# Exchange Networks with Stochastic Matching

^{1}

^{2}

^{3}

^{4}

## Abstract

**:**

## 1. Introduction

## 2. Model

#### 2.1. Convergent Expectations

**Proposition**

**1.**

**Proof.**

**Proposition**

**2.**

**Proof.**

#### 2.2. Divergent Expectations

**Proposition**

**3.**

**Proof.**

**Proposition**

**4.**

**Proof.**

#### 2.3. Social Preferences

**Proposition**

**5.**

**Proof.**

**Proposition**

**6.**

**Proof.**

## 3. Simulations

#### 3.1. Convergent Expectations

**Result**

**1.**

#### 3.2. Divergent Expectations

**Result**

**2.**

#### 3.3. Social Preferences

**Result**

**3.**

## 4. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Notes

1 | The consolidation of partnership does not involve some form of obstinacy such as in [25]. Their paper shows that, in bargaining, outside options may cancel out the effects of obstinacy. |

2 | In his coconut model, [38] has provided an example of the unlikelihood of witnessing a frictionless decentralized coordination mechanism in labor markets. |

3 | The sum of probabilities equals 1, such that $\mathbb{P}\left[\right(u,v)\notin M(t\left)\right]=1-\mathbb{P}\left[\right(u,v)\in M(t\left)\right]$ when ${\sum}_{(u,k)\in M\left(t\right)}{[{x}_{u}\left(t\right)-{x}_{k}\left(t\right)]}^{\alpha}={[{x}_{u}\left(t\right)-{x}_{v}\left(t\right)]}^{\alpha}$. We know that ${x}_{k}\left(t\right)=0$ for any unmatched node $k\notin M\left(t\right)$. We observe that ${lim}_{{x}_{k}\left(t\right)\to 0}{\sum}_{(u,k)\in M\left(t\right)}{[{x}_{u}\left(t\right)-{x}_{k}\left(t\right)]}^{\alpha}{[{x}_{u}\left(t\right)-{x}_{v}\left(t\right)]}^{-\alpha}=1$, where ${\sum}_{(u,k)\in M\left(t\right)}{[{x}_{u}\left(t\right)-{x}_{k}\left(t\right)]}^{\alpha}=1/{[{x}_{u}\left(t\right)-{x}_{v}\left(t\right)]}^{-\alpha}$, which holds true for a very large population of players. Consequently, $\mathbb{P}\left[\right(u,v)\in M(t\left)\right]+\mathbb{P}\left[\right(u,v)\notin M(t\left)\right]=1$ in the presence of an atomistic-type market structure: |

4 | An outside option is the best alternative that a player can command if it withdraws from the bargaining process in a unilateral way ([8]). |

5 | Provided that only an actual match involves the surplus splitting between the players, the value into play in the negotiation, or ${w}_{u,v}\left(t\right)$, is weighted by the probability that players do not match. Actually, the expected value to be exchanged depends on the probability that it has not been the subject of previous trading: |

6 | Whereas, in a Nash form of game, the alternatives are given exogenously, the alternatives in the network bargaining game are given endogenously: |

7 | Decreasing the level of $\varphi $ increases the expected outcomes of both. |

8 | Hayek himself admitted that market mechanisms were based on bounded rationality ([64]). |

## References

- Roth, A.; Sotomayor, M. Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis, Econometric Society Monograph Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Roth, A. The Economics of Matching: Stability and Incentives. Math. Oper. Res.
**1982**, 7, 617–628. [Google Scholar] [CrossRef] [Green Version] - Fleiner, T. A Fixed-Point Approach to Stable Matchings and Some Applications. Math. Oper. Res.
**2003**, 28, 103–126. [Google Scholar] [CrossRef] [Green Version] - Easley, D.; Kleinberg, J. Matching Markets, Networks, Crowds and Markets: Reasoning about a Highly Connected World; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Gale, D.; Shapley, L. College Admissions and the Stability of Marriage. Am. Math. Mon.
**1962**, 69, 9–15. [Google Scholar] [CrossRef] - Crawford, V.; Rochford, S. Bargaining and Competition in Matching Markets. Int. Econ. Rev.
**1986**, 27, 329–348. [Google Scholar] [CrossRef] - Nash, J. The Bargaining Problem. Econometrica
**1950**, 18, 155–162. [Google Scholar] [CrossRef] - Binmore, K.; Rubinstein, A.; Wolinsky, A. The Nash Bargaining Solution in Economic Modelling. Rand J. Econ.
**1986**, 41, 176–188. [Google Scholar] [CrossRef] [Green Version] - Bulow, J.; Klemperer, P. Auctions versus Negotiation. Am. Econ. Rev.
**1996**, 86, 180–194. [Google Scholar] - Barkaoui, A.; Dragicevic, A. Nash Bargaining and Renegotiation with Social Preferences: Case of the Roundwood Log Supply Contracts in the French Timber Market. For. Policy Econ.
**2016**, 69, 90–100. [Google Scholar] [CrossRef] - Iozzi, A.; Valletti, T. Vertical Bargaining and Countervailing Power. Am. Econ. J. Microecon.
**2014**, 6, 106–135. [Google Scholar] [CrossRef] - Jackson, M.; Morelli, M. Political Bias and War. Am. Econ. Rev.
**2007**, 97, 1353–1373. [Google Scholar] [CrossRef] [Green Version] - Pun, H.; Ghamat, S. The Value of Partnership under Competition: When Competitors May be R&D Joint-Venture and Supply-Chain Partners for a Critical Component. Int. J. Prod. Econ.
**2016**, 177, 1–11. [Google Scholar] - Chakrabartia, S.; Tangsangasaksri, S. Labor Unions and Nash Bargaining Using Coalition Formation Games. Math. Soc. Sci.
**2011**, 62, 55–64. [Google Scholar] [CrossRef] - Cachon, G.; Lariviere, M. Supply Chain Coordination with Revenue-Sharing Contracts: Strengths and Limitations. Manag. Sci.
**2005**, 51, 30–44. [Google Scholar] [CrossRef] [Green Version] - Lise, J.; Meghir, C.; Robin, J.-M. Matching, Sorting and Wages. Rev. Econ. Dyn.
**2016**, 19, 63–87. [Google Scholar] [CrossRef] [Green Version] - Flinn, C.; Gemici, A.; Laufer, S. Search, Matching and Training. Rev. Econ. Dyn.
**2017**, 25, 260–297. [Google Scholar] [CrossRef] [Green Version] - Manea, M. Bargaining in Stationary Networks. Am. Econ. Rev.
**2011**, 101, 2042–2080. [Google Scholar] [CrossRef] [Green Version] - Manea, M. Bargaining in Dynamic Markets. Games Econ. Behav.
**2017**, 104, 59–77. [Google Scholar] [CrossRef] [Green Version] - Polanski, A. Matching Structure and Bargaining Outcomes in Buyer-Seller Networks. Soc. Choice Welf.
**2016**, 46, 767–776. [Google Scholar] [CrossRef] [Green Version] - Kleinberg, J.; Tardos, E. Balanced Outcomes in Social Exchange Networks. Acm Symp. Theory Comput.
**2008**, 40, 295–304. [Google Scholar] - Azar, Y.; Birnbaum, B.; Celis, L.; Devanur, N.; Peres, Y. Convergence of Local Dynamics to Balanced Outcomes in Exchange Networks. In Proceedings of the IEEE Symposium on Foundations of Computer Science, Atlanta, GA, USA, 25–27 October 2009; Volume 50, pp. 293–302. [Google Scholar]
- Bayati, M.; Borgs, C.; Chayes, J.; Kanoria, Y.; Montanari, A. Bargaining Dynamics in Exchange Networks. J. Econ. Theory
**2015**, 156, 417–454. [Google Scholar] [CrossRef] [Green Version] - Rochford, S. Symmetrically Pairwise-Bargained Allocations in an Assignment Market. J. Econ. Theory
**1984**, 34, 262–281. [Google Scholar] [CrossRef] - Compte, O.; Jehiel, P. On the Role of Outside Options in Bargaining with Obstinate Parties. Econometrica
**2002**, 70, 1477–1517. [Google Scholar] [CrossRef] - Gilbert, E. Random graphs. Ann. Math. Stat.
**1959**, 30, 1141–1144. [Google Scholar] [CrossRef] - Biro, P.; Bomhoff, M.; Golovach, P.; Kern, W. Solutions for the Stable Roommates Problem with Payments. Theor. Comput. Sci.
**2014**, 540–541, 53–61. [Google Scholar] [CrossRef] - Nax, H.; Pradelski, B. Core Stability and Core Selection in a Decentralized Labor Matching Market. Games
**2016**, 7, 10. [Google Scholar] [CrossRef] [Green Version] - Hamza, D.; Shamma, J. BLMA: A Blind Matching Algorithm with Application to Cognitive Radio Networks. IEEE J. Sel. Areas Commun.
**2017**, 35, 302–316. [Google Scholar] [CrossRef] [Green Version] - Polanski, A. Bilateral Bargaining in Networks. J. Econ. Theory
**2007**, 134, 557–565. [Google Scholar] [CrossRef] - Abreu, D.; Manea, M. Bargaining and Efficiency in Networks. J. Econ. Theory
**2012**, 147, 43–70. [Google Scholar] [CrossRef] [Green Version] - Noldeke, G.; Troger, T. Matching Heterogeneous Agents with a Linear Search Technology; Mimeo: New York, NY, USA, 2009. [Google Scholar]
- Shapley, L.; Shubik, M. The Assignment Game I: The Core. Int. J. Game Theory
**1972**, 1, 111–130. [Google Scholar] [CrossRef] - Ahmed, F.; Dickerson, J.; Fuge, M. Diverse Weighted Bipartite b-Matching. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence—IJCAI-17, Melbourne, Australia, 19–25 August 2017; pp. 35–41. [Google Scholar]
- Dragicevic, A. Market Coordination under Non-Equilibrium Dynamics. Netw. Spat. Econ.
**2019**, 19, 697–715. [Google Scholar] [CrossRef] - Hayek, F. Law, Legislation, and Liberty: The Mirage of Social Justice; University of Chicago Press: Chicago, IL, USA, 1978. [Google Scholar]
- Kapás, J. The Coordination Problems, the Market and the Firm. New Perspect. Political Econ.
**2006**, 2, 14–36. [Google Scholar] - Diamond, P. Aggregate Demand Management in Search Equilibrium. J. Political Econ.
**1982**, 90, 881–894. [Google Scholar] [CrossRef] [Green Version] - Farber, H.; Bazerman, M. Divergent Expectations as a Cause of Disagreement in Bargaining: Evidence From a Comparison of Arbitration Schemes. Q. J. Econ.
**1989**, 104, 99–120. [Google Scholar] [CrossRef] - Davis, P.; Pagano, M.; Schwartz, R. Divergent Expectations, Technology and Regulation. In Zicklin School of Business Financial Markets Series; Springer Nature: Berlin, Germany, 2009. [Google Scholar]
- Dawande, M.; Keskinocak, P.; Swaminathan, J.; Tayur, S. On Bipartite and Multipartite Clique Problems. J. Algorithms
**2001**, 4, 388–403. [Google Scholar] [CrossRef] - Beer, E.; Fill, J.; Janson, S.; Scheinerman, E. On Vertex, Edge, and Vertex-Edge Random Graphs. In Proceedings of the Eighth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), San Francisco, CA, USA, 22 January 2011; p. 7. [Google Scholar]
- Beeri, C.; Kanza, Y.; Safra, E.; Sagiv, Y. Object Fusion in Geographic Information Systems. In Proceedings of the Conference on Very Large Data Bases, Toronto, ON, Canada, 31 August–3 September 2004; Volume 30, pp. 816–827. [Google Scholar]
- Safra, E.; Kenza, Y.; Sagiv, Y.; Beeri, C.; Doytsher, Y. Location-Based Algorithms for Finding Sets of Corresponding Objects over Several Geo-Spatial Data Sets. Int. J. Geogr. Inf. Sci.
**2010**, 24, 69–106. [Google Scholar] [CrossRef] - Shan, X.; Wu, B. Social Relationship Adjustments Within the Same Sex Promote Marital Bliss. J. Theor. Biol.
**2022**, 550, 111225. [Google Scholar] [CrossRef] - Graves, P. Relative Risk Aversion: Increasing or Decreasing? J. Financ. Quant. Anal.
**1979**, 14, 205–214. [Google Scholar] [CrossRef] [Green Version] - Muthoo, A. Bargaining Theory with Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Ninness, B.; Goodwin, G. The Relationship Between Discrete Time and Continuous Time Linear Estimation, Identification and Continuous-Time System: Methodology and Computer Implementation; Springer Science and Business: Berlin, Germany, 1991. [Google Scholar]
- Yang, X.-S. Artificial Intelligence, Evolutionary Computing and Metaheuristics, Studies in Computational Intelligence; Springer: Berlin, Germany, 2013. [Google Scholar]
- Kanoria, Y.; Bayati, M.; Borgs, C.; Chayes, J.; Montanari, A. Fast Convergence of Natural Bargaining Dynamics in Exchange Networks. In Proceedings of the ACM–SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January 2010; Volume 22, pp. 1518–1537. [Google Scholar]
- Charness, G.; Rabin, M. Understanding Social Preferences with Simple Tests. Q. J. Econ.
**2002**, 117, 817–869. [Google Scholar] [CrossRef] [Green Version] - Schmidt, K. Social Preferences and Competition. J. Money Credit. Bank.
**2011**, 43, 207–231. [Google Scholar] [CrossRef] [Green Version] - Dragicevic, A.; Barkaoui, A. Forest-Based Industrial Network: Case of the French Timber Market. For. Policy Econ.
**2016**, 75, 23–33. [Google Scholar] [CrossRef] - Foster, D.; Vohra, R. Calibrated Learning and Correlated Equilibrium. Games Econ. Behav.
**1997**, 21, 40–55. [Google Scholar] [CrossRef] [Green Version] - Rabin, M. Incorporating Fairness into Game Theory and Economics. Am. Econ. Rev.
**1993**, 83, 1281–1302. [Google Scholar] - Levine, D. Modeling Altruism and Spitefulness in Experiments. Rev. Econ. Dyn.
**1998**, 1, 593–622. [Google Scholar] [CrossRef] [Green Version] - Mas-Colell, A.; Whinston, M.; Green, J. Microeconomic Theory; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Collard, D. Inequality Aversion, Resource Depletion and Sustainability. Econ. Lett.
**1994**, 45, 513–517. [Google Scholar] [CrossRef] - Fehr, E.; Schmidt, K. A Theory of Fairness, Competition, and Cooperation. Q. J. Econ.
**1999**, 114, 817–868. [Google Scholar] [CrossRef] - Chatterjee, K. Bargaining in the Shadow of the Market; World Scientific: Singapore, 2013. [Google Scholar]
- Arnosti, N.; Johari, R.; Kanoria, Y. Managing Congestion in Decentralized Matching Markets. In Proceedings of the Fifteenth ACM Conference on Economics and Computation, EC’ 2014, Palo Alto, CA, USA, 8–12 June 2014; Volume 14, p. 451. [Google Scholar]
- Rubinstein, A. Perfect Equilibrium in a Bargaining Model. Econometrica
**1982**, 50, 97–109. [Google Scholar] [CrossRef] [Green Version] - Gantner, A. Bargaining, Search, and Outside Options. Games Econ. Behav.
**2008**, 62, 417–435. [Google Scholar] [CrossRef] [Green Version] - Fiori, S. Hayek’s Theory on Complexity and Knowledge: Dichotomies, Levels of Analysis, and Bounded Rationality; University of Chicago Press: Chicago, IL, USA, 2009. [Google Scholar]
- Bolle, F.; Otto, P. Matching as a Stochastic Process. J. Econ. Stat.
**2016**, 236, 323–348. [Google Scholar] [CrossRef] - Nax, H.; Pradelski, B. Evolutionary Dynamics and Equitable Core Selection in Assignment Games. Int. J. Game Theory
**2015**, 44, 903–932. [Google Scholar] [CrossRef] [Green Version] - Balinski, M.; Gale, D. On the Core of the Assignment Game, Game Theory and Applications; Elsevier Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Kahneman, D. A Psychological Perspective on Economics. Am. Econ. Rev.
**2003**, 93, 162–168. [Google Scholar] [CrossRef] [Green Version] - Cox, J.; Sadiraj, V. Direct Tests of Individual Preferences for Efficiency and Equity. Econ. Inq.
**2010**, 50, 920–931. [Google Scholar] [CrossRef] - Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-Peer and Community-Based Markets: A Comprehensive Review. Renew. Sustain. Energy Rev.
**2019**, 104, 367–378. [Google Scholar] [CrossRef]

**Figure 1.**Nash bargaining solutions (${x}_{u}^{\u2605}$, ${x}_{v}^{\u2605}$) with convergent expectations. The x-axis corresponds to the decay parameter ($\alpha $). The y-axis denotes Nash allocations (${x}_{u}^{\alpha},{x}_{u}^{\alpha}$).

**Figure 2.**Option values (${\beta}_{u}$, ${\beta}_{v}$) with convergent expectations. The x-axis corresponds to the decay parameter ($\alpha $). The y-axis denotes the values alternative to Nash allocations (${\beta}_{u}\left(\alpha \right),{\beta}_{v}\left(\alpha \right)$).

**Figure 3.**Convergence dynamics of Nash allocations (${x}_{u}^{\u2605}$, ${x}_{v}^{\u2605}$) for $\alpha =0.50$. The x-axis corresponds to the timeline (t). The y-axis denotes the evolution of Nash allocations as a function of time (${x}_{u}^{\u2605}\left(t\right)$, ${x}_{v}^{\u2605}\left(t\right)$).

**Figure 4.**Nash bargaining solution (${x}_{u}^{\u2605}$) with divergent expectations. The left-sided x-axis corresponds to the decay parameter of u (${\alpha}_{u}$). The right-sided y-axis is the decay parameter of v (${\alpha}_{v}$). The z-axis denotes Nash allocations (${x}_{u}^{\u2605}({\alpha}_{u},{\alpha}_{v})$).

**Figure 5.**Nash bargaining solution (${x}_{v}^{\u2605}$) with divergent expectations. The left-sided x-axis corresponds to the decay parameter of u (${\alpha}_{u}$). The right-sided y-axis is the decay parameter of v (${\alpha}_{v}$). The z-axis denotes Nash allocations (${x}_{v}^{\u2605}({\alpha}_{u},{\alpha}_{v})$).

**Figure 6.**Convergence dynamics of Nash allocations (${x}_{u}^{\u2605}$, ${x}_{v}^{\u2605}$) for ${\alpha}_{u}=0.60$ and ${\alpha}_{v}=0.70$. The x-axis corresponds to the timeline (t). The y-axis denotes the evolution of Nash allocations as a function of time (${x}_{u}^{\u2605}\left(t\right)$, ${x}_{v}^{\u2605}\left(t\right)$).

**Figure 7.**Nash bargaining solution (${x}_{u}^{\u2605}$) with social preferences. The left-sided x-axis corresponds to the share of u ($\varphi $). The right-sided y-axis is the decay parameter ($\alpha $). The z-axis denotes Nash allocations (${x}_{u}^{\u2605}(\varphi ,\alpha )$).

**Figure 8.**Nash bargaining solution (${x}_{v}^{\u2605}$) with social preferences. The left-sided x-axis corresponds to the share of v ($1-\varphi $). The right-sided y-axis is the decay parameter ($\alpha $). The z-axis denotes Nash allocations (${x}_{v}^{\u2605}(1-\varphi ,\alpha )$).

**Figure 9.**Convergence dynamics of Nash allocations (${x}_{u}^{\u2605}$, ${x}_{v}^{\u2605}$) for $\alpha =0.50$ and $\varphi =0.80$. The x-axis corresponds to the timeline (t). The y-axis denotes the evolution of Nash allocations as a function of time (${x}_{u}^{\u2605}\left(t\right)$, ${x}_{v}^{\u2605}\left(t\right)$).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dragicevic, A.Z.
Exchange Networks with Stochastic Matching. *Games* **2023**, *14*, 2.
https://doi.org/10.3390/g14010002

**AMA Style**

Dragicevic AZ.
Exchange Networks with Stochastic Matching. *Games*. 2023; 14(1):2.
https://doi.org/10.3390/g14010002

**Chicago/Turabian Style**

Dragicevic, Arnaud Zlatko.
2023. "Exchange Networks with Stochastic Matching" *Games* 14, no. 1: 2.
https://doi.org/10.3390/g14010002