Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects
Abstract
:1. Introduction
2. Synthesis of NHC-Stabilized MNPs following the Organometallic Approach
3. Surface Studies
4. Influence of NHCs in MNP Properties
4.1. Controlling the Solubility and Stability
4.2. Modifying the Catalytic Properties
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Serp, P.; Philippot, K. Nanomaterials in Catalysis; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Martínez-Prieto, L.M.; Van Leeuwen, P.W.N.M. Ligand effects in ruthenium nanoparticle catalysis. In Recent Advances in Nanoparticle Catalysis; Springer Science and Business Media: New York, NY, USA, 2020; pp. 407–448. [Google Scholar]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef]
- Smith, C.A.; Narouz, M.R.; Lummis, P.A.; Singh, I.; Nazemi, A.; Huang, C.-J.; Crudden, C.M. N-heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986–5056. [Google Scholar] [CrossRef]
- Arduengo, A.J.; Harlow, R.L.; Kline, M. A stable crystalline carbene Erratum to document cited in CA114(7):62009r. J. Am. Chem. Soc. 1991, 113, 2801. [Google Scholar] [CrossRef]
- Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable carbenes. Chem. Rev. 2000, 100, 39–92. [Google Scholar] [CrossRef]
- De Frémont, P.; Marion, N.; Nolan, S.P. Carbenes: Synthesis, properties, and organometallic chemistry. Co-Ord. Chem. Rev. 2009, 253, 862–892. [Google Scholar] [CrossRef]
- Herrmann, W.A.; GooβenL, J.; Spiegler, M. Functionalized imidazoline -2- ylidene complexes of rhodium and palladium. J. Organomet. Chem. 1997, 547, 357–366. [Google Scholar] [CrossRef]
- Poyatos, M.; Mata, J.A.; Peris, E. Complexes with poly (N-heterocyclic carbene) ligands: Structural features and catalytic applications. Chem. Rev. 2009, 109, 3677–3707. [Google Scholar] [CrossRef]
- Schaper, L.-A.; Hock, S.J.; Herrmann, W.A.; Kühn, F.E. Synthesis and application of water-soluble NHC transition-metal complexes. Angew. Chem. Int. Ed. 2012, 52, 270–289. [Google Scholar] [CrossRef]
- Lara, P.; Conejero, S.; Rivada-Wheelaghan, O.; Poteau, R.; Philippot, K.; Chaudret, B. Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: Ligand location and influence on reactivity. Angew. Chem. Int. Ed. 2011, 50, 12080–12084. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Ferry, A.; Rakers, L.; Richter, C.; Lecante, P.; Philippot, K.; Chaudret, B.; Glorius, F. Long-chain NHC-stabilized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chem. Commun. 2016, 52, 4768–4771. [Google Scholar] [CrossRef] [Green Version]
- Lara, P.; Suárez, A.; Collière, V.; Philippot, K.; Chaudret, B. Platinum N-heterocyclic carbene nanoparticles as new and effective catalysts for the selective hydrogenation of nitroaromatics. ChemCatChem 2013, 6, 87–90. [Google Scholar] [CrossRef]
- Ranganath, K.V.S.; Schäfer, A.; Glorius, F. Comparison of superparamagnetic Fe3O4-supported N-heterocyclic carbene-based catalysts for enantioselective allylation. ChemCatChem 2011, 3, 1889–1891. [Google Scholar] [CrossRef]
- Mollar-Cuni, A.; Ventura-Espinosa, D.; Martín, S.; Mayoral, A.; Borja, P.; Mata, J.A. Stabilization of nanoparticles produced by hydrogenation of palladium–N-heterocyclic carbene complexes on the surface of graphene and implications in catalysis. ACS Omega 2018, 3, 15217–15228. [Google Scholar] [CrossRef]
- Hurst, E.C.; Wilson, K.; Fairlamb, I.J.S.; Chechik, V. N-Heterocyclic carbene coated metal nanoparticles. New J. Chem. 2009, 33, 1837–1840. [Google Scholar] [CrossRef]
- Ranganath, K.V.S.; Kloesges, J.; Schäfer, A.H.; Glorius, F. Asymmetric nanocatalysis: N-heterocyclic carbenes as chiral modifiers of Fe3O4/Pd nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 7786–7789. [Google Scholar] [CrossRef] [PubMed]
- Planellas, M.; Pleixats, R.; Shafir, A. Palladium nanoparticles in Suzuki cross-couplings: Tapping into the potential of tris-imidazolium salts for nanoparticle stabilization. Adv. Synth. Catal. 2012, 354, 651–662. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Ferry, A.; Lara, P.; Richter, C.; Philippot, K.; Glorius, F.; Chaudret, B. New route to stabilize ruthenium nanoparticles with non-isolable chiral N-heterocyclic carbenes. Chem. A Eur. J. 2015, 21, 17495–17502. [Google Scholar] [CrossRef] [PubMed]
- Hintermair, U.; Hashmi, S.M.; Elimelech, M.; Crabtree, R.H. Particle formation during oxidation catalysis with Cp iridium complexes. J. Am. Chem. Soc. 2012, 134, 9785–9795. [Google Scholar] [CrossRef]
- Axet, M.; Conejero, S.; Gerber, I.C. Ligand effects on the selective hydrogenation of nitrobenzene to cyclohexylamine using ruthenium nanoparticles as catalysts. ACS Appl. Nano Mater. 2018, 1, 5885–5894. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Rakers, L.; López-Vinasco, A.M.; Cano, I.; Coppel, Y.; Philippot, K.; Glorius, F.; Chaudret, B.; Van Leeuwen, P.W.N.M. Soluble platinum nanoparticles ligated by long-chain N-heterocyclic carbenes as catalysts. Chem. A Eur. J. 2017, 23, 12779–12786. [Google Scholar] [CrossRef]
- Moraes, L.C.; Figueiredo, R.C.; Espinós, J.P.; Vattier, F.; Franconetti, A.; Jaime, C.; Lacroix, B.; Rojo, J.; Lara, P.; Conejero, S. Platinum nanoparticles stabilized by N-heterocyclic thiones. Synthesis and catalytic activity in mono-and di-hydroboration of alkynes. Nanoscale 2020, 12, 6821–6831. [Google Scholar] [CrossRef] [PubMed]
- Bouzouita, D.; Lippens, G.; Baquero, E.A.; Fazzini, P.-F.; Pieters, G.; Coppel, Y.; Lecante, P.; Tricard, S.; Martínez-Prieto, L.M.; Chaudret, B. Tuning the catalytic activity and selectivity of water-soluble bimetallic RuPt nanoparticles by modifying their surface metal distribution. Nanoscale 2019, 11, 16544–16552. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, A.; Feuillastre, S.; Pfeifer, V.; Garcia-Argote, S.; Certiat, M.; Bouzouita, D.; Marcon, E.; Buisson, D.-A.; Lesot, P.; Chaudret, B.; et al. Hydrogen isotope exchange catalyzed by Ru nonocatalysts: Labelling of complex molecules containing N-heterocycles and reaction mechanism insights. Chem. Eur. J. 2020, 22. [Google Scholar] [CrossRef]
- Amiens, C.; Chaudret, B.; Ciuculescu-Pradines, D.; Collière, V.; Fajerwerg, K.; Fau, P.; Kahn, M.; Maisonnat, A.; Soulantica, K.; Philippot, K. Organometallic approach for the synthesis of nanostructures. New J. Chem. 2013, 37, 3374–3401. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Chaudret, B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc. Chem. Res. 2018, 51, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Millar, J.; Hill, E.W.; Melchior, M. The characterization of adsorbed carbon monoxide on colloidal palladium by infrared and high resolution 13C nuclear magnetic resonance spectroscopy. J. Chem. Soc. Chem. Commun. 1990, 705. [Google Scholar] [CrossRef]
- Bradley, J.S.; Hill, E.W.; Behal, S.; Klein, C.; Duteil, A.; Chaudret, B. Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide. Chem. Mater. 1992, 4, 1234–1239. [Google Scholar] [CrossRef]
- Novio, F.; Philippot, K.; Chaudret, B. Location and dynamics of CO co-ordination on Ru nanoparticles: A solid state NMR study. Catal. Lett. 2010, 140, 1–7. [Google Scholar] [CrossRef]
- Rühling, A.; Schaepe, K.; Rakers, L.; Vonhören, B.; Tegeder, P.; Ravoo, B.J.; Glorius, F. Modular bidentate hybrid NHC-thioether ligands for the stabilization of palladium nanoparticles in various solvents. Angew. Chem. Int. Ed. 2016, 55, 5856–5860. [Google Scholar] [CrossRef]
- Bradley, J.S.; Millar, J.M.; Hill, E.W.; Behal, S.; Chaudret, B.; Duteil, A. Surface chemistry on colloidal metals: Spectroscopic study of adsorption of small molecules. Faraday Discuss. 1991, 92, 255–268. [Google Scholar] [CrossRef]
- Cormary, B.; Dumestre, F.; Liakakos, N.; Soulantica, K.; Chaudret, B. Organometallic precursors of nano-objects, a critical view. Dalton Trans. 2013, 42, 12546. [Google Scholar] [CrossRef] [PubMed]
- Marbaix, J.; Mille, N.; Lacroix, L.-M.; Asensio, J.M.; Fazzini, P.-F.; Soulantica, K.; Carrey, J.; Chaudret, B. Tuning the composition of FeCo nanoparticle heating agents for magnetically induced catalysis. ACS Appl. Nano Mater. 2020, 3, 3767–3778. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Marbaix, J.; Asensio, J.M.; Cerezo-Navarrete, C.; Fazzini, P.-F.; Soulantica, K.; Chaudret, B.; Corma, A. Ultrastable magnetic nanoparticles encapsulated in carbon for magnetically induced catalysis. ACS Appl. Nano Mater. 2020, 3, 7076–7087. [Google Scholar] [CrossRef] [PubMed]
- García-Antón, J.; Axet, M.; Jansat, S.; Philippot, K.; Chaudret, B.; Pery, T.; Buntkowsky, G.; Limbach, H.H. Reactions of olefins with ruthenium hydride nanoparticles: NMR characterization, hydride titration, and room-temperature C-C bond activation. Angew. Chem. Int. Ed. 2008, 47, 2074–2078. [Google Scholar] [CrossRef] [PubMed]
- Lara, P.; Philippot, K.; Chaudret, B. Organometallic ruthenium nanoparticles: A comparative study of the influence of the stabilizer on their characteristics and reactivity. ChemCatChem 2012, 5, 28–45. [Google Scholar] [CrossRef]
- Axet, M.; Philippot, K. Catalysis with colloidal ruthenium nanoparticles. Chem. Rev. 2020, 120, 1085–1145. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Fonseca, G.S.; Umpierre, A.P.; Fichtner, P.F.P.; Teixeira, S.R. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc. 2002, 124, 4228–4229. [Google Scholar] [CrossRef]
- Vidoni, O.; Philippot, K.; Amiens, C.; Chaudret, B.; Balmes, O.; Malm, J.-O.; Bovin, J.-O.; Senocq, F.; Casanove, M. Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents. Angew. Chem. Int. Ed. 1999, 38, 3736–3738. [Google Scholar] [CrossRef]
- Hulea, V.; Brunel, D.; Galarneau, A.; Philippot, K.; Chaudret, B.; Kooyman, P.J.; Fajula, F. Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous Mesoporous Mater. 2005, 79, 185–194. [Google Scholar] [CrossRef]
- Glaria, A.; Soulé, S.; Hallali, N.; Ojo, W.-S.; Mirjolet, M.; Fuks, G.; Cornejo, A.; Allouche, J.; Dupin, J.C.; Martinez, H.; et al. Silica coated iron nanoparticles: Synthesis, interface control, magnetic and hyperthermia properties. RSC Adv. 2018, 8, 32146–32156. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Prieto, L.M.; Puche, M.; Cerezo, C.; Chaudret, B. Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. J. Catal. 2019, 377, 429–437. [Google Scholar] [CrossRef]
- Vignolle, J.; Tilley, T.D. N-Heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. Chem. Commun. 2009, 7230. [Google Scholar] [CrossRef]
- Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.-J. Ligand-stabilized ruthenium nanoparticles: Synthesis, organization, and dynamics. J. Am. Chem. Soc. 2001, 123, 7584–7593. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Espinar, F.; Blondeau, P.; Nolis, P.; Chaudret, B.; Claver, C.; Castillón, S.; Godard, C. NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. J. Catal. 2017, 354, 113–127. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Baquero, E.A.; Pieters, G.; Flores, J.C.; De Jesús, E.; Nayral, C.; Delpech, F.; Van Leeuwen, P.W.N.M.; Lippens, G.; Chaudret, B. Monitoring of nanoparticle reactivity in solution: Interaction of l- lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chem. Commun. 2017, 53, 5850–5853. [Google Scholar] [CrossRef] [PubMed]
- Bernardos, M.D.D.L.; Pérez-Rodríguez, S.; Gual, A.; Claver, C.; Godard, C. Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chem. Commun. 2017, 53, 7894–7897. [Google Scholar] [CrossRef] [Green Version]
- Voutchkova, A.M.; Appelhans, L.N.; Chianese, A.R.; Crabtree, R.H. Disubstituted imidazolium -2- carboxylates as efficient precursors to N-heterocyclic carbene complexes of Rh, Ru, Ir and Pd. J. Am. Chem. Soc. 2005, 127, 17624–17625. [Google Scholar] [CrossRef]
- Richter, C.; Schaepe, K.; Glorius, F.; Ravoo, B.J. Tailor-made N-heterocyclic carbenes for nanoparticle stabilization. Chem. Commun. 2014, 50, 3204. [Google Scholar] [CrossRef]
- Ye, R.; Zhukhovitskiy, A.V.; Kazantsev, R.V.; Fakra, S.C.; Wickemeyer, B.B.; Toste, F.D.; Somorjai, G.A. Supported Au Nanoparticles with N-heterocyclic carbene ligands as active and stable heterogeneous catalysts for lactonization. J. Am. Chem. Soc. 2018, 140, 4144–4149. [Google Scholar] [CrossRef] [Green Version]
- Man, R.W.Y.; Huang, C.-J.; MacLean, M.W.A.; Zenkina, O.V.; Zamora, M.T.; Saunders, L.N.; Rousina-Webb, A.; Nambo, M.; Crudden, C.M. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J. Am. Chem. Soc. 2018, 140, 1576–1579. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, Z.; Prezhdo, O.V.; Brutchey, R.L. Exposing the dynamics and energetics of the N-Heterocyclic carbene–nanocrystal interface. J. Am. Chem. Soc. 2016, 138, 14844–14847. [Google Scholar] [CrossRef] [PubMed]
- Baquero, E.A.; Tricard, S.; Flores, J.C.; De Jesús, E.; Chaudret, B. Highly stable water-soluble platinum nanoparticles stabilized by hydrophilic N-heterocyclic carbenes. Angew. Chem. Int. Ed. 2014, 53, 13220–13224. [Google Scholar] [CrossRef] [PubMed]
- Baquero, E.A.; Tricard, S.; Coppel, Y.; Flores, J.C.; Chaudret, B.; De Jesús, E. Water-soluble platinum nanoparticles stabilized by sulfonated N-heterocyclic carbenes: Influence of the synthetic approach. Dalton Trans. 2018, 47, 4093–4104. [Google Scholar] [CrossRef] [PubMed]
- Asensio, J.M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; De Jesús, E.; Revert, J.M.A. Knight Shift in 13C NMR resonances confirms the coordination of N-heterocyclic carbene ligands to water-soluble palladium nanoparticles. Angew. Chem. Int. Ed. 2016, 56, 865–869. [Google Scholar] [CrossRef]
- Asensio, J.M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; De Jesús, E. Synthesis of water-soluble palladium nanoparticles stabilized by sulfonated N-heterocyclic carbenes. Chem. A Eur. J. 2017, 23, 13435–13444. [Google Scholar] [CrossRef]
- Duncan, T.M.; Zilm, K.W.; Hamilton, D.M.; Root, T.W. Adsorbed states of carbon monoxide on dispersed metals: A high-resolution solid-state NMR study. J. Phys. Chem. 1989, 93, 2583–2590. [Google Scholar] [CrossRef]
- Terrill, R.H.; Postlethwaite, T.A.; Chen, C.-H.; Poon, C.-D.; Terzis, A.; Chen, A.; Hutchison, J.E.; Clark, M.R.; Wignall, G. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 1995, 117, 12537–12548. [Google Scholar] [CrossRef]
- Badia, A.; Cuccia, L.; Demers, L.; Morin, F.; Lennox, R.B. Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles: A DSC, FT-IR, and deuterium NMR study. J. Am. Chem. Soc. 1997, 119, 2682–2692. [Google Scholar] [CrossRef]
- Ramírez-Meneses, E.; Jansat, S.; Philippot, K.; Lecante, P.; Gómez, M.; Masdeu-Bultó, A.M.; Chaudret, B. Influence of organic ligands on the stabilization of palladium nanoparticles. J. Organomet. Chem. 2004, 689, 4601–4610. [Google Scholar] [CrossRef]
- Pregosin, P.S.; Ammann, C. Applications of 2-dimensional NMR in organometallic chemistry. Pure Appl. Chem. 1989, 61, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Millar, J.M.; Hill, E.W.; Behal, S. Surface chemistry on transition metal colloids?an infrared and NMR study of carbon monoxide adsorption on colloidal platinum. J. Catal. 1991, 129, 530–539. [Google Scholar] [CrossRef]
- Bradley, J.S.; Millar, J.M.; Hill, E.W. Surface chemistry on colloidal metals: A high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension. J. Am. Chem. Soc. 1991, 113, 4016–4017. [Google Scholar] [CrossRef]
- De Caro, D.; Bradley, J.S. Investigation of the surface structure of colloidal platinum by infrared spectroscopy of adsorbed CO. New J. Chem. 1998, 22, 1267–1273. [Google Scholar] [CrossRef]
- Duteil, A.; Queau, R.; Chaudret, B.; Mazel, R.; Roucau, C.; Bradley, J.S. Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives. Chem. Mater. 1993, 5, 341–347. [Google Scholar] [CrossRef]
- Kinayyigit, S.; Lara, P.; Lecante, P.; Philippot, K.; Chaudret, B. Probing the surface of platinum nanoparticles with 13 CO by solid-state NMR and IR spectroscopies. Nanoscale 2014, 6, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Lara, P.; Martínez-Prieto, L.M.; Roselló-Merino, M.; Richter, C.; Glorius, F.; Conejero, S.; Philippot, K.; Chaudret, B. NHC-stabilized Ru nanoparticles: Synthesis and surface studies. Nano-Struct. Nano-Objects 2016, 6, 39–45. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Cano, I.; Márquez, A.; Baquero, E.A.; Tricard, S.; Cusinato, L.; Del Rosal, I.; Poteau, R.; Coppel, Y.; Philippot, K.; et al. Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chem. Sci. 2017, 8, 2931–2941. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Prieto, L.M.; Urbaneja, C.; Palma, P.; Cámpora, J.; Philippot, K.; Chaudret, B. A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles. Chem. Commun. 2015, 51, 4647–4650. [Google Scholar] [CrossRef] [Green Version]
- Badia, A.; Gao, W.; Singh, S.; Demers, L.; Cuccia, L.; Reven, L. Structure and chain dynamics of alkanethiol-capped gold colloids. Langmuir 1996, 12, 1262–1269. [Google Scholar] [CrossRef]
- Favier, I.; Massou, S.; Teuma, E.; Philippot, K.; Chaudret, B.; Gómez, M. A new and specific mode of stabilization of metallic nanoparticles. Chem. Commun. 2008, 3296–3298. [Google Scholar] [CrossRef]
- Silbestri, G.F.; Flores, J.C.; De Jesús, E. Water-soluble N-heterocyclic carbene platinum (0) complexes: Recyclable catalysts for the hydrosilylation of alkynes in water at room temperature. Organometallics 2012, 31, 3355–3360. [Google Scholar] [CrossRef]
- Baquero, E.A.; Silbestri, G.F.; Gómez-Sal, P.; Flores, J.C.; De Jesús, E. Sulfonated water-soluble N-heterocyclic carbene silver (I) complexes: Behavior in aqueous medium and as NHC-transfer agents to platinum (II). Organometallics 2013, 32, 2814–2826. [Google Scholar] [CrossRef]
- Baquero, E.A.; Flores, J.C.; Perles, J.; Gómez-Sal, P.; De Jesús, E. Water-soluble mono-and dimethyl N-heterocyclic carbene platinum (II) complexes: Synthesis and reactivity. Organometallics 2014, 33, 5470–5482. [Google Scholar] [CrossRef]
- Berthon-Gelloz, G.; Buisine, O.; Brière, J.-F.; Michaud, G.; Sterin, S.; Mignani, G.; Tinant, B.; Declercq, J.-P.; Chapon, D.; Markó, I.E. Synthetic and structural studies of NHC-Pt (dvtms) complexes and their application as alkene hydrosilylation catalysts (NHC = N-heterocyclic carbene, dvtms = divinyltetramethylsiloxane). J. Organomet. Chem. 2005, 690, 6156–6168. [Google Scholar] [CrossRef]
- Knight, W.D. Nuclear magnetic resonance shift in metals. Phys. Rev. 1949, 76, 1259–1260. [Google Scholar] [CrossRef]
- Van Der Klink, J.; Brom, H. NMR in metals, metal particles and metal cluster compounds. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 89–201. [Google Scholar] [CrossRef]
- Dassenoy, F.; Philippot, K.; Ely, T.O.; Amiens, C.; Lecante, P.; Snoeck, E.; Mosset, A.; Casanove, M.-J.; Chaudret, B. Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. New J. Chem. 1998, 22, 703–712. [Google Scholar] [CrossRef]
- Ramírez-Meneses, E.; Erades, L.; Philippot, K.; Lecante, P.; Chaudret, B. Shape control of platinum nanoparticles. Adv. Funct. Mater. 2007, 17, 2219–2228. [Google Scholar] [CrossRef]
- Lara, P.; Casanove, M.-J.; Lecante, P.; Fazzini, P.-F.; Philippot, K.; Chaudret, B. Segregation at a small scale: Synthesis of core-shell bimetallic RuPt nanoparticles, characterization and solid state NMR studies. J. Mater. Chem. 2012, 22, 3578–3584. [Google Scholar] [CrossRef] [Green Version]
- Crudden, C.M.; Horton, J.H.; Ebralidze, I.I.; Zenkina, O.V.; McLean, A.B.; Drevniok, B.; She, Z.; Kraatz, H.-B.; Mosey, N.J.; Seki, T.; et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 2014, 6, 409–414. [Google Scholar] [CrossRef]
- Zhukhovitskiy, A.V.; Mavros, M.G.; Van Voorhis, T.; Johnson, J.A. Addressable carbene anchors for gold surfaces. J. Am. Chem. Soc. 2013, 135, 7418–7421. [Google Scholar] [CrossRef] [PubMed]
- Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893–3946. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Vasam, C.S.; Huang, T.W.; Wang, H.M.J.; Yang, R.Y.; Lin, I.J.B.; Lee, C.S. Silver (I) N-heterocyclic carbenes with long N-alkyl chains. Organometallics 2006, 25, 3768–3775. [Google Scholar] [CrossRef]
- Bakker, A.; Timmer, A.; Kolodzeiski, E.; Freitag, M.; Gao, H.Y.; Mönig, H.; Amirjalayer, S.; Glorius, F.; Fuchs, H.; Freitag, M. Elucidating the binding modes of N-heterocyclic carbenes on a gold Surface. J. Am. Chem. Soc. 2018, 140, 11889–11892. [Google Scholar] [CrossRef]
- Copéret, C.; Kaeffer, N.; Mance, D. N-Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid-State NMR Spectroscopy. Angew. Chem. Int. Ed. 2020, 59, 2–11. [Google Scholar] [CrossRef]
- Ferry, A.; Schaepe, K.; Tegeder, P.; Richter, C.; Chepiga, K.M.; Ravoo, B.J.; Glorius, F. Negatively charged N-heterocyclic carbene-stabilized Pd and Au nanoparticles and efficient catalysis in water. ACS Catal. 2015, 5, 5414–5420. [Google Scholar] [CrossRef]
- Ruiz-Varilla, A.M.; Baquero, E.A.; Chaudret, B.; De Jesús, E.; Gonzalez-Arellano, C.; Flores, J.C.; Del Camino, G.A.M. Water-soluble NHC-stabilized platinum nanoparticles as recoverable catalysts for hydrogenation in water. Catal. Sci. Technol. 2020, 10, 2874–2881. [Google Scholar] [CrossRef]
- Otting, G. Experimental NMR techniques for studies of protein-ligand interactions. Curr. Opin. Struct. Boil. 1993, 3, 760–768. [Google Scholar] [CrossRef]
- Davis, B. Screening Protein–Small Molecule Interactions by NMR; Springer Science and Business Media: New York, NY, USA, 2013; Volume 1008, pp. 389–413. [Google Scholar]
- Gossert, A.D.; Jahnke, W. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 97, 82–125. [Google Scholar] [CrossRef]
- Cusinato, L.; Del Rosal, I.; Poteau, R. Shape, electronic structure and steric effects of organometallic nanocatalysts: Relevant tools to improve the synergy between theory and experiment. Dalton Trans. 2017, 46, 378–395. [Google Scholar] [CrossRef] [Green Version]
- González-Gálvez, D.; Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Chaudret, B.; Philippot, K.; Van Leeuwen, P.W.N.M. NHC-stabilized ruthenium nanoparticles as new catalysts for the hydrogenation of aromatics. Catal. Sci. Technol. 2013, 3, 99–105. [Google Scholar] [CrossRef]
- Zahmakiran, M.; Philippot, K.; Özkar, S.; Chaudret, B. Size-controllable APTS stabilized ruthenium (0) nanoparticlescatalyst for the dehydrogenation of dimethylamine-borane at room temperature. Dalton Trans. 2012, 41, 590–598. [Google Scholar] [CrossRef] [PubMed]
- López-Vinasco, A.M.; Martínez-Prieto, L.M.; Asensio, J.M.; Lecante, P.; Chaudret, B.; Cámpora, J.; Van Leeuwen, P.W.N.M.; Revert, J.M.M.A. Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes. Catal. Sci. Technol. 2020, 10, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Rakers, L.; Martínez-Prieto, L.M.; López-Vinasco, A.M.; Philippot, K.; Chaudret, B.; Glorius, F.; Van Leeuwen, P.W.N.M. Ruthenium nanoparticles ligated by cholesterol-derived NHCs and their application in the hydrogenation of arenes. Chem. Commun. 2018, 54, 7070–7073. [Google Scholar] [CrossRef] [PubMed]
- Rakers, L.; Grill, D.; Matos, A.L.; Wulff, S.; Wang, D.; Börgel, J.; Körsgen, M.; Arlinghaus, H.F.; Galla, H.-J.; Gerke, V.; et al. Addressable cholesterol analogs for live imaging of cellular membranes. Cell Chem. Boil. 2018, 25, 952–961.e12. [Google Scholar] [CrossRef] [Green Version]
- Tegeder, P.; Freitag, M.; Chepiga, K.M.; Muratsugu, S.; Möller, N.; Lamping, S.; Tada, M.; Glorius, F.; Ravoo, B.J. N-Heterocyclic carbene-modified Au-Pd alloy nanoparticles and their application as biomimetic and heterogeneous catalysts. Chem. A. Eur. J. 2018, 24, 18682–18688. [Google Scholar] [CrossRef]
- Kunz, S. Supported, Ligand-Functionalized Nanoparticles: An attempt to rationalize the application and potential of ligands in heterogeneous catalysis. Top. Catal. 2016, 59, 1671–1685. [Google Scholar] [CrossRef]
- Ernst, J.B.; Muratsugu, S.; Wang, F.; Tada, M.; Glorius, F. Tunable heterogeneous catalysis: N-heterocyclic carbenes as ligands for supported heterogeneous Ru/K-Al2O3 catalysts to tune reactivity and selectivity. J. Am. Chem. Soc. 2016, 138, 10718–10721. [Google Scholar] [CrossRef]
- Palazzolo, A.; Naret, T.; Daniel-Bertrand, M.; Buisson, D.-A.; Tricard, S.; Lesot, P.; Coppel, Y.; Chaudret, B.; Feuillastre, S.; Pieters, G. Tuning the reactivity of a heterogeneous catalyst using N-heterocyclic carbene ligands for C-H activation reactions. Angew. Chem. Int. Ed. 2020, 59, 1–7. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerezo-Navarrete, C.; Lara, P.; Martínez-Prieto, L.M. Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects. Catalysts 2020, 10, 1144. https://doi.org/10.3390/catal10101144
Cerezo-Navarrete C, Lara P, Martínez-Prieto LM. Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects. Catalysts. 2020; 10(10):1144. https://doi.org/10.3390/catal10101144
Chicago/Turabian StyleCerezo-Navarrete, Christian, Patricia Lara, and Luis M. Martínez-Prieto. 2020. "Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects" Catalysts 10, no. 10: 1144. https://doi.org/10.3390/catal10101144
APA StyleCerezo-Navarrete, C., Lara, P., & Martínez-Prieto, L. M. (2020). Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects. Catalysts, 10(10), 1144. https://doi.org/10.3390/catal10101144