Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions
Abstract
:1. Introduction
2. Problems of UV-Light Photocatalysts and Requirement for Vis-Light Photocatalysts
2.1. Selectivity of Visible Light Photocatalysts
2.2. Visible-Light-Active Photocatalysts
3. Outline on Applications of Vis-Light Photocatalysts
3.1. Water Splitting
3.2. Photocatalytic Reductions
3.2.1. Conversion of CO2
3.2.2. Photocatalytic Hydrogenation of Ketones
3.2.3. Photocatalytic Hydrogenation of Nitrocompounds
3.3. Total and Partial Oxidations
3.3.1. Oxidation of Primary and Secondary Alcohols to Aldehydes and Ketones
3.3.2. Partial Oxidation of Alkanes and Alkenes: Oxidation of Cyclohexane
3.3.3. Photocatalytic Production of Vanillin
3.3.4. Benzene Oxidation to Phenol
3.3.5. Water Treatment
4. Analysis of Vis-Light Photocatalysts and Types of Conversion of Interest in Photocatalytic Membrane Reactors (PMRs)
4.1. Water Splitting in PMRs
4.2. Reductions in PMRs
4.2.1. CO2 Conversion in PMRs
4.2.2. Conversion of Acetophenone to Phenylethanol in PMRs
4.3. Partial and Total Oxydations in PMRs
4.3.1. Partial Oxidation of Benzene to Phenol in PMRs
4.3.2. Chemical Conversions for Water Treatment in PMRs
5. Design of Novel PMRs
6. Summary and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Molinari, R.; Lavorato, C.; Argurio, P.; Szymanski, K.; Darowna, D.; Mozia, S. Overview of Photocatalytic Membrane Reactors in Organic Synthesis, Energy Storage and Environmental Applications. Catalysts 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Molinari, R.; Argurio, P.; Lavorato, C. Review on Reduction and Partial Oxidation of Organics in Photocatalytic (Membrane) Reactors. Curr. Org. Chem. 2013, 17, 2516–2537. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal. Today 2017, 281, 144–164. [Google Scholar] [CrossRef]
- Lavorato, C.; Argurio, P.; Molinari, R. Hydrogen production and organic synthesis in Photocatalytic Membrane Reactors: A review. Int. J. Membr. Sci. Technol. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Herrmann, J.M. Heterogeneous photocatalysis: State of the art and present applications. Top. Catal. 2005, 34, 49–65. [Google Scholar] [CrossRef]
- Xing, X.L.; Tang, S.L.; Hong, H.; Jin, H.G. Concentrated solar photocatalysis for hydrogen generation from water by titania-containing gold nanoparticles. Int. J. Hydrog. Energy 2020, 45, 9612–9623. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Braun, A.M.; Cassano, A.E.; Emeline, A.V.; Litter, M.I.; Palmisano, L.; Parmon, V.N.; Serpone, N. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011) (vol 83, pg 931, 2011). Pure Appl. Chem. 2011, 83, 1215. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- Zhu, L.N.; Meng, L.J.; Shi, J.Q.; Li, J.H.; Zhang, X.S.; Feng, M.B. Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. J. Environ. Manag. 2019, 232, 964–977. [Google Scholar] [CrossRef]
- Hwangbo, M.; Claycomb, E.C.; Liu, Y.N.; Alivio, T.E.G.; Banerjee, S.; Chu, K.H. Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Sci. Total Environ. 2019, 649, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Ayodhya, D.; Veerabhadram, G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater. Today Energy 2018, 9, 83–113. [Google Scholar] [CrossRef]
- Janssens, R.; Mandal, M.K.; Dubey, K.K.; Luis, P. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination. Sci. Total Environ. 2017, 599, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.C.; Li, Z.Z.; Zhang, Z.S. Pd-nanoparticle-decorated peanut-shaped BiVO4 with improved visible light-driven photocatalytic activity comparable to that of TiO2 under UV light. J. Catal. 2017, 356, 53–64. [Google Scholar] [CrossRef]
- Zhi, Y.F.; Ma, S.; Xia, H.; Zhang, Y.M.; Shi, Z.; Mu, Y.; Liu, X.M. Construction of donor-acceptor type conjugated microporous polymers: A fascinating strategy for the development of efficient heterogeneous photocatalysts in organic synthesis. Appl. Catal. B Environ. 2019, 244, 36–44. [Google Scholar] [CrossRef]
- Parrino, F.; Bellardita, M.; Garcia-Lopez, E.I.; Marci, G.; Loddo, V.; Palmisano, L. Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catal. 2018, 8, 11191–11225. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Megna, B.; Parrino, F.; Palmisano, L. Photocatalytic oxidation of trans-ferulic acid to vanillin on TiO2 and WO3-loaded TiO2 catalysts. Catal. Today 2015, 252, 195–200. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.H.; Liu, H.; Umar, A. Photocatalysis from UV/Vis to Near-Infrared Light: Towards Full Solar-Light Spectrum Activity. Chemcatchem 2015, 7, 559–573. [Google Scholar] [CrossRef]
- Lavorato, C.; Primo, A.; Molinari, R.; Garcia, H. N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chem. A Eur. J. 2014, 20, 187–194. [Google Scholar] [CrossRef]
- Lavorato, C.; Primo, A.; Molinari, R.; Garcia, H. Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. Acs Catal. 2014, 4, 497–504. [Google Scholar] [CrossRef]
- Gan, R.Z.; Ma, X.H.; Wang, G.R.; Jin, Z.L. CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H-2 Evolution. Catalysts 2019, 9, 616. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.; Gomez, E.; Philippe, L. Bioinspired ZnO-Based Solar Photocatalysts for the Efficient Decontamination of Persistent Organic Pollutants and Hexavalent Chromium in Wastewater. Catalysts 2019, 9, 974. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, X.; Han, X.Y.; Godin, R.; Chen, J.L.; Zhou, W.Z.; Jiang, C.R.; Thompson, J.F.; Mustafa, K.B.; Shevlin, S.A.; et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 2020, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.N.; Wang, X.W.; Chen, Y.W.; Zhuang, Z.Y.; Chen, F.F.; Zhu, Y.J.; Yu, Y. Recycling heavy metals from wastewater for photocatalytic CO2 reduction. Chem. Eng. J. 2020, 402, 9. [Google Scholar] [CrossRef]
- Lin, W.Y.; Han, H.X.; Frei, H. CO2 splitting by H2O to CO and O-2 under UV light in TiMCM-41 silicate sieve. J. Phys. Chem. B 2004, 108, 18269–18273. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.H.; Zhang, Y.; Ke, X.B.; Tong, X.L.; Sun, Z.; Liang, M.; Xue, S. Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl. Catal. B Environ. 2013, 129, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Slamet; Nasution, H.W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun. 2005, 6, 313–319. [Google Scholar] [CrossRef]
- Mele, G.; Annese, C.; De Riccardis, A.; Fusco, C.; Palmisano, L.; Vasapollo, G.; D’Accolti, L. Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV-vis light irradiation. Appl. Catal. A Gen. 2014, 481, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, S.; Doi, R. Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. Catal. Today 1996, 27, 271–277. [Google Scholar] [CrossRef]
- Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [Google Scholar] [CrossRef] [Green Version]
- Barba-Nieto, I.; Caudillo-Flores, U.; Fernandez-Garcia, M.; Kubacka, A. Sunlight-Operated TiO2-Based Photocatalysts. Molecules 2020, 25, 4008. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 2007, 3425–3437. [Google Scholar] [CrossRef] [PubMed]
- Molinari, R.; Argurio, P.; Bellardita, M.; Palmisano, L. Photocatalytic Processes in Membrane Reactors. In Membrane Science and Engineering; Drioli, E., Giorno, L., Fontananova, E., Eds.; Elsevier: Oxford, UK, 2017; Volume 3, pp. 101–138. [Google Scholar]
- Konig, B. Photocatalysis in Organic Synthesis—Past, Present, and Future. Eur. J. Org. Chem. 2017, 2017, 1979–1981. [Google Scholar] [CrossRef] [Green Version]
- Molinari, R.; Caruso, A.; Argurio, P.; Poerio, T. Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst. J. Membr. Sci. 2008, 319, 54–63. [Google Scholar] [CrossRef]
- Molinari, R.; Caruso, A.; Poerio, T. Direct benzene conversion to phenol in a hybrid photocatalytic membrane reactor. Catal. Today 2009, 144, 81–86. [Google Scholar] [CrossRef]
- Lewis, N.S. Research opportunities to advance solar energy utilization. Science 2016, 351, 6. [Google Scholar] [CrossRef] [Green Version]
- Yoon, T.P.; Ischay, M.A.; Du, J.N. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef]
- Zeitler, K. Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. 2009, 48, 9785–9789. [Google Scholar] [CrossRef]
- Bian, Z.F.; Tachikawa, T.; Majima, T. Superstructure of TiO2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges. J. Phys. Chem. Lett. 2012, 3, 1422–1427. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.H.; Wen, F.Y.; Li, C. A visible-light-driven transfer hydrogenation on CdS nanoparticles combined with iridium complexes. Chem. Commun. 2011, 47, 7080–7082. [Google Scholar] [CrossRef]
- Khakpash, N.; Simchi, A.; Jafari, T. Adsorption and solar light activity of transition-metal doped TiO2 nanoparticles as semiconductor photocatalyst. J. Mater. Sci. Mater. Electron. 2012, 23, 659–667. [Google Scholar] [CrossRef]
- Li, C.J.; Xu, G.R.; Zhang, B.H.; Gong, J.R. High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl. Catal. B Environ. 2012, 115, 201–208. [Google Scholar] [CrossRef]
- Palmisano, G.; Addamo, M.; Augugliaro, V.; Caronna, T.; Garcia-Lopez, E.; Loddo, V.; Palmisano, L. Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chem. Commun. 2006, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Yurdakal, S.; Palmisano, G.; Loddo, V.; Augugliaro, V.; Palmisano, L. Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J. Am. Chem. Soc. 2008, 130, 1568–1569. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, G.; Garcia-Lopez, E.; Marci, G.; Loddo, V.; Yurdakal, S.; Augugliaro, V.; Palmisano, L. Advances in selective conversions by heterogeneous photocatalysis. Chem. Commun. 2010, 46, 7074–7089. [Google Scholar] [CrossRef]
- Yurdakal, S.; Palmisano, G.; Loddo, V.; Alagoz, O.; Augugliaro, V.; Palmisano, L. Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chem. 2009, 11, 510–516. [Google Scholar] [CrossRef]
- Augugliaro, V.; Loddo, V.; Lopez-Munoz, M.J.; Marquez-Alvarez, C.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: Reactivity and ATR-FTIR study. Photochem. Photobiol. Sci. 2009, 8, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Augugliaro, V.; Caronna, T.; Loddo, V.; Marci, G.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home-prepared ruffle TiO2: A selectivity study. Chem. A Eur. J. 2008, 14, 4640–4646. [Google Scholar] [CrossRef]
- Augugliaro, V.; Palmisano, L. Green Oxidation of Alcohols to Carbonyl Compounds by Heterogeneous Photocatalysis. Chemsuschem 2010, 3, 1135–1138. [Google Scholar] [CrossRef]
- Palmisano, G.; Yurdakal, S.; Augugliaro, V.; Loddo, V.; Palmisano, L. Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared titanium dioxide catalyst. Adv. Synth. Catal. 2007, 349, 964–970. [Google Scholar] [CrossRef]
- Zhang, M.A.; Chen, C.C.; Ma, W.H.; Zhao, J.C. Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed. 2008, 47, 9730–9733. [Google Scholar] [CrossRef]
- Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y. Efficient and selective oxidation of benzylic alcohol by O-2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity. J. Catal. 2010, 274, 76–83. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lin, T.S. Enhancement of visible-light photocatalytic efficiency of TiO2 nanopowder by anatase/rutile dual phase formation. Appl. Sci. 2020, 10, 6353. [Google Scholar] [CrossRef]
- Su, R.; Xie, C.; Alhassan, S.I.; Huang, S.; Chen, R.; Xiang, S.; Wang, Z.; Huang, L. Oxygen Reduction Reaction in the Field of Water Environment for Application of Nanomaterials. Nanomaterials 2020, 10, 1719. [Google Scholar] [CrossRef] [PubMed]
- Molinari, R.; Lavorato, C.; Argurio, P. Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts. Chem. Eng. J. 2015, 274, 307–316. [Google Scholar] [CrossRef]
- Perera, M.; Wijenayaka, L.A.; Siriwardana, K.; Dahanayake, D.; de Silva, K.M.N. Gold nanoparticle decorated titania for sustainable environmental remediation: Green synthesis, enhanced surface adsorption and synergistic photocatalysis. Rsc Adv. 2020, 10, 29594–29602. [Google Scholar] [CrossRef]
- Lavorato, C.; Argurio, P.; Mastropietro, T.F.; Pirri, G.; Poerio, T.; Molinari, R. Pd/TiO2 doped faujasite photocatalysts for acetophenone transfer hydrogenation in a photocatalytic membrane reactor. J. Catal. 2017, 353, 152–161. [Google Scholar] [CrossRef]
- Mendez, F.J.; Gonzalez-Millan, A.; Garcia-Macedo, J.A. A new insight into Au/TiO2-catalyzed hydrogen production from water-methanol mixture using lamps containing simultaneous ultraviolet and visible radiation. Int. J. Hydrog. Energy 2019, 44, 14945–14954. [Google Scholar] [CrossRef]
- Fang, J.; Cao, S.W.; Wang, Z.; Shahjamali, M.M.; Loo, S.C.J.; Barber, J.; Xue, C. Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int. J. Hydrog. Energy 2012, 37, 17853–17861. [Google Scholar] [CrossRef]
- Hernández, R.; Hernández-Reséndiz, J.R.; Cruz-Ramírez, M.; Velázquez-Castillo, R.; Escobar-Alarcón, L.; Ortiz-Frade, L.; Esquivel, K. Au-TiO2 synthesized by a microwave-and sonochemistry-assisted sol-gel method: Characterization and application as photocatalyst. Catalysts 2020, 10, 1052. [Google Scholar] [CrossRef]
- Shu, Z.; Cai, Y.; Ji, J.; Tang, C.; Yu, S.; Zou, W.; Dong, L. Pt deposites on TiO2 for photocatalytic H2 evolution: Pt is not only the cocatalyst, but also the defect repair agent. Catalysts 2020, 10, 1047. [Google Scholar] [CrossRef]
- Reddy, I.N.; Jayashree, N.; Manjunath, V.; Kim, D.; Shim, J. Photoelectrochemical Studies on Metal-Doped Graphitic Carbon Nitride Nanostructures under Visible-Light Illumination. Catalysts 2020, 10, 983. [Google Scholar] [CrossRef]
- Regulska, E.; Breczko, J.; Basa, A.; Dubis, A.T. Rare-earth metals-doped nickel aluminate spinels for photocatalytic degradation of organic pollutants. Catalysts 2020, 10, 1003. [Google Scholar] [CrossRef]
- Latorre-Sanchez, M.; Lavorato, C.; Puche, M.; Fornes, V.; Molinari, R.; Garcia, H. Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chem. A Eur. J. 2012, 18, 16774–16783. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Forni, L.; Selli, E. Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2. Catal. Today 2009, 144, 69–74. [Google Scholar] [CrossRef]
- Hattori, M.; Noda, K. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production. Appl. Surf. Sci. 2015, 357, 214–220. [Google Scholar] [CrossRef]
- Su, C.Y.; Wang, L.C.; Liu, W.S.; Wang, C.C.; Perng, T.P. Photocatalysis and Hydrogen Evolution of Al- and Zn-Doped TiO2 Nanotubes Fabricated by Atomic Layer Deposition. Acs Appl. Mater. Interfaces 2018, 10, 33287–33295. [Google Scholar] [CrossRef]
- Su, C.Y.; Wang, C.C.; Hsueh, Y.C.; Gurylev, V.; Keic, C.C.; Perng, T.P. Enabling high solubility of ZnO in TiO2 by nanolamination of atomic layer deposition. Nanoscale 2015, 7, 19222–19230. [Google Scholar] [CrossRef]
- Su, C.Y.; Wang, C.C.; Hsueh, Y.C.; Gurylev, V.; Kei, C.C.; Perng, T.P. Fabrication of highly homogeneous Al-doped TiO2 nanotubes by nanolamination of atomic layer deposition. J. Am. Ceram. Soc. 2017, 100, 4988–4993. [Google Scholar] [CrossRef]
- Wang, G.; Guo, W.; Xu, D.; Liu, D.; Qin, M. Graphene oxide hybridised TiO2 for visible light photocatalytic degradation of phenol. Symmetry 2020, 12, 1420. [Google Scholar] [CrossRef]
- Huang, J.F.; Lei, Y.; Luo, T.; Liu, J.M. Photocatalytic H2 Production from Water by Metal-free Dye-sensitized TiO2 Semiconductors: The Role and Development Process of Organic Sensitizers. Chemsuschem 2020, 34. [Google Scholar] [CrossRef] [PubMed]
- Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Vonzelewsky, A. Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 1988, 84, 85–277. [Google Scholar] [CrossRef]
- Li, X.; Shi, J.L.; Hao, H.M.; Lang, X.J. Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B Environ. 2018, 232, 260–267. [Google Scholar] [CrossRef]
- He, H.; Chen, A.; Chang, M.; Ma, L.; Li, C. A feasible hydrogen evolution process of water electrolysis assisted by TiO2 nanotube photocatalysis. J. Ind. Eng. Chem. 2013, 19, 1112–1116. [Google Scholar] [CrossRef]
- Ayati, A.; Ahmadpour, A.; Bamoharram, F.F.; Tanhaei, B.; Manttari, M.; Sillanpaa, M. A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 2014, 107, 163–174. [Google Scholar] [CrossRef]
- Seh, Z.W.; Liu, S.H.; Low, M.; Zhang, S.Y.; Liu, Z.L.; Mlayah, A.; Han, M.Y. Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Adv. Mater. 2012, 24, 2310–2314. [Google Scholar] [CrossRef]
- Azami, M.S.; Nawawi, W.I.; Jawad, A.H.; Ishak, M.A.M.; Ismail, K. N-doped TiO2 Synthesised via Microwave Induced Photocatalytic on RR4 Dye Removal under LED Light Irradiation. Sains Malays. 2017, 46, 1309–1316. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000–3009. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Wen, P.; Xu, G.; Ma, D.; Qiu, P. NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane. Mol. Catal. 2018, 452, 175–183. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, W.Y.; Tian, B.; Zhen, W.L.; Wu, Y.Q.; Zhang, X.Q.; Lu, G.X. Visible light driven water splitting over CaTiO3/Pr3+-Y2SiO5/RGO catalyst in reactor equipped artificial gill. Appl. Catal. B Environ. 2018, 224, 553–562. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Liu, N.; Wu, D.P.; Tao, W.G.; Xu, F.; Jiang, K. Graphene-CdS composite, synthesis and enhanced photocatalytic activity. Appl. Surf. Sci. 2012, 258, 2473–2478. [Google Scholar] [CrossRef]
- Oh, W.C.; Chen, M.; Cho, K.; Kim, C.; Meng, Z.; Zhu, L. Synthesis of Graphene-CdSe Composite by a Simple Hydrothermal Method and Its Photocatalytic Degradation of Organic Dyes. Chin. J. Catal. 2011, 32, 1577–1583. [Google Scholar] [CrossRef]
- Zhang, X.F.; Quan, X.; Chen, S.; Yu, H.T. Constructing graphene/InNbO4 composite with excellent adsorptivity and charge separation performance for enhanced visible-light-driven photocatalytic ability. Appl. Catal. B Environ. 2011, 105, 237–242. [Google Scholar] [CrossRef]
- Fu, Y.S.; Sun, X.Q.; Wang, X. BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 2011, 131, 325–330. [Google Scholar] [CrossRef]
- Zhou, F.; Shi, R.; Zhu, Y.F. Significant enhancement of the visible photocatalytic degradation performances of gamma-Bi2MoO6 nanoplate by graphene hybridization. J. Mol. Catal. A Chem. 2011, 340, 77–82. [Google Scholar] [CrossRef]
- Gao, E.; Wang, W.; Shang, M.; Xu, J. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Phys. Chem. Chem. Phys. 2011, 13, 2887–2893. [Google Scholar] [CrossRef]
- Abe, R.; Higashi, M.; Domen, K. Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H-2 and O-2 under Visible Light Irradiation. J. Am. Chem. Soc. 2010, 132, 11828–11829. [Google Scholar] [CrossRef]
- Zhang, G.G.; Lan, Z.A.; Lin, L.H.; Lin, S.; Wang, X.C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Jiang, Z.F.; Xiao, K.M.; Sun, H.L.; Chan, H.S.; Tsang, T.H.; Yang, S.J.; Wong, P.K. Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 280, 12. [Google Scholar] [CrossRef]
- Mahvelati-Shamsabadi, T.; Goharshadi, E.K. Photostability and visible-light-driven photoactivity enhancement of hierarchical ZnS nanoparticles: The role of embedment of stable defect sites on the catalyst surface with the assistant of ultrasonic waves. Ultrason. Sonochem. 2017, 34, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H.; Domen, K. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 2005, 109, 20504–20510. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Min, S.X.; Lu, G.X. Dye-Sensitized NiSx Catalyst Decorated on Graphene for Highly Efficient Reduction of Water to Hydrogen under Visible Light Irradiation. Acs Catal. 2014, 4, 2763–2769. [Google Scholar] [CrossRef]
- Weng, B.; Qi, M.Y.; Han, C.; Tang, Z.R.; Xu, Y.J. Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catal. 2019, 9, 4642–4687. [Google Scholar] [CrossRef]
- Ning, X.F.; Lu, G.X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 2020, 12, 1213–1223. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Li, X.Y.; Liu, S.; Gao, L.; Mao, L.Q.; Fan, Z.Y.; Shangguan, W.F.; Fang, W.J.; Liu, Y.S. Polymerizable complex synthesis of SrTiO3:(Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light. Appl. Catal. B Environ. 2016, 192, 145–151. [Google Scholar] [CrossRef]
- Latorre-Sanchez, M.; Primo, A.; Garcia, H. P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angew. Chem. Int. Ed. 2013, 52, 11813–11816. [Google Scholar] [CrossRef]
- Patial, S.; Hasija, V.; Raizada, P.; Singh, P.; Singh, A.; Asiri, A.M. Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario. J. Environ. Chem. Eng. 2020, 8, 21. [Google Scholar] [CrossRef]
- Luo, X.L.; He, G.L.; Fang, Y.P.; Xu, Y.H. Nickel sulfide/graphitic carbon nitride/strontium titanate (NiSig-C3N4/SrTiO3) composites with significantly enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 2018, 518, 184–191. [Google Scholar] [CrossRef]
- Stroyuk, O.L.; Kuchmy, S.Y. Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: A Review. Theor. Exp. Chem. 2020, 56, 143–173. [Google Scholar] [CrossRef]
- Thang Phan, N.; Dang Le Tri, N.; Van-Huy, N.; Thu-Ha, L.; Vo, D.-V.N.; Quang Thang, T.; Bae, S.-R.; Chae, S.Y.; Kim, S.Y.; Quyet Van, L. Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomaterials 2020, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, X.; He, W.; Zhao, Y.; Wei, Y.; Xiong, J.; Liu, J.; Li, J.; Song, W.; Zhang, X.; et al. All-solid-state Z-scheme photocatalysts of g-C3N4/Pt/macroporous-(TiO2@carbon) for selective boosting visible-light-driven conversion of CO2 to CH4. J. Catal. 2020, 389, 440–449. [Google Scholar] [CrossRef]
- Luevano-Hipolito, E.; Torres-Martinez, L.M. Dolomite-supported Cu2O as heterogeneous photocatalysts for solar fuels production. Mater. Sci. Semicond. Process. 2020, 116, 8. [Google Scholar] [CrossRef]
- Adekoya, D.O.; Tahir, M.; Amin, N.A.S. g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light. J. CO2 Util. 2017, 18, 261–274. [Google Scholar] [CrossRef]
- Acharya, R.; Parida, K. A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. J. Environ. Chem. Eng. 2020, 8, 21. [Google Scholar] [CrossRef]
- Wang, C.J.; Zhao, Y.L.; Xu, H.; Li, Y.F.; Wei, Y.C.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal. B Environ. 2020, 263, 13. [Google Scholar] [CrossRef]
- Qiu, C.; Bai, S.; Cao, W.; Tan, L.; Liu, J.; Zhao, Y.; Song, Y.F. Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Trans. Tianjin Univ. 2020, 26, 352–361. [Google Scholar] [CrossRef]
- Lavorato, C.; Argurio, P.; Molinari, R. TiO2 and Pd/TiO2 as Photocatalysts for Hydrogenation of Ketones and Perspective of Membrane Application. Int. J. Adv. Res. Chem. Sci. 2019, 6, 33–41. [Google Scholar] [CrossRef]
- Call, A.; Casadevall, C.; Acuna-Pares, F.; Casitas, A.; Lloret-Fillol, J. Dual cobalt-copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chem. Sci. 2017, 8, 4739–4749. [Google Scholar] [CrossRef] [Green Version]
- Kohtani, S.; Nishioka, S.; Yoshioka, E.; Miyabe, H. Dye-sensitized photo-hydrogenation of aromatic ketones on titanium dioxide under visible light irradiation. Catal. Commun. 2014, 43, 61–65. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; You, J.G.; Tseng, W.B.; Dwivedi, G.D.; Rajesh, N.; Jiang, S.J.; Tseng, W.L. Magnetically Separable Nanospherical g-C3N4@Fe3O4 as a Recyclable Material for Chromium Adsorption and Visible-Light-Driven Catalytic Reduction of Aromatic Nitro Compounds. ACS Sustain. Chem. Eng. 2019, 7, 6662–6671. [Google Scholar] [CrossRef]
- Fueldner, S.; Mild, R.; Siegmund, H.I.; Schroeder, J.A.; Gruber, M.; Koenig, B. Green-light photocatalytic reduction using dye-sensitized TiO2 and transition metal nanoparticles. Green Chem. 2010, 12, 400–406. [Google Scholar] [CrossRef]
- Gazi, S.; Ananthakrishnan, R. Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Appl. Catal. B Environ. 2011, 105, 317–325. [Google Scholar] [CrossRef]
- Wang, B.; Deng, Z.; Li, Z. Efficient chemoselective hydrogenation of nitrobenzene to aniline, azoxybenzene and azobenzene over CQDs/ZnIn2S4 nanocomposites under visible light. J. Catal. 2020, 389, 241–246. [Google Scholar] [CrossRef]
- Gogoi, N.; Borah, G.; Gogoi, P.K.; Chetia, T.R. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation. Chem. Phys. Lett. 2018, 692, 224–231. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, Z.; Kobayashi, H.; Nakane, K. Novel Pd-loaded urchin-like (NH4)xWO3/WO3 as an efficient visible-light-driven photocatalyst for partial conversion of benzyl alcohol. J. Alloy. Compd. 2020, 845. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, H.; Wang, Y.Q.; Ji, H.B. All solid-state Z-scheme CeO2/ZnIn2S4 hybrid for the photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution. Appl. Catal. B Environ. 2020, 277, 9. [Google Scholar] [CrossRef]
- Guo, W.L.; Zhang, Z.H.; Lin, H.; Cai, L. Z-scheme BiFeO3-CNTs-PPy as a highly effective and stable photocatalyst for selective oxidation of benzyl alcohol under visible-light irradiation. Mol. Catal. 2020, 492, 12. [Google Scholar] [CrossRef]
- Verma, P.; Mori, K.; Kuwahara, Y.; Cho, S.J.; Yamashita, H. Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catal. Today 2020, 352, 255–261. [Google Scholar] [CrossRef]
- Mohammadi, M.; Hadadzadeh, H.; Kaikhosravi, M.; Farrokhpour, H.; Shakeri, J. Selective Photocatalytic Oxidation of Benzyl Alcohol at Ambient Conditions using Spray-Dried g-C3N4/TiO2 Granules. Mol. Catal. 2020, 490. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.M.; Wang, H.F.; Li, Y.P.; Liu, Y.; Qian, Q.Z.; Jin, X.; Wang, X.Q.; Zhang, J.H.; Zhang, G.Q. Realizing synergistic effect of electronic modulation and nanostructure engineering over graphitic carbon nitride for highly efficient visible-light H-2 production coupled with benzyl alcohol oxidation. Appl. Catal. B Environ. 2020, 269, 10. [Google Scholar] [CrossRef]
- Contreras, D.; Melin, V.; Marquez, K.; Perez-Gonzalez, G.; Mansilla, H.D.; Pecchi, G.; Henriquez, A. Selective oxidation of cyclohexane to cyclohexanol by BiOI under visible light: Role of the ratio (110)/(001) facet. Appl. Catal. B Environ. 2019, 251, 17–24. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, J.; Wang, H.; Yang, C.; Cheng, H.; Deng, Y.; Cheng, L.; Fang, Y. Photothermal oxidation of cyclohexane by graphene oxide-based composites with high selectivity to KA oil. Mol. Catal. 2020, 493. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catal. Sci. Technol. 2012, 2, 400–405. [Google Scholar] [CrossRef]
- Almquist, C.B.; Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: An investigation of competitive adsorption and its effects on product formation and selectivity. Appl. Catal. A Gen. 2001, 214, 259–271. [Google Scholar] [CrossRef]
- Sclafani, A.; Herrmann, J.M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 1996, 100, 13655–13661. [Google Scholar] [CrossRef]
- Peng, D.D.; Zhang, Y.; Xu, G.; Tian, Y.; Ma, D.; Qu, P. Synthesis of Multilevel Structured MoS2@Cu/Cu2O@C Visible-Light-Driven Photocatalyst Derived from MOF-Guest Polyhedra for Cyclohexane Oxidation. Acs Sustain. Chem. Eng. 2020, 8, 6622–6633. [Google Scholar] [CrossRef]
- Wang, S.-L.; Wang, L.-L.; Ma, W.-H.; Johnson, D.M.; Fang, Y.-F.; Jia, M.-K.; Huang, Y.-P. Moderate valence band of bismuth oxyhalides (BiOXs, X = Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR. Chem. Eng. J. 2015, 259, 410–416. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Zhang, X.; Cui, T.; Han, J.; Guo, K.; Wang, B.; Li, Y.; Hong, T.; Liu, J.; et al. Three-dimensional flower-like hybrid BiOI-zeolite composites with highly efficient adsorption and visible light photocatalytic activity. RSC Adv. 2014, 4, 45540–45547. [Google Scholar] [CrossRef]
- Luo, S.; Tang, C.; Huang, Z.; Liu, C.; Chen, J.; Fang, M. Effect of different Bi/Ti molar ratios on visible-light photocatalytic activity of BiOI/TiO2 heterostructured nanofibers. Ceram. Int. 2016, 42, 15780–15786. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Meneguzzo, F.; Parrino, F.; Ilharco, L.M.; Pagliaro, M. Vanillin: The Case for Greener Production Driven by Sustainability Megatrend. Chemistryopen 2019, 8, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Fu, J.; Lu, X. Microwave-Assisted Oxidative Degradation of Lignin Model Compounds with Metal Salts. Energy Fuels 2015, 29, 4503–4509. [Google Scholar] [CrossRef]
- Vedrine, J.C. Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Gharehkhani, S.; Zhang, Y.; Fatehi, P. Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Prog. Energy Combust. Sci. 2019, 72, 59–89. [Google Scholar] [CrossRef]
- Camera-Roda, G.; Parrino, F.; Loddo, V.; Palmisano, L. A Dialysis Photocatalytic Reactor for the Green Production of Vanillin. Catalysts 2020, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Israr, M.; Iqbal, J.; Arshad, A.; Gómez-Romero, P.; Benages, R. Multifunctional MgFe2O4/GNPs nanocomposite: Graphene-promoted visible light driven photocatalytic activity and electrochemical performance of MgFe2O4. Solid State Sci. 2020. [Google Scholar] [CrossRef]
- Parrino, F.; Augugliaro, V.; Camera-Roda, G.; Loddo, V.; Lopez-Munoz, M.J.; Marquez-Alvarez, C.; Palmisano, G.; Palmisano, L.; Puma, M.A. Visible-light-induced oxidation of trans-ferulic acid by TiO2 photocatalysis. J. Catal. 2012, 295, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Al-Hunaiti, A.; Mohaidat, Q.; Bsoul, I.; Mahmood, S.; Taher, D.; Hussein, T. Synthesis and Characterization of Novel Phyto-Mediated Catalyst, and Its Application for a Selective Oxidation of (VAL) into Vanillin under Visible Light. Catalysts 2020, 10, 839. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Fierascu, I.; Lungulescu, E.M.; Nicula, N.; Somoghi, R.; Ditu, L.M.; Ungureanu, C.; Sutan, A.N.; Draghiceanu, O.A.; Paunescu, A.; et al. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. J. Mater. Sci. 2020, 55, 1915–1932. [Google Scholar] [CrossRef]
- Martin-Perales, A.I.; Rodríguez-Padrón, D.; Garcia, A.; Len, C.; de Miguel, G.; Muñoz-Batista, M.J.; Luque, R. Photocatalytic Production of Vanillin over CeOx and ZrO2 Modified Biomass-Templated Titania. Ind. Eng. Chem. Res. 2020, 59, 17085–17093. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Poerio, T. Performance of vanadium based catalyst in a membrane contactor for the benzene hydroxylation to phenol. Appl. Catal. A Gen. 2012, 417, 87–92. [Google Scholar] [CrossRef]
- Shimizu, K.; Akahane, H.; Kodama, T.; Kitayama, Y. Selective photo-oxidation of benzene over transition metal-exchanged BEA zeolite. Appl. Catal. A Gen. 2004, 269, 75–80. [Google Scholar] [CrossRef]
- Molinari, R.; Argurio, P.; Poerio, T. Vanadyl acetylacetonate filled PVDF membranes as the core of a liquid phase continuous process for pure phenol production from benzene. J. Membr. Sci. 2015, 476, 490–499. [Google Scholar] [CrossRef]
- Han, J.W.; Jung, J.; Lee, Y.M.; Nam, W.; Fukuzumi, S. Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. Chem. Sci. 2017, 8, 7119–7125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Chen, Z.M.; Han, B.; Li, C.C. Glycol assisted synthesis of MIL-100(Fe) nanospheres for photocatalytic oxidation of benzene to phenol. Catal. Commun. 2017, 98, 112–115. [Google Scholar] [CrossRef]
- Qin, H.; Lin, W.; Zhang, Z.C.; Cheng, J.Y.; Kong, Y. Synthesis of F-TiO2 Nanosheets and its Photocatalytic Oxidation of Benzene to Phenol. Adv. Eng. Mater. IiiPts 1–3 2013, 750–752, 1160–1163. [Google Scholar] [CrossRef]
- Ye, X.J.; Cui, Y.J.; Qiu, X.Q.; Wang, X.C. Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation. Appl. Catal. B Environ. 2014, 152, 383–389. [Google Scholar] [CrossRef]
- Kurikawa, Y.; Togo, M.; Murata, M.; Matsuda, Y.; Sakata, Y.; Kobayashi, H.; Higashimoto, S. Mechanistic Insights into Visible Light-Induced Direct Hydroxylation of Benzene to Phenol with Air and Water over Pt-Modified WO3 Photocatalyst. Catalysts 2020, 10, 557. [Google Scholar] [CrossRef]
- Tomita, O.; Ohtani, B.; Abe, R. Highly selective phenol production from benzene on a platinum-loaded tungsten oxide photocatalyst with water and molecular oxygen: Selective oxidation of water by holes for generating hydroxyl radical as the predominant source of the hydroxyl group. Catal. Sci. Technol. 2014, 4, 3850–3860. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.F.; Zhang, J.S.; Fu, X.Z.; Antonietti, M.; Wang, X.C. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light. J. Am. Chem. Soc. 2009, 131, 11658–11659. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghiaci, M.; Kulinich, S.A.; Wunderlich, W.; Farrokhpour, H.; Saraji, M.; Shahvar, A. Au-Pd@g-C3N4 as an Efficient Photocatalyst for Visible-Light Oxidation of Benzene to Phenol: Experimental and Mechanistic Study. J. Phys. Chem. C 2018, 122, 27477–27485. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Tran, Q.B.; Ly, Q.V.; Thanh Hai, L.; Le, D.T.; Tran, M.B.; Ho, T.T.T.; Nguyen, X.C.; Shokouhimehr, M.; Vo, D.V.N.; et al. Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study. Arab. J. Chem. 2020. [Google Scholar] [CrossRef]
- Li, J.Y.; Dong, X.A.; Zhang, G.; Cui, W.; Cen, W.L.; Wu, Z.B.; Lee, S.C.; Dong, F. Probing ring-opening pathways for efficient photocatalytic toluene decomposition. J. Mater. Chem. A 2019, 7, 3366–3374. [Google Scholar] [CrossRef]
- Li, J.Y.; Cui, W.; Chen, P.; Dong, X.A.; Chu, Y.H.; Sheng, J.P.; Zhang, Y.X.; Wang, Z.M.; Dong, F. Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl. Catal. B Environ. 2020, 260, 7. [Google Scholar] [CrossRef]
- Buscio, V.; Brosillon, S.; Mendret, J.; Crespi, M.; Gutierrez-Bouzan, C. Photocatalytic Membrane Reactor for the Removal of CI Disperse Red 73. Materials 2015, 8, 3633–3647. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2020, 13. [Google Scholar] [CrossRef]
- Kanan, S.; Moyet, M.A.; Arthur, R.B.; Patterson, H.H. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev. Sci. Eng. 2020, 62, 1–65. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B.; Fulekar, M.H. Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnol. Environ. Eng. 2018, 3. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Fadaei, A.M. Photocatalytic degradation of organophosphorous pesticide using zinc oxide. Res. J. Chem. Environ. 2012, 16, 104–109. [Google Scholar]
- Premalatha, N.; Miranda, L.R. Surfactant modified ZnO-Bi2O3 nanocomposite for degradation of lambda-cyhalothrin pesticide in visible light: A study of reaction kinetics and intermediates. J. Environ. Manag. 2019, 246, 259–266. [Google Scholar] [CrossRef]
- Nguyen Thi, H.; Nguyen Le Minh, T.; Doan Van, T.; Mai Hung Thanh, T.; Thanh-Dong, P.; Tran Dinh, M.; Hoang Thu, T.; Mai Thien, B.; Minh Viet, N. Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 382. [Google Scholar] [CrossRef]
- Li, W.; Xie, L.; Zhou, L.; Ochoa-Lozano, J.; Li, C.; Chai, X. A systemic study on Gd, Fe and N co-doped TiO2 nanomaterials for enhanced photocatalytic activity under visible light irradiation. Ceram. Int. 2020, 46, 24744–24752. [Google Scholar] [CrossRef]
- Mandal, P.; Nath, K.K.; Saha, M. Efficient Blue Luminescent Graphene Quantum Dots and their Photocatalytic Ability Under Visible Light. Biointerface Res. Appl. Chem. 2021, 11, 8171–8178. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; You, S. Effective in-situ reduction of Cr(VI) from leather wastewater by advanced reduction process based on CO2- with visible-light photocatalyst. Chemosphere 2020, 263, 127898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, G.; Geng, X.; Wu, K.; Debliquy, M. Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review. Sens. Actuators A Phys. 2020, 309. [Google Scholar] [CrossRef]
- Fang, T.; Yang, X.; Zhang, L.; Gong, J. Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid. J. Hazard. Mater. 2016, 312, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Cherdchoo, W.; Nithettham, S.; Charoenpanich, J. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere 2019, 221, 758–767. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Irawan, A.; Ku, Y. Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res. 2008, 42, 4725–4732. [Google Scholar] [CrossRef]
- Mozia, S.; Szymanski, K.; Michalkiewicz, B.; Tryba, B.; Toyoda, M.; Morawski, A.W. Effect of process parameters on fouling and stability of MF/UF TiO2 membranes in a photocatalytic membrane reactor. Sep. Purif. Technol. 2015, 142, 137–148. [Google Scholar] [CrossRef]
- Cao, F.; Liu, H.; Wei, Q.; Zhao, L.; Guo, L. Experimental study of direct solar photocatalytic water splitting for hydrogen production under natural circulation conditions. Int. J. Hydrog. Energy 2018, 43, 13727–13737. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Dizon, G.V.C.; Yamada, K.; Liu, C.-Y.; Venault, A.; Lin, H.-Y.; Yoshida, M.; Hu, C. Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J. Colloid Interface Sci. 2020, 567, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, N.; Ghalamchi, L.; Vatanpour, V.; Khataee, A. Photocatalytic-membrane technology: A critical review for membrane fouling mitigation. J. Ind. Eng. Chem. 2020. [Google Scholar] [CrossRef]
- Rodriguez, J.; Puzenat, E.; Thivel, P.X. From solar photocatalysis to fuel-cell: A hydrogen supply chain. J. Environ. Chem. Eng. 2016, 4, 3001–3005. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, X.; Xu, R.; Li, J.; Gao, S.; Cao, R. CdS/NH2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2. J. Mater. Chem. A 2018, 6, 20152–20160. [Google Scholar] [CrossRef]
- Pomilla, F.R.; Brunetti, A.; Marci, G.; Garcia-Lopez, E.I.; Fontananova, E.; Palmisano, L.; Barbieri, G. CO2 to Liquid Fuels: Photocatalytic Conversion in a Continuous Membrane Reactor. ACS Sustain. Chem. Eng. 2018, 6, 8743–8753. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, X.; Shen, J.; Zhang, Z.; Wang, D.; Lin, J.; Wu, J.C.S.; Fu, X.; Wang, X.; Li, C. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Sheng, H.; Oh, M.H.; Osowiecki, W.T.; Kim, W.; Alivisatos, A.P.; Frei, H. Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO2 Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. J. Am. Chem. Soc. 2018, 140, 4363–4371. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Quan, X.; Wang, H.; Chen, S.; Su, Y.; Li, Z. Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Argurio, P.; Fontananova, E.; Molinari, R.; Drioli, E. Photocatalytic membranes in photocatalytic membrane reactors. Processes 2018, 6, 162. [Google Scholar] [CrossRef] [Green Version]
- De Filpo, G.; Pantuso, E.; Armentano, K.; Formoso, P.; Di Profio, G.; Poerio, T.; Fontananova, E.; Meringolo, C.; Mashin, A.I.; Nicoletta, F.P. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes. Membranes 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Mozia, S.; Darowna, D.; Orecki, A.; Wrobel, R.; Wilpiszewska, K.; Morawski, A.W. Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. J. Membr. Sci. 2014, 470, 356–368. [Google Scholar] [CrossRef]
- Lee, N.H.; Amy, G.; Croue, J.P.; Buisson, H. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res. 2004, 38, 4511–4523. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Fan, X.; Quan, X.; Zhang, Y. Ag-TiO2/HAP/Al2O3 bioceramic composite membrane: Fabrication, characterization and bactericidal activity. J. Membr. Sci. 2009, 336, 109–117. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, X.; Chen, S.; Zhao, H. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ. Sci. Technol. 2006, 40, 6104–6109. [Google Scholar] [CrossRef]
- Roso, M.; Boaretti, C.; Bonora, R.; Modesti, M.; Lorenzetti, A. Nanostructured Active Media for Volatile Organic Compounds Abatement: The Synergy of Graphene Oxide and Semiconductor Coupling. Ind. Eng. Chem. Res. 2018, 57, 16635–16644. [Google Scholar] [CrossRef]
- Horovitz, I.; Avisar, D.; Baker, M.A.; Grilli, R.; Lozzi, L.; Di Camillo, D.; Mamane, H. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters. J. Hazard. Mater. 2016, 310, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Wang, M.-S.; Chen, C.-H.; Chen, Y.-R.; Huang, P.-H.; Tung, K.-L. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment. J. Membr. Sci. 2019, 580, 1–11. [Google Scholar] [CrossRef]
- Athanasekou, C.P.; Moustakas, N.G.; Morales-Torres, S.; Pastrana-Martinez, L.M.; Figueiredob, J.L.; Faria, J.L.; Silva, A.M.T.; Dona-Rodriguez, J.M.; Romanos, G.E.M.; Falaras, P. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl. Catal. B Environ. 2015, 178, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Ashar, A.; Bhatti, I.A.; Ashraf, M.; Tahir, A.A.; Aziz, H.; Yousuf, M.; Ahmad, M.; Mohsin, M.; Bhutta, Z.A. Fe3+ @ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J. Clean. Prod. 2020, 246. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Shen, L.; Xu, Y.; Li, R.; Huang, L.; Lin, H. Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment. J. Colloid Interface Sci. 2020, 570, 273–285. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, C.; He, A.; Yang, S.-J.; Wu, G.-P.; Darling, S.B.; Xu, Z.-K. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Liu, G.; Han, K.; Zhou, Y.; Ye, H.; Zhang, X.; Hu, J.; Li, X. Facile Synthesis of Highly Dispersed Ag Doped Graphene Oxide/Titanate Nanotubes as a Visible Light Photocatalytic Membrane for Water Treatment. ACS Sustain. Chem. Eng. 2018, 6, 6256–6263. [Google Scholar] [CrossRef]
- Alyarnezhad, S.; Marino, T.; Parsa, J.B.; Galiano, F.; Ursino, C.; Garcia, H.; Puche, M.; Figoli, A. Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. Polymers 2020, 12, 1509. [Google Scholar] [CrossRef]
- Fanourakis, S.K.; Pena-Bahamonde, J.; Bandara, P.C.; Rodrigues, D.F. Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. NPJ Clean Water 2020, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kong, H.; Li, P.; Shao, J.; He, Y. Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). J. Hazard. Mater. 2019, 373, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Hong, Y.; Liu, Q.; Dong, L. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2. Appl. Surf. Sci. 2018, 430, 399–406. [Google Scholar] [CrossRef]
- Nasseh, N.; Taghavi, L.; Barikbin, B.; Nasseri, M.A. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J. Clean. Prod. 2018, 179, 42–54. [Google Scholar] [CrossRef]
- Lin, L.; Wang, H.; Xu, P. Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chem. Eng. J. 2017, 310, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Tugaoen, H.O.N.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci. Total Environ. 2018, 613, 1331–1338. [Google Scholar] [CrossRef]
- Kamaludin, R.; Rasdi, Z.; Othman, M.H.D.; Abdul Kadir, S.H.S.; Mohd Nor, N.S.; Khan, J.; Wan Mohamad Zain, W.N.I.Z.; Ismail, A.F.; A Rahman, M.; Jaafar, J. Visible-Light Active Photocatalytic Dual Layer Hollow Fiber (DLHF) Membrane and Its Potential in Mitigating the Detrimental Effects of Bisphenol A in Water. Membranes 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.-V.; Wu, J.C.S. Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Sol. Energy Mater. Sol. Cells 2008, 92, 864–872. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, R.; Zhu, X.; Liao, Q.; An, L.; Ye, D.; He, X.; Li, S.; Li, L. An optofluidic planar microreactor for photocatalytic reduction of CO2 in alkaline environment. Energy 2017, 120, 276–282. [Google Scholar] [CrossRef]
Photocatalyst | Main Results | Ref. |
---|---|---|
Au/TiO2 nanoparticles (NPs) | super-linear dependence on light intensity in the range 0–7 kW/m2, and then a sub-linear dependence in the range 7–9 kW/m2 | [6] |
[Ru(bipy)3]2+@GO | 3290 µmol h−1g−1 of hydrogen production under laser irradiation at 532 nm | [66] |
N-doped graphene | About 55 µmol after 3 h of visible-light (532 nm) laser irradiation | [20] |
phosphorus-doped grapheme (Pt–(P)G-4) | H2-generation rate 282 µmol h−1 g−1 under UV/Vis irradiation using triethanolamine | [98] |
2%NiS/20%g-C3N4/SrTiO3 (2NS/20CN/STO) | hydrogen production rate of 1722.7 μmol h−1 g−1 | [100] |
CaTiO3/Pr3+ Y2SiO5/RGO | Up conversion of visible light into UV light | [82] |
Photocatalyst | Main Results | Ref. |
---|---|---|
Microwave-synthesized carbon-dots (mCD) | Carbon dioxide reduction nearly 100% selectivity to methanol by pure water | [24] |
Nickel silicate hydroxide | CO yield up to 1.71 × 104 μmol g−1 h−1 with 99.2% selectivity under visible light | [25] |
g-C3N4/Pt/3DOM-TiO2@C | CH4 yield of 6.56 μmol h−1 for 0.1 g catalyst and 5.67% of quantum efficiency | [96] |
Supported Cu2O on activated-dolomite (Cu/DA) | CH3OH generation of 38 μmol g−1 h−1 | [97] |
Cu-modified TGCN (TiO2/g-C3N4) | CH3OH yield of 2574 mmol g−1 | [98] |
[(Au/A-TiO2)@g-C3N4] | Formation rates of CH4 is 37.4 μmol g−1 h−1 | [100] |
CoAl-LDH/MoS2-x | Modulation of the syngas proportion (H2:CO) from 1:1 to 9:1 | [101] |
Photocatalyst | Main Results | Ref. |
---|---|---|
Iridium based complex supported on CdS | Pyruvate TON 790, cyclohexane carboxaldehyde TON 381, Acetophenone TON 220 | [42] |
Aminopyridyl cobalt complex active and [Cu(bathocuproine)(Xantphos)](PF6) photoredox catalyst | High selectivity towards the hydrogenation of aryl ketones was observed in the presence of terminal olefins, aliphatic ketones, and alkynes | [110] |
RhB–TiO2 | Phenylethanol production initial reaction rate 0.70 mol dm−3 h−1 | [111] |
Pd/TiO2 | Phenylethanol Productivity 22 mg gTiO2 −1 h−1 | [57] |
Pd/TiO2/FAU | Phenylethanol Productivity 99.6 mg gTiO2 −1 h−1 | [59] |
Photocatalyst | Main Results | Ref. |
---|---|---|
Eosin Y on resin (REY) | 4-Nitrophenol (4-NP) conversion 60% in 50 min. | [114] |
g-C3N4@ Fe3O4NPs | Visible light activity higher than Fe3O4NPs | [112] |
3.0 wt% CQDs/ZnIn2S4 | Full conversion of nitrobenzene after irradiation for 16 h | [115] |
Photocatalyst | Main Results | Ref. |
---|---|---|
Au-TiO2 | Au-TiO2 higher photocatalytic activity than TiO2 | [116] |
Pd/(NH4)xWO3/WO3 | 80% selectivity for benzaldehyde production with ca. 84% conversion of benzyl alcohol. | [117] |
CeO2/ZnIn2S4 | The benzaldehyde and hydrogen yields obtained were 664.1 and 1496.6 μmol gcat−1 h−1, respectively. | [118] |
BiFeO3-(CNTs) (PPy) | Benzyl alcohol conversion rate and selectivity to benzaldehyde of about 83.2% and 99.3%, respectively. | [119] |
Au/TiO2 nanorod | 55% yield of benzaldehyde with an external quantum efficiency of 3.4% | [120] |
g-C3N4/TiO2 | turnover frequency (TOF) of over 550 h−1 | [121] |
S-doped g-C3N4 | H2 production rate 13.2 times higher than bulk g-C3N4, H2 and benzaldehyde production rate of 3.76 and 3.87 μmolh−1, respectively. | [122] |
Photocatalyst | Main Results | Ref. |
---|---|---|
NH2MIL-125 TiO2 | Photocatalytic activity three times higher than that of NH2-MIL-125(Ti) | [81] |
MoS2@Cu/Cu2O@C | Conversion of 1.31%, selectivity to cyclohexanol and to cyclohexanone of 59 and 39%, respectively | [128] |
BiOI | Conversion and selectivity of cyclohexane to cyclohexanol 0.0011% and over 80%, respectively | [123] |
Photocatalyst | Main Results | Ref. |
---|---|---|
ZnFe2O4 | Selectivity to vanillin up to 99% at a conversion over 98% and turn-over frequency values up to 1600 h−1 in the presence of H2O2 and base | [139] |
1Ce/TiO2-BS | Maximum conversion of 39.7% with selectivity values of 99% towards vanillin | [141] |
5Zr/TiO2-BS | Maximum conversion of 52.4% with selectivity values of 99% towards vanillin | [141] |
Photocatalyst | Main Results | Ref. |
---|---|---|
[RuII(Me2phen)3]2+ and [CoIII(Cp*)(bpy)(H2O)]2+ | Yield of phenol about 30% and quantum yield (QY) 1.7% | [145] |
Pt-WO3 | Selective hydroxylation of benzene to phenol 300 < λ < 500 nm | [150] |
Pt-WO3 | Selectivity of phenol over 70% 420 < λ < 540 nm | [149] |
10 wt% Fe-modified g-C3N4 | Phenol yield 4.8% and phenol selectivity 3.2% | [151] |
Au−Pd/g-C3N4 | Benzene conversion 26% and phenol selectivity 100% | [152] |
Photocatalyst | Main Results | Ref. |
---|---|---|
ZnO–Bi2O3 | Lambda-Cyhalothrin (L-CHT) degradation percentage 85.7% achieved within 120 min | [161] |
Cu-ZnO | MCP removal efficiency about 90% | [162] |
G2.0FNTO | MB removal amount about 97% | [163] |
GQDs | Methyl Orange degraded to 52% while Methylene Blue degraded 79.4% both within two hours | [164] |
Black TiO2 | Reduction rate of Cr(VI) 96.2% | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinari, R.; Lavorato, C.; Argurio, P. Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts 2020, 10, 1334. https://doi.org/10.3390/catal10111334
Molinari R, Lavorato C, Argurio P. Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts. 2020; 10(11):1334. https://doi.org/10.3390/catal10111334
Chicago/Turabian StyleMolinari, Raffaele, Cristina Lavorato, and Pietro Argurio. 2020. "Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions" Catalysts 10, no. 11: 1334. https://doi.org/10.3390/catal10111334
APA StyleMolinari, R., Lavorato, C., & Argurio, P. (2020). Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts, 10(11), 1334. https://doi.org/10.3390/catal10111334