Development and Evaluation of a Machine Learning Model for Predicting 30-Day Readmission in General Internal Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Data Collection
2.3. Data Analysis
2.4. Data Preprocessing
2.5. Data Training and Feature Selection
2.6. Model Training and Hyperparameter Tuning, Handling Class Imbalance
2.7. Ensemble Model for Predicting 30-Day Readmission
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meltzer, D. Hospital care of general medicine patients: The importance of evidence. J. Gen. Intern. Med. 2004, 19, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.H.; Chou, Y.Y.; Lee, Y.S.; Weng, S.C.; Lin, C.F.; Kuo, F.H.; Hsu, P.S.; Lin, S.Y. Prediction of 30-Day Readmission in Hospitalized Older Adults Using Comprehensive Geriatric Assessment and LACE Index and HOSPITAL Score. Int. J. Environ. Res. Public. Health 2022, 20, 348. [Google Scholar] [CrossRef]
- Al Sibani, M.; Al-Maqbali, J.S.; Yusuf, Z.; Al Alawi, A.M. Incidence and Risk Factors for 28 Days Hospital Readmission: A Retrospective Study from Oman. Oman Med. J. 2022, 37, e423. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.; Sain Guven, G.; Aydan, S.; Toka, O. Predictors of hospital readmissions in internal medicine patients: Application of Andersen’s Model. Int. J. Health Plann. Manag. 2019, 34, 370–383. [Google Scholar] [CrossRef]
- Calvillo-King, L.; Arnold, D.; Eubank, K.J.; Lo, M.; Yunyongying, P.; Stieglitz, H.; Halm, E.A. Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: Systematic review. J. Gen. Intern. Med. 2013, 28, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Giuliani, C.; Parenti, G.; Colombo, G.L.; Sforza, A.; Maggi, M.; Forti, G.; Peri, A. The Economic Burden of Hyponatremia: Systematic Review and Meta-Analysis. Am. J. Med. 2016, 129, 823–835.e4. [Google Scholar] [CrossRef]
- Rinne, S.T.; Graves, M.C.; Bastian, L.A.; Lindenauer, P.K.; Wong, E.S.; Hebert, P.L.; Liu, C.F. Association between length of stay and readmission for COPD. Am. J. Manag. Care 2017, 23, e253–e258. [Google Scholar]
- Fry, B.A.; Singh Rajput, K.; Selvaraj, N. Patient Ambulations Predict Hospital Readmission. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 7506–7510. [Google Scholar] [CrossRef]
- Linn, A.C.; Azollin, K.; Souza, E.N. Association between self-care and hospital readmissions of patients with heart failure. Rev. Bras. Enferm. 2016, 69, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Keeney, T.; Jette, D.U.; Cabral, H.; Jette, A.M. Frailty and Function in Heart Failure: Predictors of 30-Day Hospital Readmission? J. Geriatr. Phys. Ther. 2021, 44, 101–107. [Google Scholar] [CrossRef]
- Hazen, A.; Pizzicato, L.; Hom, J.; Johnson, C.; Viner, K.M. Association between discharges against medical advice and readmission in patients treated for drug injection-related skin and soft tissue infections. J. Subst. Abuse Treat. 2021, 126, 108465. [Google Scholar] [CrossRef]
- Hasan, O.; Meltzer, D.O.; Shaykevich, S.A.; Bell, C.M.; Kaboli, P.J.; Auerbach, A.D.; Wetterneck, T.B.; Arora, V.M.; Zhang, J.; Schnipper, J.L. Hospital readmission in general medicine patients: A prediction model. J. Gen. Intern. Med. 2010, 25, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Yong, T.Y.; Hakendorf, P.; Ben-Tovim, D.I.; Thompson, C.H. Identifying risk factors and patterns for unplanned readmission to a general medical service. Aust. Health Rev. 2015, 39, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.K.; Dawkins, M.; Baskaran, I.; Izard, S.; Zhang, M.; Bissoonauth, A.A.; Kaplan, S.; Rao, A.; Elzanaty, M.; Oropallo, A. Laboratory and Pharmaceutical Data Associated With Hospital Readmission in Persons With Diabetic Foot Ulcers. Inquiry 2021, 58, 469580211060779. [Google Scholar] [CrossRef]
- Matesanz-Fernández, M.; Monte-Secades, R.; Íñiguez-Vázquez, I.; Rubal-Bran, D.; Guerrero-Sande, H.; Casariego-Vales, E. Characteristics and temporal pattern of the readmissions of patients with multiple hospital admissions in the medical departments of a general hospital. Eur. J. Intern. Med. 2015, 26, 776–781. [Google Scholar] [CrossRef]
- Goltzman, G.; Perl, S.; Cohen, L.; Avivi, E.; Rapoport, M.J. Single Admission C-reactive protein Levels as a Sole Predictor of Patient Flow and Clinical Course in a General Internal Medicine Department. Isr. Med. Assoc. J. 2019, 21, 686–691. [Google Scholar]
- Donzé, J.; Aujesky, D.; Williams, D.; Schnipper, J.L. Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model. JAMA Intern. Med. 2013, 173, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; DeMario, V.M.; Grant, M.C.; Hensley, N.B.; Brown, C.H.t.; Hebbar, S.; Mandal, K.; Whitman, G.J.; Frank, S.M. Discharge Hemoglobin Level and 30-Day Readmission Rates After Coronary Artery Bypass Surgery. Anesth. Analg. 2019, 128, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.M.; Koester, C.; Al-Akchar, M.; Tandan, N.; Regmi, M.; Bhattarai, M.; Al-Bast, B.; Kulkarni, A.; Robinson, R. HOSPITAL Score, LACE Index and LACE+ Index as predictors of 30-day readmission in patients with heart failure. BMJ Evid. Based Med. 2020, 25, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, R.; Sigal, A.; Wasser, T.E.; Reyer, J.; Green, J.; Mercogliano, C.; Khan, M.S.; Donato, A.A. Hypochloraemia and 30 day readmission rate in patients with acute decompensated heart failure. ESC Heart Fail. 2020, 7, 903–907. [Google Scholar] [CrossRef]
- Eiland, L.A.; Luo, J.; Goldner, W.S.; Drincic, A. The Association of Diabetes and Hyperglycemia on Inpatient Readmissions. Endocr. Pract. 2021, 27, 413–418. [Google Scholar] [CrossRef]
- Spanakis, E.K.; Umpierrez, G.E.; Siddiqui, T.; Zhan, M.; Snitker, S.; Fink, J.C.; Sorkin, J.D. Association of Glucose Concentrations at Hospital Discharge With Readmissions and Mortality: A Nationwide Cohort Study. J. Clin. Endocrinol. Metab. 2019, 104, 3679–3691. [Google Scholar] [CrossRef]
- Habal, M.V.; Liu, P.P.; Austin, P.C.; Ross, H.J.; Newton, G.E.; Wang, X.; Tu, J.V.; Lee, D.S. Association of heart rate at hospital discharge with mortality and hospitalizations in patients with heart failure. Circ. Heart Fail. 2014, 7, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gil, J.; Manzano, L.; Flather, M.; Formiga, F.; Martel, A.C.; Molinero, A.M.; López, R.Q.; Jiménez, J.L.; Iborra, P.L.; Perez-Calvo, J.I.; et al. Combining heart rate and systolic blood pressure to improve risk stratification in older patients with heart failure: Findings from the RICA Registry. Int. J. Cardiol. 2017, 230, 625–629. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, A.; Boari, B.; Tiseo, R.; López-Soto, P.J.; Signani, F.; Gallerani, M.; Manfredini, R.; Fabbian, F. Hospital readmissions to internal medicine departments: A higher risk for females? Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4557–4564. [Google Scholar] [PubMed]
- Auerbach, A.D.; Kripalani, S.; Vasilevskis, E.E.; Sehgal, N.; Lindenauer, P.K.; Metlay, J.P.; Fletcher, G.; Ruhnke, G.W.; Flanders, S.A.; Kim, C.; et al. Preventability and Causes of Readmissions in a National Cohort of General Medicine Patients. JAMA Intern. Med. 2016, 176, 484–493. [Google Scholar] [CrossRef]
- Kong, C.W.; Wilkinson, T.M.A. Predicting and preventing hospital readmission for exacerbations of COPD. ERJ Open Res. 2020, 6, 00325-2019. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Kamdar, N.; Kim, N.; Gonzales, G.; Singh, K.; Waljee, A.K. Use of electronic medical records in development and validation of risk prediction models of hospital readmission: Systematic review. BMJ 2020, 369, m958. [Google Scholar] [CrossRef]
- Kansagara, D.; Englander, H.; Salanitro, A.; Kagen, D.; Theobald, C.; Freeman, M.; Kripalani, S. Risk prediction models for hospital readmission: A systematic review. JAMA 2011, 306, 1688–1698. [Google Scholar] [CrossRef]
- Salata, B.M.; Sterling, M.R.; Beecy, A.N.; Ullal, A.V.; Jones, E.C.; Horn, E.M.; Goyal, P. Discharge Processes and 30-Day Readmission Rates of Patients Hospitalized for Heart Failure on General Medicine and Cardiology Services. Am. J. Cardiol. 2018, 121, 1076–1080. [Google Scholar] [CrossRef]
- Cotter, P.E.; Bhalla, V.K.; Wallis, S.J.; Biram, R.W. Predicting readmissions: Poor performance of the LACE index in an older UK population. Age Ageing 2012, 41, 784–789. [Google Scholar] [CrossRef]
- Heppleston, E.; Fry, C.H.; Kelly, K.; Shepherd, B.; Wright, R.; Jones, G.; Robin, J.; Murray, P.; Fluck, D.; Han, T.S. LACE index predicts age-specific unplanned readmissions and mortality after hospital discharge. Aging Clin. Exp. Res. 2021, 33, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Robinson, R.D.; Johnson, C.; Zenarosa, N.R.; Jayswal, R.D.; Keithley, J.; Delaney, K.A. Using the LACE index to predict hospital readmissions in congestive heart failure patients. BMC Cardiovasc. Disord. 2014, 14, 97. [Google Scholar] [CrossRef]
- Jamei, M.; Nisnevich, A.; Wetchler, E.; Sudat, S.; Liu, E. Predicting all-cause risk of 30-day hospital readmission using artificial neural networks. PLoS ONE 2017, 12, e0181173. [Google Scholar] [CrossRef] [PubMed]
- Al-Yarabi, A.; Al Balushi, H.; Al Hatmi, K.; Al Yahyaie, R.; Al Alawi, A.M.; Al Zeedy, K.; Al Farhan, H. Inappropriate Hospital Stay of Patients Admitted Under Care of General Medicine Units: A retrospective study. Sultan Qaboos Univ. Med. J. 2022, 1, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Allaudeen, N.; Vidyarthi, A.; Maselli, J.; Auerbach, A. Redefining readmission risk factors for general medicine patients. J. Hosp. Med. 2011, 6, 54–60. [Google Scholar] [CrossRef]
- Al-Maqbali, J.S.; Taqi, A.; Al-Ajmi, S.; Al-Hamadani, B.; Al-Hamadani, F.; Bahram, F.; Al-Balushi, K.; Gamal, S.; Al-Lawati, E.; Al Siyabi, B.; et al. The Impacts of Clinical Pharmacists’ Interventions on Clinical Significance and Cost Avoidance in a Tertiary Care University Hospital in Oman: A Retrospective Analysis. Pharmacy 2022, 10, 127. [Google Scholar] [CrossRef]
- Choi, E.S.; Wiseman, T.; Betihavas, V. Biomedical, Socioeconomic and Demographic Predictors of Heart Failure Readmissions: A Systematic Review. Heart Lung Circ. 2021, 30, 817–836. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Zhang, L.; Wang, B.; Bai, X.; Hu, S.; Miao, F.; Tian, A.; Yang, T.; Li, Y.; et al. Systolic Blood Pressure and 1-Year Clinical Outcomes in Patients Hospitalized for Heart Failure. Front. Cardiovasc. Med. 2022, 9, 877293. [Google Scholar] [CrossRef]
- Piano, S.; Morando, F.; Carretta, G.; Tonon, M.; Vettore, E.; Rosi, S.; Stanco, M.; Pilutti, C.; Romano, A.; Brocca, A.; et al. Predictors of Early Readmission in Patients With Cirrhosis After the Resolution of Bacterial Infections. Am. J. Gastroenterol. 2017, 112, 1575–1583. [Google Scholar] [CrossRef]
- Alonso-Martínez, J.L.; Llorente-Diez, B.; Echegaray-Agara, M.; Olaz-Preciado, F.; Urbieta-Echezarreta, M.; González-Arencibia, C. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur. J. Heart Fail. 2002, 4, 331–336. [Google Scholar] [CrossRef]
- Robinson, R. Low serum albumin and total lymphocyte count as predictors of 30 day hospital readmission in patients 65 years of age or older. PeerJ 2015, 3, e1181. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, F.R.; Safran, C.; Levkoff, S.E.; Minaker, K.L. Serum albumin level on admission as a predictor of death, length of stay, and readmission. Arch. Intern. Med. 1992, 152, 125–130. [Google Scholar] [CrossRef]
- Koch, C.G.; Li, L.; Sun, Z.; Hixson, E.D.; Tang, A.; Chagin, K.; Kattan, M.; Phillips, S.C.; Blackstone, E.H.; Henderson, J.M. Magnitude of Anemia at Discharge Increases 30-Day Hospital Readmissions. J. Patient Saf. 2017, 13, 202–206. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Y.; Cao, K.; Zheng, H. Effect of Anemia on Readmission and Death in Octogenarian Patients with Lower Respiratory Tract Infections: A Retrospective Cohort Study. Int. J. Clin. Pract. 2022, 2022, 4566936. [Google Scholar] [CrossRef] [PubMed]
- Irina, G.; Refaela, C.; Adi, B.; Avia, D.; Liron, H.; Chen, A.; Gad, S. Low Blood ALT Activity and High FRAIL Questionnaire Scores Correlate with Increased Mortality and with Each Other. A Prospective Study in the Internal Medicine Department. J. Clin. Med. 2018, 7, 386. [Google Scholar] [CrossRef]
- Sutter, T.; Roth, J.A.; Chin-Cheong, K.; Hug, B.L.; Vogt, J.E. A comparison of general and disease-specific machine learning models for the prediction of unplanned hospital readmissions. J. Am. Med. Inform. Assoc. 2021, 28, 868–873. [Google Scholar] [CrossRef]
- Hilton, C.B.; Milinovich, A.; Felix, C.; Vakharia, N.; Crone, T.; Donovan, C.; Proctor, A.; Nazha, A. Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence. NPJ Digit. Med. 2020, 3, 51. [Google Scholar] [CrossRef]
- Mahajan, P.; Uddin, S.; Hajati, F.; Moni, M.A. Ensemble Learning for Disease Prediction: A Review. Healthcare 2023, 11, 1808. [Google Scholar] [CrossRef]
- Naderalvojoud, B.; Hernandez-Boussard, T. Improving machine learning with ensemble learning on observational healthcare data. AMIA Annu. Symp. Proc. 2023, 2023, 521–529. [Google Scholar]
- Nemat, H.; Khadem, H.; Eissa, M.R.; Elliott, J.; Benaissa, M. Blood Glucose Level Prediction: Advanced Deep-Ensemble Learning Approach. IEEE J. Biomed. Health Inform. 2022, 26, 2758–2769. [Google Scholar] [CrossRef]
- Ambalavanan, A.K.; Devarakonda, M. Using the contextual language model BERT for multi-criteria classification of scientific articles. J. Biomed. Inform. 2020, 112, 103578. [Google Scholar] [CrossRef] [PubMed]
- Goadrich, M.; Oliphant, L.; Shavlik, J. Gleaner: Creating ensembles of first-order clauses to improve recall-precision curves. Mach. Learn. 2006, 64, 231–261. [Google Scholar] [CrossRef]
- Artetxe, A.; Beristain, A.; Graña, M. Predictive models for hospital readmission risk: A systematic review of methods. Comput. Methods Programs Biomed. 2018, 164, 49–64. [Google Scholar] [CrossRef] [PubMed]
Variable (n = 443) | Median | Interquartile Range (IQR) |
---|---|---|
Age, years | 63.0 | 32.0 |
Weight, kg | 68.9 | 17.0 |
Height, m | 1.61 | 0.1 |
Body mass index (BMI), Kg/m2 | 26.6 | 6.7 |
Length of hospital stay hours | 116.3 | 114.9 |
Number of regular medications | 4.0 | 5.0 |
Laboratory investigations upon admission | ||
Glucose level, mmol/dL | 8.0 | 5.7 |
Peak blood sugar level, mmol/L | 10.0 | 7.9 |
Nadir peak blood sugar level, mmol/L | 5.6 | 2.1 |
C-reactive protein (CRP), mmol/L | 19.0 | 66.0 |
Vitamin B12, pg/mL | 343.0 | 156.0 |
Haemoglobin, g/dL | 12.0 | 3.1 |
Mean corpuscular volume (MCV), fL | 76.7 | 14.0 |
Albumin, mmol/L | 37.0 | 10.0 |
Alanine aminotransferase (ALT), U/L | 18.5 | 23.5 |
Aspartate aminotransferase (AST), U/L | 24.0 | 19.0 |
Alkaline phosphatase (ALP), U/L | 91.0 | 46.0 |
Creatinine (Cr), mmol/L | 88.0 | 52.0 |
Estimated glomerular filtration rate (eGFR), mL/min/1.73 m2 | 82.0 | 36.0 |
Laboratory investigations upon discharge | ||
Haemoglobin, g/dL | 11.0 | 3.1 |
Estimated glomerular filtration rate (eGFR), mL/min/1.73 m2 | 84.0 | 32.5 |
Alanine aminotransferase (ALT), U/L | 22.0 | 17.0 |
Aspartate aminotransferase (AST), U/L | 24.0 | 14.0 |
Alkaline phosphatase (ALP), U/L | 94.0 | 36.0 |
Albumin, mmol/L | 35.0 | 8.0 |
Serum chloride, mEq/L | 102.0 | 6.0 |
Serum sodium, mEq/L | 137.0 | 4.0 |
Other vital signs upon discharge | ||
Systolic blood pressure, mmHg | 126.0 | 21.0 |
Respiratory rate, rate per minute | 18.0 | 2.0 |
Heart rate, beats per minute | 80.0 | 17.0 |
Variable (n = 443) | Frequency (%) |
---|---|
Woman | 223 (50.3%) |
Marital status | |
Married | 265 (59.8%) |
Widowed | 88 (19.9%) |
Single | 78(17.6%) |
Divorced | 12 (2.7%) |
Educational status | |
Illiterate | 171(38.6%) |
Below high school | 92 (20.8%) |
High school diploma | 84 (19.0%) |
Literate without formal schooling | 56 (12.6%) |
Bachelor and above | 40 (9.0%) |
Employment status | |
Unemployed | 279 (63.0%) |
Retired | 67 (15.1%) |
Employed | 63 (14.2%) |
Others | 34 (7.7%) |
Functional status | |
Independent | 264 (59.6%) |
Dependent | 106 (23.9%) |
Partially dependent | 73 (16.5%) |
Medical history and comorbidities | |
Polypharmacy | 195 (44.0%) |
Substance abuse | 12 (2.7%) |
Active or past smoking history | 60 (13.5%) |
Alcohol drinking | 42 (9.5%) |
Hypertension | 244 (55.1%) |
Diabetes mellitus | 191 (43.1%) |
Chronic kidney disease | 74 (16.7%) |
Heart failure | 60 (13.5%) |
Atrial fibrillation | 40 (9.0%) |
Solid tumour | 23 (5.2%) |
Liver cirrhosis | 11 (2.5%) |
Dyslipidemia | 135 (30.5%) |
Anaemia | 28 (6.3%) |
Ischemic heart disease | 75 (16.9%) |
Dementia | 22 (5.0%) |
History of stroke or transient ischemic attacks | 54 (12.2%) |
Diagnosis classified according to ICD 10 | |
Diseases of the respiratory system | 91 (20.5%) |
Diseases of the circulatory system | 58 (13.1%) |
Certain infectious and parasitic diseases | 56 (12.6%) |
Endocrine, nutritional, and metabolic diseases | 51 (11.5%) |
Diseases of the nervous system | 44 (9.9%) |
Diseases of the digestive system | 43 (9.7%) |
Diseases of the genitourinary system | 28 (6.3%) |
Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism | 20 (4.5%) |
Others | 52 (11.7%) |
Hospitalization data | |
Not for resuscitation | 48 (10.8%) |
Requires invasive mechanical ventilation | 5 (1.1%) |
Requires non-invasive ventilation | 43(9.7%) |
Use of vasopressor | 18 (4.1%) |
Admisison to HDU or ICU | 46 (10.4%) |
Left against medical advice | 23 (5.2%) |
Feature | Importance | Coefficient | Risk Association |
---|---|---|---|
Length of hospital stay (LOS) | 0.040993 | −0.071992 | Reduced Risk |
Systolic blood pressure prior to hospital discharge | 0.039452 | −0.193991 | Reduced Risk |
Weight | 0.038601 | 0.352614 | Increased Risk |
Body mass index (BMI) | 0.034642 | −0.83929 | Reduced Risk |
Albumin level upon admission | 0.034048 | −0.049374 | Reduced Risk |
Age | 0.032036 | 0.358211 | Increased Risk |
Admission mean corpuscular volume (MCV) | 0.031286 | −0.398924 | Reduced Risk |
Albumin level on discharge | 0.029432 | −0.175724 | Reduced Risk |
Aspartate transaminase (AST) on discharge | 0.029085 | 1.475283 | Increased Risk |
Alanine aminotransferase (ALT) upon admission | 0.028759 | 0.180201 | Increased Risk |
Peak blood sugar level during admission | 0.027610 | 0.143536 | Increased Risk |
Height | 0.027552 | −0.36783 | Reduced Risk |
Number of regular medications | 0.027527 | 0.297797 | Increased Risk |
Alanine transaminase (ALT) on discharge | 0.025746 | −1.562257 | Reduced Risk |
Nadir blood sugar level during admission | 0.025628 | 0.101011 | Increased Risk |
C-reactive protein (CRP) level upon admission | 0.024953 | 0.060043 | Increased Risk |
Aspartate transaminase (AST) upon admission | 0.023982 | −0.073751 | Reduced Risk |
Hemoglobulin level upon admission | 0.023767 | −0.245768 | Reduced Risk |
Blood sugar level during admission | 0.023307 | −0.064745 | Reduced Risk |
Heart rate prior to discharge | 0.023112 | 0.155211 | Increased Risk |
Model | Threshold | Accuracy (%) | Precision (Overall) | Recall (Overall) | F1 Score (Overall) | AUC |
---|---|---|---|---|---|---|
Logistic Regression | 0.50 | 71.90 | 0.38 | 70.59 | 0.49 | 0.73 |
Random Forest | 0.50 | 80.90 | 1.00 | 0.00 | 0.00 | 0.65 |
Gradient Boosting | 0.50 | 82.00 | 0.67 | 11.76 | 0.20 | 0.56 |
Support Vector Machine | 0.50 | 80.90 | 1.00 | 0.00 | 0.00 | 0.66 |
Metric | Weighted Ensemble (Threshold 0.3) | Ensemble (Threshold 0.5) |
---|---|---|
Accuracy | 67.4% | 80.9% |
Precision (Overall) | 0.33 | 1.0 |
Recall (Overall) | 70.6% | 0.0% |
F1 Score (Overall) | 0.45 | 0.0 |
AUC | 0.734 | 0.730 |
Class 0 Precision | 0.91 | 0.81 |
Class 0 Recall | 67% | 100% |
Class 0 F1 Score | 0.77 | 0.89 |
Class 1 Precision | 0.33 | 1.0 |
Class 1 Recall | 71% | 0.0% |
Class 1 F1 Score | 0.45 | 0.0 |
Macro Avg F1 Score | 0.61 | 0.45 |
Weighted Avg F1 Score | 0.71 | 0.72 |
Support (Total Cases) | 89 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Alawi, A.M.; Al Abdali, M.; Al Mezeini, A.Z.A.; Al Rawahia, T.; Al Amri, E.; Al Salmani, M.; Al-Falahi, Z.; Al Zaabi, A.; Al Aamri, A.; Al Farhan, H.; et al. Development and Evaluation of a Machine Learning Model for Predicting 30-Day Readmission in General Internal Medicine. Computers 2025, 14, 177. https://doi.org/10.3390/computers14050177
Al Alawi AM, Al Abdali M, Al Mezeini AZA, Al Rawahia T, Al Amri E, Al Salmani M, Al-Falahi Z, Al Zaabi A, Al Aamri A, Al Farhan H, et al. Development and Evaluation of a Machine Learning Model for Predicting 30-Day Readmission in General Internal Medicine. Computers. 2025; 14(5):177. https://doi.org/10.3390/computers14050177
Chicago/Turabian StyleAl Alawi, Abdullah M., Mariya Al Abdali, Al Zahraa Ahmed Al Mezeini, Thuraiya Al Rawahia, Eid Al Amri, Maisam Al Salmani, Zubaida Al-Falahi, Adhari Al Zaabi, Amira Al Aamri, Hatem Al Farhan, and et al. 2025. "Development and Evaluation of a Machine Learning Model for Predicting 30-Day Readmission in General Internal Medicine" Computers 14, no. 5: 177. https://doi.org/10.3390/computers14050177
APA StyleAl Alawi, A. M., Al Abdali, M., Al Mezeini, A. Z. A., Al Rawahia, T., Al Amri, E., Al Salmani, M., Al-Falahi, Z., Al Zaabi, A., Al Aamri, A., Al Farhan, H., & Al Maqbali, J. S. (2025). Development and Evaluation of a Machine Learning Model for Predicting 30-Day Readmission in General Internal Medicine. Computers, 14(5), 177. https://doi.org/10.3390/computers14050177