Mesoporous Silica-Supported Ionic Liquids as Catalysts for Styrene Carbonate Synthesis from CO2
Abstract
1. Introduction
2. Results
2.1. Synthesis of Immobilized Catalysts
2.2. Catalytic Tests
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Synthetic Procedures
3.3.1. Synthesis of Silica Support
3.3.2. Synthesis of 1-alkyl-3-(triethosysilylpropyl) Imidazolium Chloride [atespim]Cl
3.3.3. Immobilization of 1-alkyl-3-(triethosysilylpropyl) Imidazolium Chloride on Silica
3.3.4. Reaction of Styrene Oxide with CO2
3.3.5. One-Pot Synthesis of Styrene Carbonate
3.3.6. Recycling of the Immobilized Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shaikh, R.R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2018, 8, 419–450. [Google Scholar] [CrossRef]
- North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539. [Google Scholar] [CrossRef]
- Wang, S.; Peng, J.; Yang, H.J.; Ban, B.; Wang, L.; Lei, B.; Guo, C.Y.; Hu, J.; Zhu, J.; Han, B. β-Cyclodextrin/Quaternary Ammonium Salt as an Efficient Catalyst System for Chemical Fixation of CO2. J. Nanosci. Nanotechnol. 2019, 19, 3263–3268. [Google Scholar] [CrossRef] [PubMed]
- Steinbauer, J.; Kubis, C.; Ludwig, R.; Werner, T. Mechanistic Study on the Addition of CO2 to Epoxides Catalyzed by Ammonium and Phosphonium Salts: A Combined Spectroscopic and Kinetic Approach. ACS Sustain. Chem. Eng. 2018, 6, 10778–10788. [Google Scholar] [CrossRef]
- Montoya, C.A.; Paninho, A.B.; Felix, P.M.; Zakrzewska, M.E.; Vital, J.; Najdanovic-Visak, V.; Nunes, A.V.M. Styrene carbonate synthesis from CO2 using tetrabutylammonium bromide as a non-supported heterogeneous catalyst phase. J. Supercrit. Fluids 2015, 100, 155–159. [Google Scholar] [CrossRef]
- Ema, T.; Fukuhara, K.; Sakai, T.; Ohbo, M.; Bai, F.Q.; Hasegawa, J. Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Catal. Sci. Technol. 2015, 5, 2314–2321. [Google Scholar] [CrossRef]
- Chen, J.J.; Xu, Y.C.; Gan, Z.L.; Peng, X.; Yi, X.Y. Zinc Complexes with Tridentate Pyridyl-Pyrrole Ligands and their Use as Catalysts in CO2 Fixation into Cyclic Carbonates. Eur. J. Inorg. Chem. 2019, 13, 1733–1739. [Google Scholar] [CrossRef]
- Takaishi, K.; Nath, B.D.; Yamada, Y.; Kosugi, H.; Ema, T. Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO2 Fixations. Angew. Chem. Int. Ed. 2019, 58, 9984–9988. [Google Scholar] [CrossRef]
- Peng, J.; Yang, H.J.; Wang, S.; Ban, B.; Wei, Z.; Lei, B.; Guo, C.Y. Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes. J. CO2 Util. 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Li, P.; Cao, Z. Catalytic Preparation of Cyclic Carbonates from CO2 and Epoxides by Metal–Porphyrin and −Corrole Complexes: Insight into Effects of Cocatalyst and meso-Substitution. Organometallics 2018, 37, 406–414. [Google Scholar] [CrossRef]
- Pal, T.K.; De, D.; Bharadwaj, P.K. Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coordin. Chem. Rev. 2020, 408, 213173. [Google Scholar] [CrossRef]
- Li, B. A novel metal-organic framework as a heterogeneous catalysis for the solvent-free conversion of CO2 and epoxides into cyclic carbonate. Inorg. Chem. Commun. 2018, 88, 56–59. [Google Scholar] [CrossRef]
- Long, G.; Wu, D.; Pan, H.; Zhao, T.; Hu, X. Imidazolium hydrogen carbonate ionic liquids: Versatile organocatalysts for chemical conversion of CO2 into valuable chemicals. J. CO2 Util. 2020, 39, 101155. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Yin, L. Progress in the Heterogeneous Catalytic Cyclization of CO2 with Epoxides Using Immobilized Ionic Liquids. Catal. Lett. 2019, 149, 985–997. [Google Scholar] [CrossRef]
- Chaugule, A.A.; Tamboli, A.H.; Kim, H. Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate. Fuel 2017, 200, 316–332. [Google Scholar] [CrossRef]
- Jasiak, K.; Siewniak, A.; Kopczyńska, K.; Chrobok, A.; Baj, S. Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Chem. Technol. Biotechnol. 2016, 91, 2827–2833. [Google Scholar] [CrossRef]
- Xu, B.H.; Wang, J.Q.; Sun, J.; Huang, Y.; Zhang, J.P.; Zhang, X.P.; Zhang, S.J. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: A multi-scale approach. Green Chem. 2015, 17, 108–122. [Google Scholar] [CrossRef]
- Wang, L.; Que, S.; Ding, Z.; Vessally, E. Oxidative carboxylation of olefins with CO2: Environmentally benign access to five-membered cyclic carbonates. RSC Adv. 2020, 10, 9103–9115. [Google Scholar] [CrossRef]
- Zou, B.; Hu, C. Synthesis of Cyclic Carbonates from Alkenyl and Alkynyl Substrates. Chin. J. Chem. 2017, 35, 541–550. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Tost, R.M.; Millán, M.R. Mesoporous Materials: From Synthesis to Applications. Int. J. Mol. Sci. 2019, 20, 3213. [Google Scholar] [CrossRef]
- Kresge, C.T.; Roth, W.J. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 2013, 42, 3663–3670. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Fujita, S.; Zhao, F.; Hasegawa, M.; Arai, M. A direct synthesis of styrene carbonate from styrene with the Au/SiO2–ZnBr2/Bu4NBr catalyst system. J. Catal. 2005, 230, 398–405. [Google Scholar] [CrossRef]
- Dias, L.D.; Carrilho, R.M.B.; Henriques, C.A.; Calvete, M.J.F.; Masdeu-Bultó, A.M.; Claver, C.; Rossi, L.M.; Pereira, M.M. Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO2 into Cyclic Carbonates. ChemCatChem 2018, 10, 2792–2803. [Google Scholar] [CrossRef]
- Chrobok, A.; Baj, S.; Pudło, W.; Jarzębski, A. Supported hydrogensulfate ionic liquid catalysis in Baeyer–Villiger reaction. Appl. Catal. A Gen. 2009, 366, 22–28. [Google Scholar] [CrossRef]
- Szymańska, K.; Pietrowska, M.; Kocurek, J.; Maresz, K.; Koreniuk, A.; Mrowiec-Białoń, J.; Widłak, P.; Magner, E.; Jarzębski, A. Low back-pressure hierarchically structured multichannel microfluidic bioreactors for rapid protein digestion—Proof of concept. Chem. Eng. J. 2016, 287, 148–154. [Google Scholar] [CrossRef]
- Szymańska, K.; Odrozek, K.; Zniszczoł, A.; Pudło, W.; Jarzębski, A. A novel hierarchically structured siliceous packing to boost the performance of rotating bed enzymatic reactors. Chem. Eng. J. 2017, 315, 18–24. [Google Scholar] [CrossRef]
- Keller, J.U.; Staudt, R. Adsorption isotherms. In Gas Adsorption Equilibria. Experimental Methods and Adsorptive Isotherms; Springer: Boston, MA, USA, 2005; pp. 359–413. [Google Scholar]
- Rouquerol, F.; Rouquerol, J.; Sing, K.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, 2nd ed.; Elsevier: Oxford, UK, 2012. [Google Scholar]
- Wu, S.S.; Zhang, X.W.; Dai, W.L.; Yin, S.F.; Li, W.S.; Ren, Y.Q.; Au, C.T. ZnBr2–Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide. Appl. Catal. A Gen. 2008, 341, 106–111. [Google Scholar] [CrossRef]
- Sun, J.; Fujita, S.; Bhanage, B.M.; Arai, M. One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal. Today 2004, 93–95, 383–388. [Google Scholar] [CrossRef]
- Kawanami, H.; Sasaki, A.; Matsui, K.; Ikushima, Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2–ionic liquid system. Chem. Commun. 2003, 7, 896–897. [Google Scholar] [CrossRef]
- Ted Oyama, S. Rates, Kinetics, and Mechanisms of Epoxidation: Homogeneous, Heterogeneous, and Biological Routes. In Mechanisms in Homogenous and Heterogeneous Epoxidation Catalysis, 1st ed.; Ted Oyama, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 16–21. [Google Scholar]
- Chen, F.; Dong, T.; Xu, T.; Li, X.; Hu, C. Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2(acac)2-quaternary ammonium salt system. Green Chem. 2011, 13, 2518–2524. [Google Scholar] [CrossRef]
- Siewniak, A.; Jasiak-Jaroń, K.; Kotyrba, Ł.; Baj, S. Efficient Catalytic System Involving Molybdenyl Acetylacetonate and Immobilized Tributylammonium Chloride for the Direct Synthesis of Cyclic Carbonates from Carbon Dioxide and Olefins. Catal Lett. 2017, 147, 1567–1573. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Xiang, D.; Wang, L.; Sun, J.; Xiao, F.S. A Facile, Direct Synthesis of Styrene Carbonate from Styrene and CO2 Catalyzed by Au/Fe(OH)3–ZnBr2/Bu4NBr System. Catal. Lett. 2009, 129, 437–443. [Google Scholar] [CrossRef]
- Jasiak, K.; Krawczyk, T.; Pawlyta, M.; Jakóbik-Kolon, A.; Baj, S. One-Pot Synthesis of Styrene Carbonate from Styrene and CO2 Over the Nanogold-Ionic Liquid Catalyst. Catal. Lett. 2016, 146, 893–901. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, X.; Sun, J.; Xiao, F.S.; Sun, J. A novel route for synthesis of styrene carbonate using styrene and CO2 as substrates over basic resin R201 supported Au catalyst. Catal. Today 2009, 148, 383–388. [Google Scholar] [CrossRef]
Entry | Material | BET (m2/g) | Pore Size (nm) | Pore Volume (cm3/g) |
---|---|---|---|---|
1 | @SiO2 | 305 | 15.0 | 1.2 |
2 | [mtespim]Cl/@SiO2 | 154 | 15.7 | 0.7 |
3 1 | MSU-F | 499 | 20.0 | 2.2 |
4 1 | MSU-H | 837 | 12.4 | 1.2 |
5 1 | MCM-41 | 930 | 2.9 | 0.8 |
Entry | Catalyst | IL/SiO2 (mmol/g) 1 |
---|---|---|
1 | [mtespim]Cl/@SiO2 | 1.02 |
2 | [mtespim]Cl/@SiO2 | 0.77 2 |
3 | [btespim]Cl/@SiO2 | 0.93 |
4 | [mtespim]Cl/MSU-F | 1.64 |
5 | [mtespim]Cl/MCM-4 | 2.20 |
6 | [mtespim]Cl/MSU-H | 1.53 |
7 | [otespim]Cl/MSU-H | 0.86 |
Entry | Catalyst | Amount of Catalyst (mol%) | Amount of ZnBr2 (mol%) | SO Conversion (%) | SC Yield (%) |
---|---|---|---|---|---|
1 | - | - | - | 0 | 0 |
2 | [mtespim]Cl | 0.50 | - | 27 | 7 |
3 | [mtespim]Cl/@SiO2 | 0.50 | - | 27 | 16 |
4 | - | - | 0.10 | 0 | 0 |
5 | [mtespim]Cl/@SiO2 | 0.50 | 0.10 | 83 | 72 |
6 | [mtespim]Cl/@SiO2 | 1.00 | 0.10 | 89 | 74 |
7 | [mtespim]Cl/@SiO2 | 0.25 | 0.10 | 58 | 24 |
8 | [mtespim]Cl/@SiO2 | 0.25 | 0.02 | 21 | 13 |
Entry | Catalyst | SO Conversion (%) | SC Yield (%) |
---|---|---|---|
1 | [mtespim]Cl/@SiO2 | 82 | 75 |
2 | [btespim]Cl/@SiO2 | 87 | 78 |
3 | [mtespim]Cl/MCM-41 | 66 | 48 |
4 | [mtespim]Cl/MSU-F | 81 | 66 |
5 | [mtespim]Cl/MSU-H | 76 | 52 |
6 | [mtespim]Cl/MSU-H | 78 | 61 |
Entry | [mtespim]Cl/@SiO2 (mol%) | ST Conversion (%) | SO Yield (%) | BA Yield (%) | SC Yield (%) |
---|---|---|---|---|---|
1 1 | 0.5 | 79 | 29 | 4 | 1 |
2 2 | 0.5 | 95 | 5 | 6 | 8 |
3 2 | 3.0 | 99 | 3 | 5 | 22 |
4 2 | 4.0 | 99 | 8 | 3 | 35 |
5 2 | 5.0 | 99 | 5 | 3 | 46 |
6 2 | 6.0 | 99 | 6 | 3 | 49 |
7 3 | 5.0 | 99 | 5 | 4 | 43 |
8 4 | 3.0 | 99 | 1 | 5 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siewniak, A.; Forajter, A.; Szymańska, K. Mesoporous Silica-Supported Ionic Liquids as Catalysts for Styrene Carbonate Synthesis from CO2. Catalysts 2020, 10, 1363. https://doi.org/10.3390/catal10111363
Siewniak A, Forajter A, Szymańska K. Mesoporous Silica-Supported Ionic Liquids as Catalysts for Styrene Carbonate Synthesis from CO2. Catalysts. 2020; 10(11):1363. https://doi.org/10.3390/catal10111363
Chicago/Turabian StyleSiewniak, Agnieszka, Adrianna Forajter, and Katarzyna Szymańska. 2020. "Mesoporous Silica-Supported Ionic Liquids as Catalysts for Styrene Carbonate Synthesis from CO2" Catalysts 10, no. 11: 1363. https://doi.org/10.3390/catal10111363
APA StyleSiewniak, A., Forajter, A., & Szymańska, K. (2020). Mesoporous Silica-Supported Ionic Liquids as Catalysts for Styrene Carbonate Synthesis from CO2. Catalysts, 10(11), 1363. https://doi.org/10.3390/catal10111363