Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Modified Titania Nanotube Arrays
2.2. Effect of Annealing Temperature on Hydrogen Production
2.3. Effect of Addition Non-Metal N and Ni Metal for Production Hydrogen
2.4. Effect of Variations in the Concentration of Ni on Hydrogen Production
2.5. Photocurrent Density Response
3. Materials and Methods
3.1. Materials
3.2. Synthesis of N-TiNTAs
3.3. Synthesis of Ni-N-TiNTAs
3.4. Characterization of TiNTAs, N-TiNTAs, and Ni-N-TiNTAs
3.5. Performance Test of Hydrogen Productions
3.6. Photocurrent Density Response
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. Int. J. Hydrogen Energy 2010, 35, 7087–7097. [Google Scholar] [CrossRef]
- Preethi, V.; Kanmani, S. Photocatalytic hydrogen production. Mater. Sci. Semicond. Process. 2013, 16, 561–575. [Google Scholar] [CrossRef]
- Liao, C.-H.; Huang, C.-W.; Wu, J.C.S. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef] [Green Version]
- Slamet, S.; Tristantini, D.; Valentina, P.; Ibadurrohman, M. Photocatalytic hydrogen production from glycerol-water mixture over Pt-N-TiO 2 nanotube photocatalyst. Int. J. Energy Res. 2012, 37, 1372–1381. [Google Scholar] [CrossRef]
- Chang, C.-J.; Lin, Y.-G.; Weng, H.-T.; Wei, Y.-H. Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts. Appl. Surf. Sci. 2018, 451, 198–206. [Google Scholar] [CrossRef]
- Huang, D.-C.; Jiang, C.-H.; Liu, F.-J.; Cheng, Y.-C.; Chen, Y.-C.; Hsueh, K.-L. Preparation of Ru–Cs catalyst and its application on hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy 2013, 38, 3233–3240. [Google Scholar] [CrossRef]
- Pan, X.; Xie, Q.; Chen, W.-L.; Zhuang, G.-L.; Zhong, X.; Wang, J. Tuning the catalytic property of TiO2 nanotube arrays for water splitting. Int. J. Hydrogen Energy 2013, 38, 2095–2105. [Google Scholar] [CrossRef]
- Talat-Mehrabad, J.; Khosravi, M.; Modirshahla, N.; Behnajady, M. Sol–gel preparation and characterization of Ag and Mg co-doped nano TiO2: Efficient photocatalytic degradation of C.I. Acid Red 27. Res. Chem. Intermed. 2015, 42, 595–609. [Google Scholar] [CrossRef]
- Antony, R.P.; Mathews, T.; Ramesh, C.; Murugesan, N.; Dasgupta, A.; Dhara, S.; Dash, S.; Tyagi, A. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrog. Energy 2012, 37, 8268–8276. [Google Scholar] [CrossRef]
- Hassan, F.M.; Nanjo, H.; Venkatachalam, S.; Kanakubo, M.; Ebina, T. Functionalization of electrochemically prepared titania nanotubes with Pt for application as catalyst for fuel cells. J. Power Sources 2010, 195, 5889–5895. [Google Scholar] [CrossRef]
- Ratnawati; Gunlazuardi, J.; Dewi, E.L.; Slamet. Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol–water solution. Int. J. Hydrogen Energy 2014, 39, 16927–16935. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Xing, M.; Leghari, S.A.K.; Sajjad, S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 2010, 3, 715–726. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Shu, Z.; Cai, Y.; Ji, J.; Chang-Jin, T.; Yu, S.; Zou, W.; Dong, L. Pt Deposites on TiO2 for Photocatalytic H2 Evolution: Pt Is Not Only the Cocatalyst, but Also the Defect Repair Agent. Catalysts 2020, 10, 1047. [Google Scholar] [CrossRef]
- Elysabeth, T.; Redjeki, A.S. Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 509, p. 012144. [Google Scholar]
- Raj, K.; Viswanathan, B. Synthesis of Nickel Nanoparticles with FCC and HCP Crystal Structures; NISCAIR-CSIR: New Delhi, India, 2011. [Google Scholar]
- Meng, A.; Zhang, J.; Xu, D.; Cheng, B.; Yu, J. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Appl. Catal. B Environ. 2016, 198, 286–294. [Google Scholar] [CrossRef]
- Luo, X.; Luo, X.; Shu, H.; Tu, X.; Luo, S. Synthesis of anatase TiO2 in a vinyl-containing ionic liquid and its enhanced photocatalytic activity. Res. Chem. Intermed. 2012, 39, 2857–2865. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Z. High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes. Int. J. Hydrog. Energy 2011, 36, 13481–13487. [Google Scholar] [CrossRef]
- Li, H.; Shen, X.; Liu, Y.; Wang, L.; Lei, J.; Zhang, J. Facile phase control for hydrothermal synthesis of anatase-rutile TiO2 with enhanced photocatalytic activity. J. Alloy. Compd. 2015, 646, 380–386. [Google Scholar] [CrossRef]
- Nasr, M.; Chaaya, A.A.; Abboud, N.; Bechelany, M.; Viter, R.; Eid, C.; Khoury, A.; Miele, P. Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO 2 nanofibers. Superlattices Microstruct. 2015, 77, 18–24. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Ahmed, E.; Amen, M.T.; Abdelkareem, M.A.; Farghali, A. N-doped Ni/C/TiO2 nanocomposite as effective photocatalyst for water splitting. Mater. Lett. 2018, 210, 317–320. [Google Scholar] [CrossRef]
- Zhou, L.; Deng, J.; Zhao, Y.; Liu, W.; An, L.; Chen, F. Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Mater. Chem. Phys. 2009, 117, 522–527. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, X.; Xing, Z. Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity. Appl. Surf. Sci. 2012, 258, 3244–3248. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, Z.; Yue, L.; Hu, X.; Zhu, H.; Zhang, X.; Fan, J.; Lin, S.H. The optical absorption and hydrogen production by water splitting of (Si,Fe)-codoped anatase TiO2 photocatalyst. Int. J. Hydrogen Energy 2013, 38, 5209–5214. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, Texas, 1974. [Google Scholar]
- Dostanić, J.; Lončarević, D.; Pavlović, V.B.; Papan, J.; Nedeljković, J.M. Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. Ceram. Int. 2019, 45, 19447–19455. [Google Scholar] [CrossRef]
- Melián, E.P.; Suárez, M.N.; Jardiel, T.; Rodríguez, J.D.; Caballero, A.C.; Araña, J.; Calatayud, D.G.; Díaz, O.G. Egonzález-Díaz, Óscar Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal. B Environ. 2014, 152, 192–201. [Google Scholar] [CrossRef]
- Tian, S.; Yang, H.; Cui, M.; Shi, R.; Zhao, H.; Wang, X.; Wang, X.; Zhang, L. Monodisperse rutile TiO2 nanorod-based microspheres with various diameters: Hydrothermal synthesis, formation mechanism and diameter- and crystallinity-dependent photocatalytic properties. Appl. Phys. A 2010, 104, 149–158. [Google Scholar] [CrossRef]
- Kusdianto, K.; Jiang, D.; Kubo, M.; Shimada, M. Effect of annealing temperature on the photocatalytic activity of Ag–TiO 2 nanocomposite films by one-step gas-phase deposition. Mater. Res. Bull. 2018, 97, 497–505. [Google Scholar] [CrossRef]
- Slamet; Ratnawati; Gunlazuardi, J.; Dewi, E.L. Enhanced photocatalytic activity of Pt deposited on titania nanotube arrays for the hydrogen production with glycerol as a sacrificial agent. Int. J. Hydrogen Energy 2017, 42, 24014–24025. [Google Scholar] [CrossRef]
- Hölzl, J.; Schulte, F.K. Work function of metals. In Solid Surface Physics; Springer: Berlin/Heidelberg, Germany, 1979; pp. 1–150. [Google Scholar]
- Wang, F.-C.; Liu, C.-H.; Liu, C.-W.; Chao, J.-H.; Lin, C.-H. Effect of Pt Loading Order on Photocatalytic Activity of Pt/TiO2 Nanofiber in Generation of H2 from Neat Ethanol. J. Phys. Chem. C 2009, 113, 13832–13840. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Fan, W.; Geng, Z.; Feng, L. Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram. Int. 2014, 40, 3887–3893. [Google Scholar] [CrossRef]
- Dong, Z.; Ding, D.; Li, T.; Ning, C. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 2018, 443, 321–328. [Google Scholar] [CrossRef]
- Gui, Q.; Xu, Z.; Zhang, H.; Cheng, C.; Zhu, X.; Yin, M.; Song, Y.; Lu, L.; Chen, X.; Li, D. Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO2 Nanotube Arrays by Surface Passivation. ACS Appl. Mater. Interfaces 2014, 6, 17053–17058. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, K.D.; Rao, T.S.; Padmaja, J.S.; Raju, I.M.; Kumar, M.R. Structure, photocatalytic and antibacterial activity study of Meso porous Ni and S co-doped TiO2 nano material under visible light irradiation. Chin. J. Chem. Eng. 2019, 27, 1630–1641. [Google Scholar] [CrossRef]
- Shaban, M.; Ahmed, A.M.; Shehata, N.; Betiha, M.A.; Rabie, A.M. Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 2019, 555, 31–41. [Google Scholar] [CrossRef] [PubMed]
Component | Weight Percentage (%wt) | ||||
---|---|---|---|---|---|
TiNTAs | 5%Ni-N-TiNTAs | 10%Ni-N-TiNTAs | 15%Ni-N-TiNTAs | 20%Ni-N-TiNTAs | |
Ti | 67.78 | 71.72 | 70.40 | 71.05 | 73.25 |
O | 32.22 | 24.58 | 25.68 | 24.63 | 22.62 |
N | 0 | 2.68 | 2.94 | 3.15 | 2.91 |
Ni | 0 | 1.01 | 1.04 | 1.17 | 1.22 |
Type of Photocatalyst | EG (eV) |
---|---|
TiNTAs | 3.17 |
N-TiNTAs | 2.89 |
Ni-N-TiNTAs | 2.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elysabeth, T.; Agriyfani, D.A.; Ibadurrohman, M.; Nurdin, M.; Slamet. Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions. Catalysts 2020, 10, 1234. https://doi.org/10.3390/catal10111234
Elysabeth T, Agriyfani DA, Ibadurrohman M, Nurdin M, Slamet. Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions. Catalysts. 2020; 10(11):1234. https://doi.org/10.3390/catal10111234
Chicago/Turabian StyleElysabeth, Tiur, Dwi Annisa Agriyfani, Muhammad Ibadurrohman, Muhammad Nurdin, and Slamet. 2020. "Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions" Catalysts 10, no. 11: 1234. https://doi.org/10.3390/catal10111234
APA StyleElysabeth, T., Agriyfani, D. A., Ibadurrohman, M., Nurdin, M., & Slamet. (2020). Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions. Catalysts, 10(11), 1234. https://doi.org/10.3390/catal10111234