Defect Engineering of Molybdenum-Based Materials for Electrocatalysis
Abstract
:1. Introduction
2. Defect Theory of Mo-Based Materials
2.1. Types of Defects
2.1.1. Heteroatomic Doping
Non-Metal Heteroatomic Doping
Metal Heteroatomic Doping
2.1.2. Vacancy Defects
2.1.3. Complex Defects
3. Defect-Inducing Strategies
3.1. Generation of Heteroatomic Doping Defects
3.2. Method of Preparing Vacancy Defects
3.3. Strategies of Complex Defects Design
4. Advanced Characterization Techniques for Defect Structure Analysis
4.1. Microscopy Characterization
4.2. Crystallology Characterization
4.3. Spectroscopy Characterization
5. Applications of Mo-Based Materials in Electrochemical Energy Conversion
5.1. Hydrogen Evolution Reaction
5.1.1. Heteroatomic Doping
5.1.2. Vacancy Defects
5.1.3. Complex Defects
5.2. Oxygen Evolution Reaction
5.3. Oxygen Reduction Reaction
5.4. Nitrogen Reduction Reaction
6. Summary and Outlook
- (1)
- Precise control of defect synthesis
- (2)
- Investigations of complex defects
- (3)
- Understanding the mechanism of defect for electrocatalysis in-depth
Author Contributions
Funding
Conflicts of Interest
References
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Liu, W.; Dou, Y.; Du, Z.; Shao, M. The Role of Transition Metal and Nitrogen in Metal–N–C Composites for Hydrogen Evolution Reaction at Universal pHs. J. Phys. Chem. C 2016, 120, 29047–29053. [Google Scholar] [CrossRef]
- Miao, J.; Xiao, F.; Yang, H.B.; Khoo, S.Y.; Chen, J.; Fan, Z.; Hsu, Y.; Chen, H.M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, 1500259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Bai, X.; Wang, T.; Xiao, W.; Xi, P.; Wang, J.; Gao, D.; Wang, J. Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn-Air Battery and Water Splitting. Nanomicro Lett. 2019, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, Y.; Yang, W.; Zhang, C.; Sun, H.; Deng, Z.; Xu, W.; Song, L.; Ouyang, Z.; Wang, Z.; Guo, J.; et al. Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc-Air Batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Shao, M. Electrocatalysis in Fuel Cells. Catalysts 2015, 5, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Chen, S.; Jin, Y.; Li, J.; Song, J.; Le, Z.; Liang, G.; Zhang, H.; Xie, F.; Chen, J.; et al. Electron Density Modulation of Metallic MoO2 by Ni Doping to Produce Excellent Hydrogen Evolution and Oxidation Activities in Acid. ACS Energy Lett. 2020, 5, 1908–1915. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Jia, Y.; Jiang, K.; Wang, H.; Yao, X. The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. Chem 2019, 5, 1371–1397. [Google Scholar] [CrossRef]
- Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57–69. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C.T.; Fan, F.; Cao, C.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Peles, A.; Shao, M.; Protsailo, L. Pt Monolayer Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles Investigation. Catalysts 2015, 5, 1193–1201. [Google Scholar] [CrossRef]
- Xu, X.; Tian, X.; Sun, B.; Liang, Z.; Cui, H.; Tian, J.; Shao, M. 1 T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Appl. Catal. B Environ. 2020, 272, 118984. [Google Scholar] [CrossRef]
- Sun, D.; Huang, D.; Wang, H.; Xu, G.; Zhang, X.; Zhang, R.; Tang, Y.; Abd Ei-Hady, D.; Alshitari, W.; Saad Al-Bogami, A.; et al. 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 2019, 61, 361–369. [Google Scholar] [CrossRef]
- Ren, J.; Chen, L.; Weng, C.; Yuan, Z. Ultrafine molybdenum phosphide nanocrystals on a highly porous N,P-codoped carbon matrix as an efficient catalyst for the hydrogen evolution reaction. Mater. Chem. Front. 2018, 2, 1987–1996. [Google Scholar] [CrossRef]
- Yu, H.; Cao, S.; Fu, B.; Wu, Z.; Liu, J.; Piao, L. Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catal. Commun. 2019, 127, 1–4. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Luo, Y.; Liu, M.; Li, X.; Yan, M.; Ye, Z.; Chen, Z.; Feng, Z.; Huang, S. Wrinkled Ni-doped Mo2C coating on carbon fiber paper: An advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochim. Acta 2019, 319, 293–301. [Google Scholar] [CrossRef]
- Song, Y.; Ren, J.; Yuan, G.; Yao, Y.; Liu, X.; Yuan, Z. Facile synthesis of Mo2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. J. Energy Chem. 2019, 38, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Qu, B.; Yu, X.; Chen, Y.; Zhu, C.; Li, C.; Yin, Z.; Zhang, X. Ultrathin MoSe2 Nanosheets Decorated on Carbon Fiber Cloth as Binder-Free and High-Performance Electrocatalyst for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2015, 7, 14170–14175. [Google Scholar] [CrossRef]
- Rauscher, T.; Müller, C.I.; Schmidt, A.; Kieback, B.; Röntzsch, L. Ni–Mo–B alloys as cathode material for alkaline water electrolysis. Int. J. Hydrogen Energy 2016, 41, 2165–2176. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, R.S.; Haque, F.; Mohiuddin, M.; Carey, B.J.; Syed, N.; Zavabeti, A.; Zhang, B.; Khan, H.; Berean, K.J.; Ou, J.Z.; et al. Highly active two dimensional α-MoO3−x for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24223–24231. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, B.; Xie, Z. Hydrothermal synthesis of core-shell MoO2/Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2018, 427, 693–701. [Google Scholar] [CrossRef]
- Chen, S.; Duan, J.; Tang, Y.; Jin, B.; Zhangiao, S. Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 2015, 11, 11–18. [Google Scholar] [CrossRef]
- Li, P.; Yang, Z.; Shen, J.; Nie, H.; Cai, Q.; Li, L.; Ge, M.; Gu, C.; Chen, X.; Yang, K.; et al. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 3543–3550. [Google Scholar] [CrossRef]
- Han, Y.; Li, P.; Tian, Z.; Zhang, C.; Ye, Y.; Zhu, X.; Liang, C. Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution. ACS Appl. Energy Mater. 2019, 2, 6302–6310. [Google Scholar] [CrossRef]
- Li, R.; Yang, L.; Xiong, T.; Wu, Y.; Cao, L.; Yuan, D.; Zhou, W. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R.S.; Fan, H.J. 3D Porous Hierarchical Nickel-Molybdenum Nitrides Synthesized by RF Plasma as Highly Active and Stable Hydrogen-Evolution-Reaction Electrocatalysts. Adv. Energy Mater. 2016, 6, 1600221. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, C.; Wang, S.; Hou, Y. 3D arrays of molybdenum sulphide nanosheets on Mo meshes: Efficient electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 2015, 174, 653–659. [Google Scholar] [CrossRef]
- Li, F.; Zhao, X.; Mahmood, J.; Okyay, M.S.; Jung, S.M.; Ahmad, I.; Kim, S.J.; Han, G.F.; Park, N.; Baek, J.B. Macroporous Inverse Opal-like MoxC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano 2017, 11, 7527–7533. [Google Scholar] [CrossRef] [PubMed]
- Han, G.H.; Kim, H.; Kim, J.; Kim, J.; Kim, S.Y.; Ahn, S.H. Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 2020, 270, 118895. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, T.; Yang, L.; Liu, R.; Zhang, G.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173–15180. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, Y.; Liu, Y.; Zhu, Y.; Jia, M.; Zhang, Y.; Zhang, K.; Yu, A.; Liu, J.; Zhai, J. Nitrogen-Doped Porous Carbon Nanosheets Strongly Coupled with Mo2C Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Nanoscale Res. Lett. 2019, 14, 329. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Peng, H.; Bu, S.; Gao, Q.; Jiao, T.; Cheng, J.; Liu, B.; Hong, G.; Lee, C.; Zhang, W. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J. Mater. Chem. A 2020, 8, 7457–7473. [Google Scholar] [CrossRef]
- Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule 2018, 2, 2551–2582. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Jia, Y.; Yao, X. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Tian, X.; Ma, L.; Dai, C.; Yang, C.; Zhou, Z. Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. Nanoscale 2016, 8, 1676–1683. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Wang, D. Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochim. Acta 2018, 281, 540–548. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, W.; Zeng, J.; He, L.; Li, D.; Gao, Q. Plasma-Engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution. Appl. Catal. B Environ. 2020, 268. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, H.; Xu, K.; Zhang, Q.; Liu, J.; He, C.; Fan, L.; Asefa, T. Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 18030–18038. [Google Scholar] [CrossRef]
- Zhao, Y.; Hwang, J.; Tang, M.T.; Chun, H.; Wang, X.; Zhao, H.; Chan, K.; Han, B.; Gao, P.; Li, H. Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. J. Power Sources 2020, 456, 227998. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catal. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Zhu, Y.a.; Pan, Y.; Dai, W.; Lu, T. Dealloying Generation of Oxygen Vacancies in the Amorphous Nanoporous Ni–Mo–O for Superior Electrocatalytic Hydrogen Generation. ACS Appl. Energy Mater. 2020, 3, 1319–1327. [Google Scholar] [CrossRef]
- Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; et al. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972. [Google Scholar] [CrossRef] [PubMed]
- Li, D.J.; Maiti, U.N.; Lim, J.; Choi, D.S.; Lee, W.J.; Oh, Y.; Lee, G.Y.; Kim, S.O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Kim, H.J.; Lee, J.T.; Chang, G.W.; Shi, X.; Kim, W.; Ma, M.; Kong, K.J.; Choi, J.M.; Song, M.S.; et al. Unconventional pore and defect generation in molybdenum disulfide: Application in high-rate lithium-ion batteries and the hydrogen evolution reaction. ChemSusChem 2014, 7, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhao, L.; Zhang, J.; Lin, L.; Wu, H. Solvent-Assisted Oxygen Incorporation of Vertically Aligned MoS2 Ultrathin Nanosheets Decorated on Reduced Graphene Oxide for Improved Electrocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 25210–25218. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Chen, X.; Hu, G.; Chen, W.; Bradley, S.J.; Zhang, W.; Verma, G.; Nann, T.; Jiang, D.; Kruger, P.E.; et al. Highly efficient electrocatalytic hydrogen evolution promoted by O–Mo–C interfaces of ultrafine β-Mo2C nanostructures. Chem. Sci. 2020, 11, 3523–3530. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, D.; Zhao, S.; Lu, S.; Ma, Y.; Li, M.; Chen, G.; Wang, Y.; Zhou, G.; Xiao, C. Tuning of metallic valence in CoMoP for promoting electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 31072–31081. [Google Scholar] [CrossRef]
- Ou, G.; Fan, P.; Ke, X.; Xu, Y.; Huang, K.; Wei, H.; Yu, W.; Zhang, H.; Zhong, M.; Wu, H.; et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 2017, 11, 751–761. [Google Scholar] [CrossRef]
- Meng, C.; Lin, M.; Du, X.; Zhou, Y. Molybdenum Disulfide Modified by Laser Irradiation for Catalyzing Hydrogen Evolution. ACS Sustain. Chem. Eng. 2019, 7, 6999–7003. [Google Scholar] [CrossRef]
- Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S.T.; Zhou, W.; Vajtai, R.; Ajayan, P.M. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ke, X.; Ou, G.; Wei, H.; Wang, L.; Wu, H. Defective MoS2 electrocatalyst for highly efficient HER through a simple balling milling method. Sci. China Mater. 2017, 60, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.; Paul, A.; Srivastava, D.N.; Panda, A.B. Defect- and Phase-Induced Acceleration of Electrocatalytic Hydrogen Production by Ultrathin and Small MoS2-Decorated rGO Sheets. ACS Appl. Nano Mater. 2018, 1, 4622–4632. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, Y.; Xu, F.; Gao, P.; Ge, B.; Chen, J.; Zeng, H.; Sutter, E.; Sutter, P.; Sun, L. Defect-Laden MoSe2 Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts. Small 2017, 13, 1700565. [Google Scholar] [CrossRef]
- Sarker, S.; Peters, J.; Chen, X.; Li, B.; Chen, G.; Yan, L.; Richins, S.K.; Das, S.; Zhou, M.; Luo, H. Engineering Molybdenum Diselenide and Its Reduced Graphene Oxide Hybrids for Efficient Electrocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 2018, 1, 2143–2152. [Google Scholar] [CrossRef]
- Lu, A.Y.; Yang, X.; Tseng, C.C.; Min, S.; Lin, S.H.; Hsu, C.L.; Li, H.; Idriss, H.; Kuo, J.L.; Huang, K.W.; et al. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small 2016, 12, 5530–5537. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; et al. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308. [Google Scholar] [CrossRef]
- Lin, J.; Wang, P.; Wang, H.; Li, C.; Si, X.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Defect-Rich Heterogeneous MoS2/NiS2 Nanosheets Electrocatalysts for Efficient Overall Water Splitting. Adv. Sci. 2019, 6, 1900246. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Qu, H.; Xin, J.; Zhang, X.; Cui, G.; Zhang, X.; Bao, J.; Tang, B.; Xie, Y. Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res. 2017, 10, 1178–1188. [Google Scholar] [CrossRef]
- Li, Y.; Yin, K.; Wang, L.; Lu, X.; Zhang, Y.; Liu, Y.; Yan, D.; Song, Y.; Luo, S. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B Environ. 2018, 239, 537–544. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, G.; Gu, L.; Peng, Z.; Wang, L.; Wu, H. A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Adv. 2016, 6, 107158–107162. [Google Scholar] [CrossRef]
- Sun, C.; Wang, P.; Wang, H.; Xu, C.; Zhu, J.; Liang, Y.; Su, Y.; Jiang, Y.; Wu, W.; Fu, E.; et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613–1618. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Ma, Y.; Wei, Q.; Qiu, W.; Guo, H.; Shi, X.; Zhang, P.; Asiri, A.M.; Chen, L.; et al. Boosted Electrocatalytic N2 Reduction to NH3 by Defect-Rich MoS2 Nanoflower. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Hage, F.S.; Radtke, G.; Kepaptsoglou, D.M.; Lazzeri, M.; Ramasse, Q.M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 2020, 367, 1124–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, I.S.; Debela, T.T.; Kwak, I.H.; Park, Y.C.; Seo, J.; Shim, J.Y.; Yoo, S.J.; Kim, J.-G.; Park, J.; Kang, H.S. Ruthenium Nanoparticles on Cobalt-Doped 1T′ Phase MoS2 Nanosheets for Overall Water Splitting. Small 2020, 16, 2000081. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.; Sun, Q.; Cheng, Y.; Wang, L. Self-Assembly of Hierarchical Ni-Mo-Polydopamine Microflowers and their Conversion to a Ni-Mo2C/C Composite for Water Splitting. Chem. Eur. J. 2017, 23, 4644–4650. [Google Scholar] [CrossRef]
- Gao, M.Y.; Yang, C.; Zhang, Q.B.; Zeng, J.R.; Li, X.T.; Hua, Y.X.; Xu, C.Y.; Dong, P. Facile electrochemical preparation of self-supported porous Ni–Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A 2017, 5, 5797–5805. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X.W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Wang, X.; Li, S.; Huang, W.; Dong, L.; Liu, C.; Li, Y.; Lan, Y. Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 6, 1600116. [Google Scholar] [CrossRef]
- Lin, H.; Liu, N.; Shi, Z.; Guo, Y.; Tang, Y.; Gao, Q. Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2016, 26, 5590–5598. [Google Scholar] [CrossRef]
- Staszak-Jirkovsky, J.; Malliakas, C.D.; Lopes, P.P.; Danilovic, N.; Kota, S.S.; Chang, K.C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V.R.; Kanatzidis, M.G.; et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; He, J.; Yuan, M.; Lin, L.; Zhang, Z.; Kang, Z.; Liao, Q.; Li, H.; Sun, G.; Yang, X.; et al. Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy 2019, 65, 103996. [Google Scholar] [CrossRef]
- Yu, X.Y.; Hu, H.; Wang, Y.; Chen, H.; Lou, X.W. Ultrathin MoS2 Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angew. Chem. Int. Ed. 2015, 54, 7395–7398. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Dong, X.; Wang, Y.; Zheng, N.; Zhao, Y.; Xu, W.; Ding, T. Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution. J. Mater. Sci. 2020, 55, 6637–6647. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, W.; Lu, J.; Hou, D.; Ke, Y.; Li, G.; Tang, Z.; Kang, X.; Chen, S. Hierarchical spheres constructed by defect-rich MoS2 /carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 2016, 22, 490–498. [Google Scholar] [CrossRef]
- Zhou, G.; Yin, J.; Sun, Z.; Gao, X.; Zhu, F.; Zhao, P.; Li, R.; Xu, J. An ultrasonic-assisted synthesis of rice-straw-based porous carbon with high performance symmetric supercapacitors. RSC Adv. 2020, 10, 3246–3255. [Google Scholar] [CrossRef]
- Kang, S.; Koo, J.; Seo, H.; Truong, Q.T.; Park, J.B.; Park, S.C.; Jung, Y.; Cho, S.; Nam, K.T.; Kim, Z.H.; et al. Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution. J. Mater. Chem. C 2019, 7, 10173–10178. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Durgadevi, E.; Silambarasan, K.; Navaneethan, M.; Ponnusamy, S.; Kong, C.Y.; Muthamizhchelvan, C.; Shimura, Y.; Hayakawa, Y. Effect of ethylenediamine on morphology of 2D Co-Mo-S@NG hybrids and their enhanced electrocatalytic activity for DSSCs application. Mater. Sci. Semicond. Proc. 2020, 105, 104725. [Google Scholar] [CrossRef]
- Chen, W.F.; Sasaki, K.; Ma, C.; Frenkel, A.I.; Marinkovic, N.; Muckerman, J.T.; Zhu, Y.; Adzic, R.R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 2012, 51, 6131–6135. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, S.; Chen, Q.; Zhang, C.; Wei, Y.; Jiang, H.; Lin, Y.; Zhao, M.; He, Q.; Wang, X.; et al. Conversion of Intercalated MoO3 to Multi-Heteroatoms-Doped MoS2 with High Hydrogen Evolution Activity. Adv. Mater. 2020. [Google Scholar] [CrossRef]
- Liu, D.; Xu, W.; Liu, Q.; He, Q.; Haleem, Y.A.; Wang, C.; Xiang, T.; Zou, C.; Chu, W.; Zhong, J.; et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016, 9, 2079–2087. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 2020, 393, 124726. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Sun, H.; Xu, F.; Wang, J. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335–351. [Google Scholar] [CrossRef]
- Brown, D.E.; Mahmood, M.N.; Man, M.C.M.; Turner, A.K. Preparation and Characterization of Low Overvoltage Transition Metal Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solutions. Electrochim. Acta 1984, 29, 1551–1556. [Google Scholar] [CrossRef]
- Nairan, A.; Zou, P.; Liang, C.; Liu, J.; Wu, D.; Liu, P.; Yang, C. NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction. Adv. Funct. Mater. 2019, 29, 1903747. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Duan, Y.; Gao, M.R.; Lang, C.C.; Zheng, Y.R.; Yu, S.H. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 2017, 8, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Su, H.; Du, X. A nickel molybdenum oxide nanoarray as an efficient and stable electrocatalyst for overall water splitting. New J. Chem. 2020, 44, 8176–8182. [Google Scholar] [CrossRef]
- Yu, Z.; Lang, C.; Gao, M.; Chen, Y.; Fu, Q.; Duan, Y.; Yu, S. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897. [Google Scholar] [CrossRef]
- Xu, B.; Sun, Y.; Chen, Z.; Zhao, S.; Yang, X.; Zhang, H.; Li, C. Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 20721–20726. [Google Scholar] [CrossRef]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff; Nørskov, J.K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef]
- Dai, X.; Du, K.; Li, Z.; Liu, M.; Ma, Y.; Sun, H.; Zhang, X.; Yang, Y. Co-Doped MoS2 Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2015, 7, 27242–27253. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, J.; Wang, J.; Liu, R.; Xiao, W.; Xuan, C.; Xia, K.; Wang, D. Hierarchically Porous Electrocatalyst with Vertically Aligned Defect-Rich CoMoS Nanosheets for the Hydrogen Evolution Reaction in an Alkaline Medium. ACS Appl. Mater. Interfaces 2017, 9, 5288–5294. [Google Scholar] [CrossRef]
- Xu, S.; Li, D.; Wu, P. One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127–1136. [Google Scholar] [CrossRef]
- Zheng, F.; Huang, N.; Peng, R.; Ding, Y.; Li, G.; Xia, Z.; Sun, P.; Sun, X.; Geng, J. Cobalt-doped molybdenum disulfide in-situ grown on graphite paper with excellent electrocatalytic activity for triiodide evolution. Electrochim. Acta 2018, 263, 328–337. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Jiang, M.; Kuang, Y.; Wang, H.; Sun, X. Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 13731–13735. [Google Scholar] [CrossRef]
- Kwon, I.S.; Kwak, I.H.; Debela, T.T.; Abbas, H.G.; Park, Y.C.; Ahn, J.P.; Park, J.; Kang, H.S. Se-Rich MoSe2 Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Nano 2020, 14, 6295–6304. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 3, 2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Qin, Z.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D.; et al. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. ACS Nano 2019, 13, 6824–6834. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fu, C.; Wu, J.; Rao, J.; Liou, S.-C.; Xu, X.; Shao, B.; Liu, K.; Liu, E.; Kumar, N.; et al. Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, J.; Jia, J.; Wang, A.; Zhao, L.; Xiong, T.; Liu, H.; Zhou, W. Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 2019, 62, 127–135. [Google Scholar] [CrossRef]
- Liu, S.; Chen, C.; Zhang, Y.; Zheng, Q.; Zhang, S.; Mu, X.; Chen, C.; Ma, J.; Mu, S. Vacancy-coordinated hydrogen evolution reaction on MoO3-x anchored atomically dispersed MoRu pairs. J. Mater. Chem. A 2019, 7, 14466–14472. [Google Scholar] [CrossRef]
- Wijten, J.H.J.; Riemersma, R.L.; Gauthier, J.; Mandemaker, L.D.B.; Verhoeven, M.; Hofmann, J.P.; Chan, K.; Weckhuysen, B.M. Electrolyte Effects on the Stability of Ni-Mo Cathodes for the Hydrogen Evolution Reaction. ChemSusChem 2019, 12, 3491–3500. [Google Scholar] [CrossRef] [Green Version]
- Kagkoura, A.; Canton Vitoria, R.; Vallan, L.; Hernandez Ferrer, J.; Benito, A.M.; Maser, W.K.; Arenal, R.; Tagmatarchis, N. Bottom-Up Synthesized MoS2 Interfacing Polymer Carbon Nanodots with Electrocatalytic Activity for Hydrogen Evolution. Chem. Eur. J. 2020, 26, 6635–6642. [Google Scholar] [CrossRef]
- Xiao, Z.; Xie, C.; Wang, Y.; Chen, R.; Wang, S. Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 2021, 53, 208–225. [Google Scholar] [CrossRef]
- Li, B.L.; Zou, H.L.; Tian, J.K.; Chen, G.; Wang, X.H.; Duan, H.; Li, X.L.; Shi, Y.; Chen, J.R.; Li, L.J.; et al. Principle of proximity: Plasmonic hot electrons motivate donator-adjacent semiconductor defects with enhanced electrocatalytic hydrogen evolution. Nano Energy 2019, 60, 689–700. [Google Scholar] [CrossRef]
- Li, J.; Hong, W.; Jian, C.; Cai, Q.; He, X.; Liu, W. High-performance hydrogen evolution at a MoSe2–Mo2C seamless heterojunction enabled by efficient charge transfer. J. Mater. Chem. A 2020, 8, 6692–6698. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, Y.; Jiang, Y.; Yan, F.; Zhu, C.; Chen, Y. Hierarchical Cobalt-Doped Molybdenum-Nickel Nitride Nanowires as Multifunctional Electrocatalysts. ACS Appl. Mater. Interfaces 2019, 11, 27751–27759. [Google Scholar] [CrossRef] [PubMed]
- Rodene, D.D.; Eladgham, E.H.; Gupta, R.B.; Arachchige, I.U.; Tallapally, V. Crystal Structure and Composition-Dependent Electrocatalytic Activity of Ni–Mo Nanoalloys for Water Splitting To Produce Hydrogen. ACS Appl. Energy Mater. 2019, 2, 7112–7120. [Google Scholar] [CrossRef]
- Gong, Q.; Cheng, L.; Liu, C.; Zhang, M.; Feng, Q.; Ye, H.; Zeng, M.; Xie, L.; Liu, Z.; Li, Y. Ultrathin MoS2(1–x)Se2x Alloy Nanoflakes for Electrocatalytic Hydrogen Evolution Reaction. ACS Catal. 2015, 5, 2213–2219. [Google Scholar] [CrossRef]
- Lu, C.; Tranca, D.; Zhang, J.; Rodri Guez Hernandez, F.N.; Su, Y.; Zhuang, X.; Zhang, F.; Seifert, G.; Feng, X. Molybdenum Carbide-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Electrocatalysts for Water Splitting in Alkaline Media. ACS Nano 2017, 11, 3933–3942. [Google Scholar] [CrossRef]
- Ge, X.; Chen, L.; Zhang, L.; Wen, Y.; Hirata, A.; Chen, M. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv. Mater. 2014, 26, 3100–3104. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A.; et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmed, Z.; Kaur, H.; Bera, C.; Bagchi, V. Probing into the effect of heterojunctions between Cu/Mo2C/Mo2N on HER performance. Catal. Sci. Technol. 2020, 10, 2213–2220. [Google Scholar] [CrossRef]
- Toghraei, A.; Shahrabi, T.; Barati Darband, G. Electrodeposition of self-supported Ni-Mo-P film on Ni foam as an affordable and high-performance electrocatalyst toward hydrogen evolution reaction. Electrochim. Acta 2020, 335, 135643. [Google Scholar] [CrossRef]
- Xie, J.; Xin, J.; Cui, G.; Zhang, X.; Zhou, L.; Wang, Y.; Liu, W.; Wang, C.; Ning, M.; Xia, X.; et al. Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorg. Chem. Front. 2016, 3, 1160–1166. [Google Scholar] [CrossRef]
- Xie, S.; Sun, B.; Sun, H.; Zhan, K.; Zhao, B.; Yan, Y.; Xia, B.Y. Engineering of molybdenum sulfide nanostructures towards efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 15009–15016. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Jiang, Z.; Zhou, W.; Guo, M.; Yu, T.; Luo, X.; Yuan, C. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS2 for Massive Hydrogen Production. J. Phys. Chem. Lett. 2019, 10, 4763–4768. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Peng, S.; Tan, C.; Ang, H.; Tan, H.; Zhang, H.; Yan, Q. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2014, 2, 5597–5601. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, X.; Zhang, X.; You, T. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J. Mater. Chem. A 2015, 3, 15927–15934. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Liu, C.; Liu, X.; Fang, S.; Liu, W.; Liu, Y. Hierarchically nanostructured MoS2 with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 14577–14585. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, Y.; Zhu, C.; Li, C.; Zhang, X.; Chen, Y. Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2017, 5, 13648–13658. [Google Scholar] [CrossRef]
- Yang, Q.; He, Y.; Fan, Y.; Li, F.; Chen, X. Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution. J. Mater. Sci. Mater. Electron. 2017, 28, 7413–7418. [Google Scholar] [CrossRef]
- Hou, Y.; Pang, H.; Zhang, L.; Li, B.; Xin, J.; Li, K.; Ma, H.; Wang, X.; Tan, L. Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. J. Power Sources 2020, 446, 227319. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, L.; Bukhvalov, D.; Chen, Z.; Zou, Z.; Shang, L.; Yang, X.; Yan, D.; Han, F.; Zhang, T. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 2020, 70, 104445. [Google Scholar] [CrossRef]
- Kiriya, D.; Lobaccaro, P.; Nyein, H.Y.; Taheri, P.; Hettick, M.; Shiraki, H.; Sutter-Fella, C.M.; Zhao, P.; Gao, W.; Maboudian, R.; et al. General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 4047–4053. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liu, Y.; Pan, Y.; Zhu, H.; Zhao, J.; Zeng, L.; Liu, Z.; Liu, C. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res. 2018, 11, 4368–4379. [Google Scholar] [CrossRef]
- Nolan, H.; McEvoy, N.; O’Brien, M.; Berner, N.C.; Yim, C.; Hallam, T.; McDonald, A.R.; Duesberg, G.S. Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale 2014, 6, 8185–8191. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dai, J.; Guo, Y.; Wu, C.; Hu, F.; Zhao, J.; Zeng, X.; Xie, Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 2014, 6, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yuan, W.; Ren, P.; Wang, Y.; Deng, D.; Zhang, Z.; Bao, X. High-performance hydrogen evolution electrocatalysis by layer-controlled MoS2 nanosheets. RSC Adv. 2014, 4, 34733–34738. [Google Scholar] [CrossRef]
- Muralikrishna, S.; Manjunath, K.; Samrat, D.; Reddy, V.; Ramakrishnappa, T.; Nagaraju, D.H. Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 2015, 5, 89389–89396. [Google Scholar] [CrossRef]
- Gao, X.; Qi, J.; Wan, S.; Zhang, W.; Wang, Q.; Cao, R. Conductive Molybdenum Sulfide for Efficient Electrocatalytic Hydrogen Evolution. Small 2018, 14, 1803361. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Neuefeind, J.C.; Adzic, R.R.; Khalifah, P.G. Molybdenum nitrides as oxygen reduction reaction catalysts: Structural and electrochemical studies. Inorg. Chem. 2015, 54, 2128–2136. [Google Scholar] [CrossRef]
- Cao, B.; Veith, G.M.; Diaz, R.E.; Liu, J.; Stach, E.A.; Adzic, R.R.; Khalifah, P.G. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 10753–10757. [Google Scholar] [CrossRef]
- Yin, J.; Yu, Z.; Gao, F.; Wang, J.; Pang, H.; Lu, Q. Low-symmetry iron oxide nanocrystals bound by high-index facets. Angew. Chem. Int. Ed. 2010, 49, 6328–6332. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, X.; Du, Z.; Gu, J.; Li, S.; Li, B.; Yang, S. Atomic Layers of MoO2 with Exposed High-Energy (010) Facets for Efficient Oxygen Reduction. Small 2018, 14, 1703960. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, Z.; Jiang, Y.; Xu, A. Nonprecious Bimetallic (Fe,Mo)–N/C Catalyst for Efficient Oxygen Reduction Reaction. ACS Catal. 2016, 6, 4449–4454. [Google Scholar] [CrossRef]
- Yasin, A.S.; Liu, B.; Wu, N.; Musho, T. Density functional theory evaluation of cation-doped bismuth molybdenum oxide photocatalysts for nitrogen fixation. Comp. Mater. Sci. 2019, 158, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Qiu, S.; Liu, C.; Liu, M.; He, L.; Zhang, X.; Sun, C. Computational Design of Single-Molybdenum Catalysts for the Nitrogen Reduction Reaction. J. Phys. Chem. C 2019, 123, 2347–2352. [Google Scholar] [CrossRef]
- Zhao, J.; Cui, C.; Wang, H.; Han, J.; Zhu, X.; Ge, Q. Insights into the Mechanism of Ammonia Decomposition on Molybdenum Nitrides Based on DFT Studies. J. Phys. Chem. C 2018, 123, 554–564. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Xue, Z.; Chen, W.; Zhou, Z.; Mu, T. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417–27422. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Chen, S.; Wen, J.; Rahmati, F.; van der Zalm, J.; Chen, A. Highly boosted gas diffusion for enhanced electrocatalytic reduction of N2 to NH3 on 3D hollow Co-MoS2 nanostructures. Nanoscale 2020, 12, 6029–6036. [Google Scholar] [CrossRef]
- Zhang, G.; Ji, Q.; Zhang, K.; Chen, Y.; Li, Z.; Liu, H.; Li, J.; Qu, J. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy 2019, 59, 10–16. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, S.; van der Zalm, J.; Li, X.; Chen, A. Sulfur vacancy-rich N-doped MoS2 nanoflowers for highly boosting electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2019, 55, 7386–7389. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Cui, M.; Chen, S.; Ma, T. A novel strategy to synthesize CoMoO4 nanotube as highly efficient oxygen evolution reaction electrocatalyst. Catal. Commun. 2019, 131, 105800. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, J.; Yan, Z.; Cheng, F.; Chen, J. Nanostructured NiMoO4 as active electrocatalyst for oxygen evolution. Chin. Chem. Lett. 2019, 30, 319–323. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface Engineering of MoS2 /Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Angew. Chem. Int. Ed. 2016, 55, 6702–6707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Sun, X.; Kuang, X.; Gao, L.; Zhao, M.; Qu, L.; Zhang, Y.; Wu, D.; Ren, X.; Wei, Q. Amorphous Co-doped MoOx nanospheres with a core–shell structure toward an effective oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 1005–1012. [Google Scholar] [CrossRef]
- Hao, L.; Yu, J.; Xu, X.; Yang, L.; Xing, Z.; Dai, Y.; Sun, Y.; Zou, J. Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells. J. Power Sources 2017, 339, 68–79. [Google Scholar] [CrossRef]
- Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. Alloyed Co–Mo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. ACS Catal. 2015, 5, 1857–1862. [Google Scholar] [CrossRef]
- Yang, L.; Yu, J.; Wei, Z.; Li, G.; Cao, L.; Zhou, W.; Chen, S. Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 2017, 41, 772–779. [Google Scholar] [CrossRef]
- Chen, S.; Jang, H.; Wang, J.; Qin, Q.; Liu, X.; Cho, J. Bimetallic metal–organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 2099–2104. [Google Scholar] [CrossRef]
- Yang, D.; Chen, T.; Wang, Z. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971. [Google Scholar] [CrossRef]
- Chu, K.; Liu, Y.; Li, Y.; Guo, Y.; Tian, Y.; Zhang, H. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B Environ. 2020, 264, 118525. [Google Scholar] [CrossRef]
Defects Type | Electrocatalysts | Electrolytes | Overpotential/mV | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|---|
Ni doping | Ni-Mo-S/C | pH = 7, PBS | 200@10 mA cm−2 | 48 | [3] |
Heterojunction | MoO2/a-Mo2C | 1 M KOH | 100@10 mA cm−2 | 50 | [24] |
Co doping | Co-MoS2 | 0.5 M H2SO4 | 90@onset overpotential | 50 | [96] |
S vacancy | MoSx/CNTs | 0.5 M H2SO4 | 106@10 mA cm−2 | 37 | [26] |
O doping | O-MoS2/rGO | 0.5 M H2SO4 | 200@20 mA cm−2 | 40 | [48] |
Complex defects | MoSe2@CC | 0.5 M H2SO4 | 182@10 mA cm−2 | 69 | [20] |
Co doping | CoMoS | 1 M KOH | 98@10 mA cm−2 | 82 | [97] |
Co doping | Co-NiMoN | 1 M KOH | 90@10 mA cm−2 | 72.2 | [112] |
Co doping | CoMo-P/NF | 1 M KOH | 49@10 mA cm−2 | 36.28 | [27] |
Ni doping | NiMo alloy | 2 M KOH | 65@10 mA cm−2 | 61.4 | [113] |
Ni doping | NiMoO | 1 M KOH | 71@20 mA cm−2 | 57 | [44] |
S vacancy | MoS2-rGO | 0.5 M H2SO4 | 168@10 mA cm−2 | 62 | [55] |
Se doping | MoS2(1−x)Se2x | 0.5 M H2SO4 | 164@10 mA cm−2 | 48 | [114] |
Se rich | MoSe2 | 0.5 M H2SO4 | 130@10 mA cm−2 | 46 | [101] |
Mo vacancy | MoxC | 0.5 M H2SO4 | 79@10 mA cm−2 | 60 | [31] |
Complex defects | Mo2C@2D-NPCs | 1 M KOH | 45@10 mA cm−2 | 46 | [115] |
S vacancy | MoS2 | 0.5 M H2SO4 | 178@10 mA cm−2 | 41.4 | [52] |
S rich | MoS2.7@NPG | 0.5 M H2SO4 | 125@10 mA cm−2 | 41 | [116] |
Complex defects | MoS2 @NPG | 0.5 M H2SO4 | 118@onset overpotential | 46 | [117] |
Complex defects | MoS2 | 0.5 M H2SO4 | 120@onset overpotential | 50 | [70] |
Co/Pd co-doping | Co/Pd- MoS2 | 0.5 M H2SO4 | 49.3@10 mA cm−2 | 43.2 | [82] |
Complex defects | MoS2/NiS2 | 1 M KOH | 62@10 mA cm−2 | 50.1 | [60] |
Complex defects | MoS2/N-RGO | 0.5 M H2SO4 | 56@10 mA cm−2 | 41.3 | [71] |
Ni doping | NiMoN | 1 M KOH | 109@10 mA cm−2 | 95 | [29] |
Co doping | Co-Mo2C | 0.5 M H2SO4 | 140@10 mA cm−2 | 39 | [72] |
Ni doping | NiMo | 1 M KOH | 17@10 mA cm−2 | 43 | [89] |
Complex defects | MoS2/WS2 | 0.5 M H2SO4 | 120@onset overpotential | 69 | [98] |
Ni doping | NiMoNx/C | 0.1m HClO4 | 78@onset overpotential | 35.9 | [81] |
N doping | N-MoP | 1 M KOH | 70@10 mA cm−2 | 55 | [40] |
Complex defects | MoO2@CoMo | 0.5 M H2SO4 | 76@50 mA cm−2 | No report | [32] |
Complex defects | MoS2 | 0.5 M H2SO4 | 160@10 mA cm−2 | 46 | [62] |
Complex defects | MoP/Mo | 0.5 M H2SO4 | 224@10 mA cm−2 | No report | [17] |
Heterojunction | Cu/Mo2C/Mo2N | 0.5 M H2SO4 | 82@10 mA cm−2 | 33 | [118] |
Complex defects | Ni/Mo2C-PC | 1 M KOH | 179@10 mA cm−2 | 101 | [90] |
O doping | O-Mo2C | 1 M KOH | 132@10 mA cm−2 | 40 | [49] |
Complex defects | MoS2/C | 0.5 M H2SO4 | 290@10 mA cm−2 | 80 | [108] |
Ni doping | Ni-Mo2C/C | 1 M KOH | 161@30 mA cm−2 | 73 | [68] |
Ni doping | Ni-Mo2C/CFP | 0.5 M H2SO4 | 121.4@10 mA cm−2 | 116.9 | [18] |
Ni doping | Ni-MoP/NF | 1 M KOH | 63@10 mA cm−2 | 97.3 | [119] |
Complex defects | MoS2/Mo | 0.5 M H2SO4 | 120@onset overpotential | 46 | [30] |
O doping | O-MoP | 0.5 M H2SO4 | 156@10 mA cm−2 | 49 | [39] |
O doping | O-MoS2/CC | 0.5 M H2SO4 | 90@onset overpotential | 58 | [120] |
Co doping | CoMoP@NF | 1 M KOH | 39@10 mA cm−2 | 73.3 | [50] |
Complex defects | MoS2 | 0.5 M H2SO4 | 281@100 mA cm−2 | 43.6 | [121] |
O doping | MoS2 | 0.5 M H2SO4 | 120@onset overpotential | 55 | [122] |
S vacancy | MoS2 | 0.5 M H2SO4 | 153@10 mA cm−2 | 43 | [45] |
S vacancy | MoS2 | 0.5 M H2SO4 | 256@10 mA cm−2 | 93 | [123] |
S doping | MoSe2 | 0.5 M H2SO4 | 90@onset overpotential | 60 | [124] |
O vacancy | α-MoO3-x | 0.1 M KOH | 142@10 mA cm−2 | 58 | [23] |
Ni doping | NiMo | 1 M KOH | 63@20 mA cm−2 | 49 | [69] |
Complex defects | MoS2/NCNFs | 0.5 M H2SO4 | 135@10 mA cm−2 | 48 | [125] |
Complex defects | O-MoS2 | 0.5 M H2SO4 | 87@onset overpotential | 41 | [126] |
Heterojunction | MoSe2–Mo2C | 1 M KOH | 51@10 mA cm−2 | 47.6 | [111] |
Co doping | Co–Mo–S | 0.5 M H2SO4 | 90@onset overpotential | 53 | [100] |
N doping | N-a-MoC1-x | 1 M KOH | 122@10 mA cm−2 | 39 | [41] |
Ni doping | NiMoN | 1 M KOH | 89@10 mA cm−2 | No report | [127] |
Complex defects | MoS2 | 0.5 M H2SO4 | 118@onset overpotential | 51 | [76] |
Complex defects | MoS2 | 0.5 M H2SO4 | 172@10 mA cm−2 | 57 | [128] |
Co doping | Co-MoS2 | 0.5 M H2SO4 | 222@10 mA cm−2 | 64.2 | [129] |
N doping | N-MoS2 | 0.5 M H2SO4 | 168@10 mA cm−2 | 40.5 | [28] |
S vacancy Pd doping | Pd-MoS2 | 0.5 M H2SO4 | 106@10 mA cm−2 | 60 | [42] |
Ni doping | Ni-MoP | 0.5 M H2SO4 | 102@10 mA cm−2 | 58.1 | [130] |
Complex defects | MoS2/C | 00.5 M H2SO4 | 103@onset overpotential | 56.1 | [77] |
S vacancy | MoS2 | 0.5 M H2SO4 | 170@10 mA cm−2 | 71 | [131] |
Complex defects | MoS2 | 0.5 M H2SO4 | 300@onset overpotential | 147 | [53] |
S rich | MoS2@SWNT | 0.5 M H2SO4 | 92@onset overpotential | 41 | [83] |
Complex defects | MoS2 -QDs | 0.5 M H2SO4 | 187@100 mA cm−2 | 53 | [51] |
S vacancy | MoS2 | 00.5 M H2SO4 | 77@onset overpotential | 66 | [64] |
Complex defects | MoS2 | 0.5 M H2SO4 | 76@10 mA cm−2 | 47.4 | [132] |
Complex defects | MoS2 | 0.5 M H2SO4 | 85@onset overpotential | 78 | [61] |
C-doping | C-MoS2/GO | 0.5 M H2SO4 | 165@onset overpotential | 46 | [38] |
Complex defects | MoS2/C | 0.5 M H2SO4 | 503@onset overpotential | 95 | [133] |
V doping | V-MoS2 | 1 M H2SO4 | 130@10 mA cm−2 | 69 | [134] |
Ni doping | Ni-Mo-N/CFC | 1 M KOH | 70@10 mA cm−2 | 70 | [22] |
Ni doping | NiMoO4/NF | 1 M KOH | 95@10 mA cm−2 | 82.1 | [91] |
Complex defects | MoS2 | 0.1 M H2SO4 | 40@onset overpotential | 63 | [135] |
Complex defects | MoS2 | 0.5 M H2SO4 | 80@onset overpotential | 90 | [136] |
Complex defects | MoS2 | 0.5 M H2SO4 | 176@10 mA cm−2 | 63 | [54] |
Complex defects | MoS2-RGO | 0.5 M H2SO4 | 66@10 mA cm−2 | 38.6 | [137] |
Complex defects | MoSe2 QDs | 0.5 M H2SO4 | 120@onset overpotential | 67 | [56] |
Defects Type | Electrocatalysts | Electrolytes | Performance | Ref |
---|---|---|---|---|
OER | ||||
Co doping | Co-MoNiN | 0.1 M KOH | Overpotential 365 mV @ 10 mA cm−2, Tafel slop 73 mV dec−1 | [112] |
Complex defects | MoS2/NiS2 | 1 M KOH | Overpotential 360 mV @ 10 mA cm−2 | [60] |
Ni doping | Ni-MoC/C | 1 M KOH | Overpotential 368 mV @ 10 mA cm−2 | [90] |
Ni doping | NiMo | 1 M KOH | Overpotential 335 mV @ 10 mA cm−2, Tafel slop 108 mV dec−1 | [69] |
Ni doping | NiMoN | 1 M KOH | Overpotential 295 mV @ 10 mA cm−2 | [127] |
Ni doping | Ni-MoO4 | 1 M KOH | Overpotential 310 mV @ 20 mA cm−2, Tafel slop 42.3 mV dec−1 | [91] |
Co doping | CoMoO4 | 1 M KOH | Overpotential 315 mV @ 10 mA cm−2 Tafel slop 89 mV dec−1 | [150] |
Ni-doping | NiMoO4 | 1 M KOH | Overpotential 340 mV @ 10 mA cm−2 Tafel slop 45.6 mV dec−1 | [151] |
Heterostructures | MoS2/Ni3S2 | 1 M KOH | Overpotential 218 mV @ 10 mA cm−2 Tafel slop 88 mV dec−1 | [152] |
Co doping | Co-MoOx | 1 M KOH | Overpotential 340 mV @ 10 mA cm−2, Tafel slop 49 mV dec−1 | [153] |
ORR | ||||
Co doping | Co-NiMoN | 0.1 M KOH | Onset potential 0.89 V, half-wave potential 0.73 V, limited current density 4.3 mA cm−2. | [112] |
Complex defects | (Fe, Mo)−N/C | 0.5 M H2SO4 | Onset potential 0.845 V, half-wave potential 0.674 V, limited current density 5.33 mA cm−2. | [142] |
N doping | N-MoS2/C | pH = 7.4, PBS | N-MoS2/C-900 cathode achieves the maximum power density of 0.805 W m−2 | [154] |
Multi atom doping | Co-Mo-O-N/C | 0.1 M KOH | onset potential 0.918 V vs. RHE, Ehalf = 0.758 V. | [139] |
Co doping | Co0.6Mo1.4N2 | 0.1 M HClO4 | onset potential of 0.713 V | [138] |
Co doping | Co0.5Mo0.5Ny/NCNC | 0.5 M H2SO4 | onset potential of 0.808 V | [155] |
Co, N co-doping | Co-N- MoO2 | 0.1 M KOH | onset potential of 0.87 V, overpotential 69 mV vs. RHE | [156] |
Expose 010 crystal plane | MoO2 | 0.1 M KOH | kinetic current density of 8.47 mA cm−2 | [141] |
NRR | ||||
Complex defects | MoS2 | 0.1 M Na2SO4 | NH3 yield rate 29.28 µg h−1 mg−1cat. Faradaic efficiency of 8.34% | [65] |
Complex defects | MoFe-PDC | 0.1 M HCl | NH3 yield rate 34.23 µg h−1 mg−1cat Faradaic efficiency of 16.83% | [157] |
Expose 110 crystal plane | Mo | 0.01 M H2SO4 | NH3 yield rate 3.09 × 10−11 mol s−1 cm−2 Faradaic efficiency of 0.72% | [158] |
Surface oxygen vacancies | MoO2 | 0.1 M HCl | NH3 yield rate ~12.20 μg h−1 mg−1 Faradaic efficiency of 8.2% | [148] |
S vacancy and N doping | N-MoS2 | 0.1 M Na2SO4 | NH3 yield rate 69.82 mg h−1 mgcat−1 Faradaic efficiency of 9.14% | [149] |
Mo doping | Mo-MnO2 | 0.1 M Na2SO4 | NH3 yield rate 36.6 μg h−1 mg−1 Faradaic efficiency of 12.1% | [159] |
Co doping | Co-MoS2 | 0.1 M Na2SO4 | NH3 yield rate 129.93 µg h−1 mg−1cat Faradaic efficiency of 11.21% | [147] |
Fe doping | Fe-MoS2 | 0.1 M KOH | NH3 yield rate 12.5 mg h−1 cm−2 Faradaic efficiency of 10.8% | [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhou, G.; Wang, H.; Yin, J.; Zhang, L.; Xiao, F.; Siddharth, K.; Zhu, S.; Shao, M. Defect Engineering of Molybdenum-Based Materials for Electrocatalysis. Catalysts 2020, 10, 1301. https://doi.org/10.3390/catal10111301
Gao X, Zhou G, Wang H, Yin J, Zhang L, Xiao F, Siddharth K, Zhu S, Shao M. Defect Engineering of Molybdenum-Based Materials for Electrocatalysis. Catalysts. 2020; 10(11):1301. https://doi.org/10.3390/catal10111301
Chicago/Turabian StyleGao, Xiaoliang, Guolang Zhou, Hao Wang, Jingzhou Yin, Lili Zhang, Fei Xiao, Kumar Siddharth, Shangqian Zhu, and Minhua Shao. 2020. "Defect Engineering of Molybdenum-Based Materials for Electrocatalysis" Catalysts 10, no. 11: 1301. https://doi.org/10.3390/catal10111301
APA StyleGao, X., Zhou, G., Wang, H., Yin, J., Zhang, L., Xiao, F., Siddharth, K., Zhu, S., & Shao, M. (2020). Defect Engineering of Molybdenum-Based Materials for Electrocatalysis. Catalysts, 10(11), 1301. https://doi.org/10.3390/catal10111301