Decision Making in Wood Supply Chain Operations Using Simulation-Based Many-Objective Optimization for Enhancing Delivery Performance and Robustness
Abstract
1. Introduction
1.1. Problem
1.2. Literature Review
2. Framework and Methods
2.1. Problem Formulation
2.2. Simulation-Based Multi-Objective Optimization
2.3. Delivery Performance Objectives
| P | products, |
| T | time, |
| weight of demand for product p | |
| standard deviation for BL for product p | |
| loss function for BL |
2.4. Discrete Event Simulation of Objectives
2.5. Genetic Algorithms for Harvest Scheduling
2.6. Genetic Algorithm Operators
3. Experiments, Results and Analysis
3.1. Computational Implementation
| Algorithm 1 SMO Parallel Processing Algorithm |
|
3.2. Comparative Experiments
3.3. Simulation and Visualization for Decision Making
4. Discussion
4.1. Optimization Objectives
4.2. Computational Issues
4.3. Managerial Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BL | Backlog |
| CoV | Coefficient of Variation |
| CP | Conifer pulpwood |
| DES | Discrete Event Simulation |
| DeP | Delivery performance |
| GA | Genetic algorithm |
| LT | Lead time |
| MOO | Multi-objective optimization |
| PS | Pine sawlogs |
| SMO | Simulation-based Multi-Objective Optimization |
| SS | Spruce sawlogs |
| SP | Spruce pulpwood |
| WSC | Wood supply chain |
References
- Ulvdal, P.; Öhman, K.; Eriksson, L.O.; Wästerlund, D.S.; Lämås, T. Handling Uncertainties in Forest Information: The Hierarchical Forest Planning Process and Its Use of Information at Large Forest Companies. For. Int. J. For. Res. 2023, 96, 62–75. [Google Scholar] [CrossRef]
- Biometria. Klassning av Skogsbilvägar [Classification of Forest Roads]. Available online: https://www.biometria.se/media/fa1ba4qc/klassning-av-skogsbilvaegar_september-2021_webb.pdf (accessed on 27 April 2023).
- Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Asikainen, A.; Laitila, J.; Anttila, P.; Peltola, H. Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate. Hydrol. Earth Syst. Sci. 2019, 23, 1611–1631. [Google Scholar] [CrossRef]
- Kellomäki, S.; Maajärvi, M.; Strandman, H.; Kilpeläinen, A.; Peltola, H. Model Computations on the Climate Change Effects on Snow Cover, Soil Moisture and Soil Frost in the Boreal Conditions over Finland. Silva Fenn. 2010, 44, 213–233. [Google Scholar] [CrossRef]
- Westlund, K.; Sundström, L.E.; Eliasson, L. An optimization and discrete event simulation framework for evaluating delivery performance in Swedish wood supply chains under stochastic weather variations. Int. J. For. Eng. 2024, 35, 326–337. [Google Scholar] [CrossRef]
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to Manage and Optimize Forest Biomass Supply Chains: A Review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Arch. Comput. Methods Eng. 2022, 29, 5605–5633. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Deb, K.; Chen, F.; Nikoo, M.R. Scheduling by NSGA-II: Review and Bibliometric Analysis. Processes 2022, 10, 98. [Google Scholar] [CrossRef]
- Verma, S.; Pant, M.; Snasel, V. A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems. IEEE Access 2021, 9, 57757–57791. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Talbi, E.G.; Mostaghim, S.; Okabe, T.; Ishibuchi, H.; Rudolph, G.; Coello Coello, C.A. Parallel Approaches for Multiobjective Optimization. In Multiobjective Optimization: Interactive and Evolutionary Approaches; Branke, J., Deb, K., Miettinen, K., Słowiński, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5252, pp. 349–372. [Google Scholar] [CrossRef]
- Westlund, K.; Ng, A.H.; Nourmohammadi, A. Simulation-Based Multi-Objective Optimization to Support Delivery Performance Decisions in Harvest Scheduling and Transport. Int. J. For. Eng. 2025, 0, 1–14. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Patel, C.; McGaughey, R.E. A framework for supply chain performance measurement. Int. J. Prod. Econ. 2004, 87, 333–347. [Google Scholar] [CrossRef]
- Karlsson, J.; Rönnqvist, M.; Bergström, J. An Optimization Model for Annual Harvest Planning. Can. J. For. Res. 2004, 34, 1747–1754. [Google Scholar] [CrossRef]
- Ene, L.T.; Söderberg, J.; Möller, J. Volume and Value Recovery Predictions by Combining Tree Lists from a Harvester Stem Database and Estimated Diameter Distributions from a Mobile Laser Scanner System. Available online: https://www.skogforsk.se/cd_20211215112543/contentassets/52b3596dfe804c1b94621905487b9315/arbetsrapport-1103-2021.pdf (accessed on 1 December 2023).
- Kogler, C.; Rauch, P. Lead time and quality driven transport strategies for the wood supply chain. Res. Transp. Bus. Manag. 2023, 47, 100946. [Google Scholar] [CrossRef]
- Palander, T.; Tokola, T.; Borz, S.A.; Rauch, P. Forest Supply Chains During Digitalization: Current Implementations and Prospects in Near Future. Curr. For. Rep. 2024, 10, 223–238. [Google Scholar] [CrossRef]
- Stewart, G. Supply chain performance benchmarking study reveals keys to supplychain excellence. Logist. Inf. Manag. 1995, 8, 38–44. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Patel, C.; Tirtiroglu, E. Performance measures and metrics in a supply chain environment. Int. J. Oper. Prod. Manag. 2001, 21, 71–87. [Google Scholar] [CrossRef]
- Kogler, C.; Rauch, P. Discrete event simulation of multimodal and unimodal transportation in the wood supply chain: A literature review. Silva Fenn. 2018, 52, 9984. [Google Scholar] [CrossRef]
- Chen, C.; Gan, J.; Zhang, Z.; Qiu, R. Multi-Objective and Multi-Period Optimization of a Regional Timber Supply Network with Uncertainty. Can. J. For. Res. 2020, 50, 203–214. [Google Scholar] [CrossRef]
- Shavazipour, B.; Kwakkel, J.H.; Miettinen, K. Let Decision-Makers Direct the Search for Robust Solutions: An Interactive Framework for Multiobjective Robust Optimization under Deep Uncertainty. Environ. Model. Softw. 2025, 183, 106233. [Google Scholar] [CrossRef]
- Simard, V.; Rönnqvist, M.; LeBel, L.; Lehoux, N. Improving the Decision-Making Process by Considering Supply Uncertainty—A Case Study in the Forest Value Chain. Int. J. Prod. Res. 2024, 62, 665–684. [Google Scholar] [CrossRef]
- Hopp, W.J. Supply Chain Science, 1st ed.; Waveland Press: Long Grove, IL, USA, 2011. [Google Scholar]
- Pound, E.; Bell, J.; Spearman, M. Factory Physics for Managers: How Leaders Improve Performance in a Post-Lean Six SIGMA World, 1st ed.; McGraw Hill: New York, NY, USA, 2014. [Google Scholar]
- Sanchez, S.M.; Sanchez, P.J. Robustness Revisited: Simulation Optimization Viewed Through A Different Lens. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 60–74. [Google Scholar] [CrossRef]
- Westlund, K.; Ng, A.H. Analyzing Delivery Performance and Robustness of Wood Supply Chains Using Simulation-Based Multi-Objective Optimization. In Proceedings of the 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 15–18 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1587–1598. [Google Scholar] [CrossRef]
- Deb, K.; Mohan, M.; Mishra, S. Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2632, pp. 222–236. [Google Scholar] [CrossRef]
- Neumann, A.; Hajji, A.; Rekik, M.; Pellerin, R. Genetic algorithms for planning and scheduling engineer-to-order production: A systematic review. Int. J. Prod. Res. 2024, 62, 2888–2917. [Google Scholar] [CrossRef]
- Pătrăușanu, A.; Florea, A.; Neghină, M.; Dicoiu, A.; Chiș, R. A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks. Processes 2024, 12, 869. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Ng, A.H.C.; Bernedixen, J. Production systems analysis and optimization using facts analyzer. In Proceedings of the 2018 Winter Simulation Conference, Gothenburg, Sweden, 9–12 December 2018; IEEE Press: Piscataway, NJ, USA, 2018; p. 4258. [Google Scholar]
- Svenson, G. Optimized Route Selection for Logging Trucks Improvements to Calibrated Route Finder. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2017. [Google Scholar]
- Li, B.; Li, J.; Tang, K.; Yao, X. Many-Objective Evolutionary Algorithms: A Survey. ACM Comput. Surv. 2015, 48, 13. [Google Scholar] [CrossRef]
- Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM J. Optim. 1998, 8, 631–657. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Lingle, R. Alleles, Loci, and the Traveling Salesman Problem. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications; Psychology Press: London, UK, 1985; pp. 154–159. [Google Scholar]
- Dask Development Team. Dask: Library for Dynamic Task Scheduling. Available online: http://dask.pydata.org (accessed on 1 March 2024).
- Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications. Theor. Comput. Sci. 2012, 425, 75–103. [Google Scholar] [CrossRef]
- Guerreiro, A.P.; Fonseca, C.M.; Paquete, L. The Hypervolume Indicator: Computational Problems and Algorithms. ACM Comput. Surv. 2021, 54, 119. [Google Scholar] [CrossRef]
- He, J.; Liu, H.; Wu, Y.; Zheng, Z.; Zhu, T. A Preliminary Study on Accelerating Simulation Optimization with GPU Implementation. In Proceedings of the 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 15–18 December 2024; pp. 3458–3469. [Google Scholar] [CrossRef]
- Huband, S.; Hingston, P.; Barone, L.; While, L. A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Trans. Evol. Comput. 2006, 10, 477–506. [Google Scholar] [CrossRef]







| Mean LT | Mean BL | Loss BL | CoV BL | |
|---|---|---|---|---|
| NSGA-III | 31.41 | 2613 | 14.78 | 1.24 |
| NSGA-II | 31.76 | 2765 | 15.05 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Westlund, K.; Ng, A.H.C. Decision Making in Wood Supply Chain Operations Using Simulation-Based Many-Objective Optimization for Enhancing Delivery Performance and Robustness. Computers 2026, 15, 70. https://doi.org/10.3390/computers15010070
Westlund K, Ng AHC. Decision Making in Wood Supply Chain Operations Using Simulation-Based Many-Objective Optimization for Enhancing Delivery Performance and Robustness. Computers. 2026; 15(1):70. https://doi.org/10.3390/computers15010070
Chicago/Turabian StyleWestlund, Karin, and Amos H. C. Ng. 2026. "Decision Making in Wood Supply Chain Operations Using Simulation-Based Many-Objective Optimization for Enhancing Delivery Performance and Robustness" Computers 15, no. 1: 70. https://doi.org/10.3390/computers15010070
APA StyleWestlund, K., & Ng, A. H. C. (2026). Decision Making in Wood Supply Chain Operations Using Simulation-Based Many-Objective Optimization for Enhancing Delivery Performance and Robustness. Computers, 15(1), 70. https://doi.org/10.3390/computers15010070

