Acetylation of Alcohols and Phenols with Potassium Dodecatungstocobaltate Trihydrate. Monatshefte Chemie 2002, 133, 323–327. [Google Scholar] [CrossRef]
- Habibi, M.H.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Yadollahi, B. Potassium Dodecatangestocobaltate Trihydrate (K5CoW12O40·3H2O): A Mild and Efficient Catalyst for the Tetrahydropyranylation of Alcohols and their Detetrahydropyranylation. Tetrahedron Lett. 2001, 42, 2851–2853. [Google Scholar] [CrossRef]
- Tangestaninejad, S.T.; Moghadam, M.; Mirkhani, V.; Yadollahi, B.; Mohammad, S.; Mirmohammadi, R. Mild and Efficient Ring Opening of Epoxides Catalyzed by Potassium Dodecatungstocobaltate(III). Monatshefte Chemie 2006, 137, 235–242. [Google Scholar] [CrossRef]
- Habibi, M.H.; Tangestaninejad, S.T.; Mirkhani, V.; Yadollahi, B. K5CoW12O40·3H2O: A Novel Cobalt Polyoxometalate Catalyst for Conversion of Epoxides to Acetonides. Catal. Lett. 2001, 75, 205–207. [Google Scholar] [CrossRef]
- Nakajima, K.; Eda, K.; Himeno, S. Effect of the Central Oxoanion Size on the Voltammetric Properties of Keggin-Type [XW12O40]n− (n = 2–6) Complexes. Inorg. Chem. 2010, 49, 5212–5215. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.G.; Xu, L.; Wang, W.J.; Qu, X.S.; Liu, H.; Yang, Y.Y. Cobalt (II)/nickel (II)-centered Keggin-type heteropolymolybdates: Syntheses, crystal structures, magnetic and electrochemical properties. Inorg. Chem. 2008, 47, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Song, I.K.; Bertau, M.A. Redox properties of keggin-type heteropolyacid (HPA) catalysts: Efect of counter-cation, heteroatom, and polyatom substitution. J. Mol. Catal. A Chem. 2004, 212, 229–236. [Google Scholar] [CrossRef]
- Maradur, S.P.; Gokavi, G.S.; Selvam, P. Poly (Vinyl Alcohol) Supported 12-Tungstocobaltate (II) as a Novel Heterogeneous Catalyst for Oxidation of Benzyl Alcohols. Bull. Catal. Soc. India 2007, 6, 42–49. [Google Scholar]
- Simoes, M.M.Q.; Conceicao, C.M.M.; Gamelas, J.A.F.; Domingues, P.M.D.N.; Cavaleiro, A.M.V.; Cavaleiro, J.A.S.; Ferrer-Correia, A.J.V.; Johnstone, R.A.W. Keggin-type polyoxotungstates as catalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide. J. Mol. Catal. A Chem. 1999, 144, 461–468. [Google Scholar] [CrossRef]
- Trakarnpruk, W. Heterogeneous Catalytic Oxidation of Cyclohexane with H2O2 Catalyzed by Cs- and TBA-salts of Cu- and Mn-Polyoxotungstates on MCM-41. Int. J. Chem. Eng. Appl. 2015, 6, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Kim, J.K.; Park, D.R.; Kang, T.H.; Song, J.H.; Song, I.K. Redox properties and oxidation catalysis of transition metal-substituted α-K5PW11O39(M·OH2) (M = MnII, CoII, NiII, and ZnII) Keggin heteropolyacid catalysts for liquid-phase oxidation of 2-propanol. J. Mol. Catal. A Chem. 2013, 371, 111–117. [Google Scholar] [CrossRef]
- Guangdong, Z.; Zhalin, X.; Xiaohong, G.; Hong, Z.; Yanan, L.; Xueju, L.; Tiexin, C.; Wenxing, L.; Kaiji, Z. Transition metal substituted tungstophosphoric compound catalyzed oxidation of hexanol to hexanal with hydrogen peroxide. React. Kinet. Catal. Lett. 2005, 8, 57–64. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Zhang, Y.; Gao, S. Transition metal substituted polyoxometalates and their application in the direct hydroxylation of benzene to phenol with hydrogen peroxide. Res. Chem. Intermed. 2010, 36, 959–968. [Google Scholar] [CrossRef]
- Bamoharram, F.F.; Heravi, M.M.; Roshani, M.; Heravi, H.M.; Gharib, A.; Jahangir, M. Lactonization of various diols, using transition metal-substituted keggin catalysts [PW11MO40]7−, (M = Co(II), Ni(II), Cu(II), Zn(II). Iran. J. Org. Chem. 2009, 1, 110–117. [Google Scholar]
- Karcz, R.; Pamin, K.; Połtowicz, J.; Haber, J. Selective Oxidation of Phenol in the Presence of Transition-Metal Substituted Polyoxometalates. Catal. Lett. 2009, 132, 159–167. [Google Scholar] [CrossRef]
- Ellis, S.; Kozhevnikov, I.V. Homogeneous oxidation of methyl isobutyrate with oxygen catalysed by metal complexes: Polyoxometalates versus metalloporphyrins and metallophthalocyanines. J. Mol. Catal. A Chem. 2002, 187, 227–235. [Google Scholar] [CrossRef]
- Neumann, R.; Dahan, M. Transition metal substituted Keggin type polyoxomolybdates as bifunctional catalysts for the epoxidation of alkenes by molecular oxygen. J. Chem. Soc. Chem. Commun. 1995, 2, 171–172. [Google Scholar] [CrossRef]
- Neumann, R.; Levin, M. Molecular Oxygen as Oxidant in Heteropolyanion Catalysed Oxidations. Stud. Surf. Sci. Catal. 1991, 66, 121–127. [Google Scholar] [CrossRef]
- Qin, D.; Wang, G.; Wu, Y. Selective oxidation of cyclohexene with molecular oxygen catalyzed by transition metal substituted polyoxometalates. Stud. Surf. Sci. Catal. 1994, 82, 603–608. [Google Scholar] [CrossRef]
- Liu, Y.; Murata, K.; Inaba, M. Liquid-phase oxidation of benzene to phenol by molecular oxygen over transition metal substituted polyoxometalate compounds. Catal. Commun. 2005, 6, 679–683. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Vanina, M.P.; Timofeeva, M.N.; Maksimovskaya, R.I.; Trubitsina, T.A.; Melgunov, M.S.; Burgina, E.B.; Mrowiec-Bialon, J.; Jarzebski, A.B.; Hill, C.L. Co-containing polyoxometalate-based heterogeneous catalysts for the selective aerobic oxidation of aldehydes under ambient conditions. J. Catal. 2004, 226, 363–371. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Melgunov, M.S.; Chesalov, Y.A.; Mrowiec-Białoń, J.; Jarzębski, A.B.; Kholdeeva, O.A. Aerobic oxidations of α-pinene over cobalt-substituted polyoxometalate supported on amino-modified mesoporous silicates. J. Catal. 2007, 246, 241–248. [Google Scholar] [CrossRef]
- Mizuno, N.; Hirose, T.; Iwamoto, M. Highly selective epoxidation of olefins on mono-transition-metal-substituted Keggin-type heteropolytungstates by molecular oxygen in the presence of aldehyde. Stud. Surf. Sci. Catal. 1994, 82, 593–601. [Google Scholar] [CrossRef]
- Mizuno, N.; Werner, H.; Finke, R.G. Co-oxidative epoxidation of cyclohexene with molecular oxygen, isobutyraldehyde reductant, and the polyoxoanion-supported catalyst precursor [(n-C4H9)4N]5Na3[(1,5-COD)Ir·P2W15Nb3O62]. The importance of key control experiments including omitting the catalyst and adding radical-chain initiators. J. Mol. Catal. 1996, 114, 15–28. [Google Scholar] [CrossRef]
- Mizuno, N.; Misono, M. Heteropolyacid catalysts. Curr. Opin. Solid State Mater. Sci. 1997, 2, 84–89. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Grigoriev, V.A.; Maksimov, G.M.; Fedotov, M.A.; Golovin, A.V.; Zamaraev, K.I. Polyfunctional action of transition metal substituted heteropolytungstates in alkene epoxidation by molecular oxygen in the presence of aldehyde. J. Mol. Catal. A Chem. 1996, 114, 123–130. [Google Scholar] [CrossRef]
- Mansuy, D.; Bartoli, J.F.; Battioni, P.; Lyon, D.K.; Finke, R.G. Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts. 2. Catalysis of olefin epoxidation and aliphatic and aromatic hydroxylations starting from alpha.2-P2W17O61(Mn+.cntdot.Br)(n-11) (Mn+ = Mn3+,Fe3+,Co2+,Ni2+,Cu2+), including quantitative comparisons to metalloporphyrin catalysts. J. Am. Chem. Soc. 1991, 113, 7222–7226. [Google Scholar] [CrossRef]
- Hill, C.L.; Brown, R.B., Jr. Sustained epoxidation of olefins by oxygen donors catalyzed by transition metal-substituted polyoxometalates, oxidatively resistant inorganic analogs of metalloporphyrins. J. Am. Chem. Soc. 1986, 108, 536–538. [Google Scholar] [CrossRef]
- Faraj, M.; Hill, L.C. Sustained catalytic homogenous oxo-transfer oxidation of alkanes. Interaction of alkyl hydroperoxides with transition metal-substituted polyoxometalates. J. Chem. Soc. Chem. Commun. 1987, 19, 1487–1489. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Asami, M.; Hashimoto, M.; Misono, M. Alkane oxidation with mixed addenda heteropoly catalysts containing Ru(III) and Rh(III). J. Mol. Catal. A Chem. 1996, 114, 161–168. [Google Scholar] [CrossRef]
- Li, B.; Ma, W.; Han, C.; Liu, J.; Pang, X.; Gao, X. Preparation of MCM-41 incorporated with transition metal substituted polyoxometalate and its catalytic performance in esterification. Microporous Mesoporous Mater. 2012, 156, 73–79. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Timofeeva, M.N.; Melgunov, M.S.; Shmakov, A.N.; Chesalov, Y.A.; Dybtsev, D.N.; Fedin, V.P.; Kholdeeva, O.A. Heterogeneous Selective Oxidation Catalysts Based on Coordination Polymer MIL-101 and Transition Metal-Substituted Polyoxometalates. J. Catal. 2008, 257, 315–323. [Google Scholar] [CrossRef]
- Pamin, K.; Jachimska, B.; Onik, K.; Połtowicz, J.; Grabowski, R. Electrostatic Self-assembly of Polyoxometalates on Chitosan as Catalysts of Oxidation of Cyclic Hydrocarbons. Catal. Lett. 2009, 127, 167–174. [Google Scholar] [CrossRef]
- Karcz, R.; Niemiec, P.; Pamin, K.; Połtowicz, J.; Kryściak-Czerwenka, J.; Napruszewska, B.D.; Michalik-Zym, A.; Witko, M.; Tokarz-Sobieraj, R.; Serwicka, E.M. Effect of Cobalt Location in Keggin-Type Heteropoly Catalysts on Aerobic Oxidation of Cyclooctane: Experimental and Theoretical Study. Appl. Catal. A Gen. 2017, 542, 317–326. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Wang, B.; Xu, T.; Chen, S.L.; Liu, P.; Hu, C. Mechanism of the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Cobalt-Substituted 12-Tungstenphosphate. Chem. Eur. J. 2012, 18, 9870–9876. [Google Scholar] [CrossRef] [PubMed]
- Yasada, H.; He, L.-N.; Sakakura, T.; Hu, C. Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: The remarkable effects of metal substitution. J. Catal. 2005, 233, 119–122. [Google Scholar] [CrossRef]
- Szczepankiewicz, S.H.; Ippolito, C.M.; Santora, B.P.; Van de Ven, T.J.; Ippolito, G.A.; Fronckowiak, L.; Wiatrowski, F.; Power, T.; Kozik, M. Interaction of Carbon Dioxide with Transition-Metal-Substituted Heteropolyanions in Nonpolar Solvents. Spectroscopic Evidence for Complex Formation. Inorg. Chem. 1998, 37, 4344–4352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Q.; Zhang, X.M.; Wu, H.S.; Jiao, H. Structural and Electronic Properties of Hetero-Transition-Metal Keggin Anions: A DFT Study of α/β-[XW12O40]n− (X = CrVI, VV, TiIV, FeIII, CoIII, NiIII, CoII, and ZnII) Relative Stability. J. Phys. Chem. A 2007, 111, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Maestre, J.M.; Lopez, X.; Bo, C.; Poblet, J.M.; Casan-Pastor, N. Electronic and Magnetic Properties of α-Keggin Anions: A DFT Study of [XM12O40]n−, (M = W, Mo; X = AlIII, SiIV, PV, FeIII, CoII, CoIII) and [SiM11VO40]m− (M = Mo and W). J. Am. Chem. Soc. 2001, 123, 3749–3758. [Google Scholar] [CrossRef] [PubMed]
- Glass, E.N.; Fielden, J.; Kaledin, A.L.; Musaev, D.G.; Lian, T.; Hill, C.L. Extending Metal-to-Polyoxometalate Charge Transfer Lifetimes: The Effect of Heterometal Location. Chem. A Eur. J. 2014, 20, 4297–4307. [Google Scholar] [CrossRef] [Green Version]
- Fathizadeh, M.; Khivantsev, K.; Pyrzynski, T.J.; Klinghoffer, N.B.; Shakouri, A.N.; Yu, M.; Li, S. Bio-mimetic oxygen separation via a hollow fiber membrane contactor with O2 carrier solutions. Chem. Commun. 2018, 54, 9454–9457. [Google Scholar] [CrossRef]
- Pamin, K.; Tabor, E.; Górecka, S.; Kubiak, W.; Rutkowska-Zbik, D.; Połtowicz, J. Three Generations of Cobalt Porphyrins as Catalysts in the Oxidation of Cycloalkanes. ChemSusChem 2019, 12, 684–691. [Google Scholar] [CrossRef]
- Mayer, I. Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett. 1983, 97, 270–274. [Google Scholar] [CrossRef]
- Mayer, I. Bond order and valence: Relations to Mulliken’s population analysis. Int. J. Quantum Chem. 1984, 26, 151–154. [Google Scholar] [CrossRef]
- Nalewajski, R.F.; Mrozek, J.; Michalak, A. Two-electron valence indices from the Kohn-Sham orbitals. Int. J. Quantum Chem. 1997, 61, 589–601. [Google Scholar] [CrossRef]
- TURBOMOLE V6.4 2012, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007. Available online: http://www.turbomole.com (accessed on 17 February 2011).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slater, J.C. Quantum Theory of Molecular and Solids; McGraw-Hill: New York, NY, USA, 1974; Volume 4. [Google Scholar]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, P.A.; Ermler, W.C.; Pitze, K.S. Relativistic Effects in Chemical Systems. Ann. Rev. Phys. Chem. 1985, 36, 407–432. [Google Scholar] [CrossRef]
- Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 1995, 240, 283–289. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization: Uncostrained Optimization; Band 1; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Mitoraj, M.; Michalak, A. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J. Mol. Model. 2007, 13, 347–355. [Google Scholar] [CrossRef]
- Michalak, A.; Mitoraj, M.; Ziegler, T. Bond Orbitals from Chemical Valence Theory. J. Phys. Chem. A 2008, 112, 1933–1939. [Google Scholar] [CrossRef]
- Mitoraj, M.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962–975. [Google Scholar] [CrossRef]
System | Co(H2O)52+ | Co(CH3CN)52+ | HPW11Co | HPMo11Co |
---|---|---|---|---|
ΔEB | −30.15 | −32.61 | −53.62 | −51.07 |
d(Co-O) | 2.09 | 2.06 | 1.92 | 1.94 |
BO(Co-O) | 0.64 | 0.63 | 0.80 | 0.78 |
d(O-O) | 1.22 | 1.24 | 1.25 | 1.25 |
BO(O-O) | 1.48 | 1.50 | 1.40 | 1.41 |
System | Co(H2O)52+ | Co(CH3CN)52+ | HPW11Co | HPMo11Co |
---|---|---|---|---|
σ donation | 0.74 | 0.40 | 0.49 | 0.46 |
σ backdonation | 0.76 | 0.51 | 0.56 | 0.57 |
σ backdonation–σ donation | 0.02 | 0.11 | 0.07 | 0.11 |
π polarization of O-O | - | - | 0.24 | 0.21 |
System | Co(H2O)52+ | Co(CH3CN)52+ | HPW11Co | HPMo11Co |
---|---|---|---|---|
Redshift | 96.40 | 179.37 | 203.77 | 205.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarz-Sobieraj, R.; Niemiec, P. Oxygen Adsorption and Activation on Cobalt Center in Modified Keggin Anion-DFT Calculations. Catalysts 2020, 10, 144. https://doi.org/10.3390/catal10020144
Tokarz-Sobieraj R, Niemiec P. Oxygen Adsorption and Activation on Cobalt Center in Modified Keggin Anion-DFT Calculations. Catalysts. 2020; 10(2):144. https://doi.org/10.3390/catal10020144
Chicago/Turabian StyleTokarz-Sobieraj, Renata, and Piotr Niemiec. 2020. "Oxygen Adsorption and Activation on Cobalt Center in Modified Keggin Anion-DFT Calculations" Catalysts 10, no. 2: 144. https://doi.org/10.3390/catal10020144
APA StyleTokarz-Sobieraj, R., & Niemiec, P. (2020). Oxygen Adsorption and Activation on Cobalt Center in Modified Keggin Anion-DFT Calculations. Catalysts, 10(2), 144. https://doi.org/10.3390/catal10020144