Selective Oxidation of Citronellol over Titanosilicate Catalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Selective Catalytic Oxidation of Citronellol
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.2.1. Mesoporous TS-1
3.2.2. Layered TS-1
3.2.3. Silica-Titania Pillared TS-1
3.3. Instrumentation
3.4. Catalytic Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sell, C.S. Fundamentals of Fragrance Chemistry; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem. 2013, 15, 17–45. [Google Scholar] [CrossRef]
- Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today 1994, 19, 247–283. [Google Scholar] [CrossRef]
- Murahashi, S.; Naota, T.; Hirai, N. Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes. J. Org. Chem. 1993, 58, 7318–7319. [Google Scholar] [CrossRef]
- Higashimoto, S.; Kitao, N.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J. Catal. 2009, 266, 279–285. [Google Scholar] [CrossRef]
- Přech, J. Catalytic performance of advanced titanosilicate selective oxidation catalysts—a review. Catal. Rev. 2018, 60, 71–131. [Google Scholar] [CrossRef]
- Velusamy, S.; Ahamed, M.; Punniyamurthy, T. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Org. Lett. 2004, 6, 4821–4824. [Google Scholar] [CrossRef] [PubMed]
- Choudary, B.M.; Kantam, M.L.; Rahman, A.; Reddy, C.V.; Rao, K.K. The First Example of Activation of Molecular Oxygen by Nickel in Ni-Al Hydrotalcite: A Novel Protocol for the Selective Oxidation of Alcohols. Angew. Chem. Int. Ed. Engl. 2001, 40, 763–766. [Google Scholar] [CrossRef]
- Torbina, V.V.; Vodyankin, A.A.; Ten, S.; Mamontov, G.V.; Salaev, M.A.; Sobolev, V.I.; Vodyankina, O.V. Ag-based catalysts in heterogeneous selective oxidation of alcohols: A review. Catalysts 2018, 8, 447. [Google Scholar] [CrossRef]
- Suib, S.L.; Přech, J.; Čejka, J.; Kuwahara, Y.; Mori, K.; Yamashita, H. Some novel porous materials for selective catalytic oxidations. Mater. Today 2020, 32, 244–259. [Google Scholar] [CrossRef]
- Perego, C.; Carati, A.; Ingallina, P.; Mantegazza, M.A.; Bellussi, G. Production of titanium containing molecular sieves and their application in catalysis. Appl. Catal. A Gen. 2001, 221, 63–72. [Google Scholar] [CrossRef]
- Mintova, S.; Barrier, N. Verified Synthesis of Zeolitic Materials, 3rd ed.; Elsevier (On behalf of Synthesis Commission of the International Zeolite Association): Amsterdam, The Netherlands, 2016. [Google Scholar]
- Prech, J.; Pizarro, P.; Serrano, D.P.; Cejka, J. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews. Chem. Soc. Rev. 2018, 47, 8263–8306. [Google Scholar] [CrossRef] [PubMed]
- Taramasso, M.; Perego, G.; Notari, B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides. U.S. Patent 4,410,501, 18 October 1983. [Google Scholar]
- Perez-Ramirez, J.; Christensen, C.H.; Egeblad, K.; Christensen, C.H.; Groen, J.C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530–2542. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Jo, C.; Kun, J.; Ahn, W.S.; Ryoo, R. MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catal. 2011, 1, 901–907. [Google Scholar] [CrossRef]
- Surburg, H.; Panten, J. Common Fragrance and Flavor Materials: Preparation, Properties and Uses; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Schofield, L.J.; Kerton, O.J.; McMorn, P.; Bethell, D.; Ellwood, S.; Hutchings, G.J. Oxidation of α-hydroxy containing monoterpenes using titanium silicate catalysts: Comments on regioselectivity and the role of acidity. J. Chem. Soc. Perkin Trans. 2 2002, 8, 1475–1481. [Google Scholar] [CrossRef]
- Přech, J.; Eliášová, P.; Aldhayan, D.; Kubů, M. Epoxidation of bulky organic molecules over pillared titanosilicates. Catal. Today 2015, 243, 134–140. [Google Scholar] [CrossRef]
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 828. [Google Scholar] [CrossRef][Green Version]
- Ratnasamy, P.; Srinivas, D.; Knözinger, H. Active Sites and Reactive Intermediates in Titanium Silicate Molecular Sieves. Adv. Catal. 2004, 48, 1–169. [Google Scholar]
- van der Waal, J.C.; Lin, P.; Rigutto, M.S.; van Bekkum, H. Synthesis of Aluminium Free Titanium Silicate with the BEA Structure Using a New and Selective Template and Its Use as a Catalyst in Epoxidations; Chon, S.-K.I.H., Sun, U.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 105, pp. 1093–1100. [Google Scholar]
- van der Waal, J.C.; Rigutto, M.S.; van Bekkum, H. Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes. Appl. Catal. A Gen. 1998, 167, 331–342. [Google Scholar] [CrossRef]
- Přech, J.; Kim, J.; Mazur, M.; Ryoo, R.; Čejka, J. Nanosponge TS-1: A Fully Crystalline Hierarchical Epoxidation Catalyst. Adv. Mater. Interfaces 2020, in press. [Google Scholar]
- Tatsumi, T.; Yako, M.; Nakamura, M.; Yuhara, Y.; Tominaga, H. Effect of alkene structure on selectivity in the oxidation of unsaturated alcohols with titanium silicalite-1 catalyst. J. Mol. Catal. A 1993, 78, L41–L45. [Google Scholar] [CrossRef]
- Kubota, Y.; Inagaki, S. High-Performance Catalysts with MSE-Type Zeolite Framework. Top. Catal. 2015, 58, 480–493. [Google Scholar] [CrossRef]
- Wilde, N.; Přech, J.; Pelz, M.; Kubů, M.; Čejka, J.; Gläser, R. Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates. Catal. Sci. Technol. 2016, 6, 7280–7288. [Google Scholar] [CrossRef]
Catalyst | Morphology | Si/Ti (mol/mol) | SBET (m2/g) | Vmic (cm3/g) | Vtot (cm3/g) | Sext (m2/g) |
---|---|---|---|---|---|---|
TS-1-Z | Conventional | 28 | 510 | 0.10 | 0.28 | 31 |
Meso-TS-1 | Hierarchical | 43 | 432 | 0.09 | 0.31 | 29 |
Lam-TS-1 | Layered | 49 | 440 | 0.09 | 0.34 | 238 |
TS-1-PITi | Layered-pillared | 22 | 580 | 0.09 | 0.35 | 369 |
Solvent | Conversion (%) | Epox. Yield (%) | Selectivity (%) |
---|---|---|---|
Methanol | 15.1 | 7.2 | 47 |
2-propanol | 11.4 | 4.0 | 36 |
1,4-dioxane | 9.9 | 2.1 | 31 |
Acetonitrile | 16.6 | 9.1 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhayan, D.; Kalíková, K.; Shaik, M.R.; Siddiqui, M.R.H.; Přech, J. Selective Oxidation of Citronellol over Titanosilicate Catalysts. Catalysts 2020, 10, 1284. https://doi.org/10.3390/catal10111284
Aldhayan D, Kalíková K, Shaik MR, Siddiqui MRH, Přech J. Selective Oxidation of Citronellol over Titanosilicate Catalysts. Catalysts. 2020; 10(11):1284. https://doi.org/10.3390/catal10111284
Chicago/Turabian StyleAldhayan, Daifallah, Květa Kalíková, Mohammed Rafi Shaik, Mohammed Rafiq H. Siddiqui, and Jan Přech. 2020. "Selective Oxidation of Citronellol over Titanosilicate Catalysts" Catalysts 10, no. 11: 1284. https://doi.org/10.3390/catal10111284
APA StyleAldhayan, D., Kalíková, K., Shaik, M. R., Siddiqui, M. R. H., & Přech, J. (2020). Selective Oxidation of Citronellol over Titanosilicate Catalysts. Catalysts, 10(11), 1284. https://doi.org/10.3390/catal10111284