Model for Agricultural Production in Colombia Using a Neuro-Fuzzy Inference System
Abstract
:1. Introduction
1.1. Related Works
Forecasting Approach
1.2. Approach and Paper Organization
2. Neuro-Fuzzy Systems and Clustering
- Layer 1: The function parameters are fitted in every node in this layer. The membership degree value provided by the membership functions’ input is each node’s output. At this stage, and correspond to fuzzy sets.
- Layer 2: Each node located this layer is not adaptive-type. Outputs are the result of multiplying the signals entering the respective node.
- Layer 3: In this layer, each node is fixed (not adaptive-type). The normalized firing strength of the i-th rule in each node is normalized.
- Layer 4: All nodes in this layer are matched to an output-defined function. These nodes have a function defined as , where is the output function of the respective rule i.
- Layer 5: In this layer, the node is fixed and generates the system output by summing all signals coming from the preceding nodes [89].
Fuzzy C-Means
3. Methodology
- Data collection: Data collected by the National Administrative Department of Statistics in the 2019 National Agricultural Survey were used. These data provide information on the agricultural production of various products in the five natural Colombian regions from 2012 to 2019.To carry out the training process, all input and output variables are normalized to have values between 0 and 1, and then for the simulation, they are scaled to their real values. Data imputation is also performed.
- Model development: The model is implemented using neuro-fuzzy systems. The output corresponds to the production of the respective agricultural product in tons. The neuro-fuzzy models are developed using of the data for training. Different input–output configurations are proposed.
- Validation and evaluation: In this stage, of the data are used for validation. Tables are built to show the mean squared error (MSE) results for training and validation data, where the minimum, maximum, average, and standard deviation (STD) values are presented. To determine the best configuration of the neuro-fuzzy system, an experimental design is performed considering different configurations.
- Analysis of results: The best model can be determined by considering the best values obtained from the MSE in validation. Additionally, to obtain better interpretability, the Sugeno-type system obtained is converted to Mamdani, with linear functions and output constants. According to the output membership functions resulting from the systems, their capacity to fit the data and interpret it is analyzed.
4. Dataset
- Type of product: banana, cocoa, coffee, sugar cane, orange, and plantain.
- Natural region of Colombia: Andean, Caribbean, Pacific, Orinoco, and Amazon.
- Year of production (optional): from 2012 to 2019.
- Planted area: in hectares.
- Productive area: in hectares.
- Previous production value (optional): in tons.
5. Models Description and Implementation
- : entries associated with each product encoded in binary.
- : entries associated with each region encoded in binary.
- U: input associated with the year in which the production measurement is made.
- : planted area (input).
- : productive area (input).
- Y: output corresponding to production.
- : entries associated with each product encoded in binary.
- : entries associated with each region encoded in binary.
- T: the previous value of the output.
- : planted area (input).
- : productive area (input).
- Y: output corresponding to production.
- X: input associated with each product coded according to its production level (from lowest to highest).
- W: input associated with each region coded according to its production level (from lowest to highest).
- U: input associated with the year in which the production measurement is made.
- : planted area (input).
- : productive area (input).
- Y: output corresponding to production.
- X: input associated with each product coded according to its production level (from lowest to highest).
- W: entries associated with each region coded according to its production level (from lowest to highest).
- T: previous value of the output.
- : planted area (input).
- : productive area (input).
- Y: output corresponding to production.
5.1. Implementation Process
- Output membership functions: linear and constant.
- Number of clusters: 2, 3, 4, and 5.
- Fuzzy partition exponent: 1.1, 2, 3, and 4.
5.1.1. Implementation for Model
- Linear:
- –
- MSE training: .
- –
- MSE validation: .
- Constant:
- –
- MSE training: .
- –
- MSE validation: .
5.1.2. Implementation for Model
- Linear:
- –
- MSE training: .
- –
- MSE validation: .
- Constant:
- –
- MSE training: .
- –
- MSE validation: .
5.1.3. Implementation for Model
- Linear:
- –
- MSE training: .
- –
- MSE validation: .
- Constant:
- –
- MSE training: .
- –
- MSE validation: .
5.1.4. Implementation for Model
- Linear:
- –
- MSE training: .
- –
- MSE validation: .
- Constant:
- –
- MSE training: .
- –
- MSE validation: .
6. Comparison Results
7. Alternative for Training and Testing Data Selection
- Linear:
- –
- MSE training: .
- –
- MSE validation: .
- Constant:
- –
- MSE training: .
- –
- MSE validation: .
8. Interpretability of Neuro-Fuzzy Models
- FIS-L: system attained by converting the Sugeno system with linear functions at the output.
- FIS-C: system determined from the conversion of the Sugeno system with constant functions at the output.
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, I.; Azam Khan, M. Global Evidence on the Impact of Globalization, Governance, and Financial Development on Economic Growth. J. Knowl. Econ. 2024, 15, 14546–14577. [Google Scholar] [CrossRef]
- Vlahinic Lenz, N.; Fajdetic, B. Does Economic Globalisation Harm Climate? New Evidence from European Union. Energies 2022, 15, 6699. [Google Scholar] [CrossRef]
- Matenda1, F.R.; Raihan, A.; Zhou, H.; Sibanda, M. The infuence of economic growth, fossil and renewable energy, technological innovation, and globalisation on carbon dioxide emissions in South Africa. Carb. Res. 2024, 3, 69. [Google Scholar] [CrossRef]
- Ahmed, Z.; Zhang, B.; Cary, M. Linking economic globalization, economic growth, financial development, and ecological footprint: Evidence from symmetric and asymmetric ARDL. Ecol. Indic. 2021, 121, 107060. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Ozdeser, H.; Ojekemi, O.S.; Adeshola, I.; Ramzan, M. Environmental sustainability in Vietnam: Evaluating the criticality of economic globalisation, renewable energy, and natural resources. Environ. Sci. Pollut. Res. 2023, 30, 75581–75594. [Google Scholar] [CrossRef]
- Jameel, R.; Naqve, M.; Zia, M.A.; Mahmood, A.; Javaid, M.M.; Nadeem, M.A. Crop Management for Sustainable Wheat Production; Springer International Publishing: Cham, Switzerland, 2023; pp. 107–123. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Pham, Y.; Reardon-Smith, K.; Mushtaq, S. The impact of climate change and variability on coffee production: A systematic review. Clim. Chang. 2019, 156, 609–630. [Google Scholar] [CrossRef]
- Hussain, J.; Khaliq, T.; Ahmad, A. Wheat Responses to Climate Change and Its Adaptations: A Focus on Arid and Semi-arid Environment. Int. J. Environ. Res. 2018, 12, 117–126. [Google Scholar] [CrossRef]
- Hussain, J.; Hussain, S.; Tahir, N.; Rasool, I.; Ullah, A.; Ahmad, S. Climate Change and Rice Production: Impacts and Adaptations. Modern Techniques of Rice Crop Production; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef]
- Simon, A.; Moraru, P.; Ceclan, A.; Russu, F.; Cheţan, F.; Bardaş, M.; Popa, A.; Rusu, T.; Pop, A.I.; Bogdan, I. The Impact of Climatic Factors on the Development Stages of Maize Crop in the Transylvanian Plain. Agronomy 2023, 13, 1612. [Google Scholar] [CrossRef]
- Grüter, R.; Trachsel, T.; Laube, P.; Jaisli, I. Expected global suitability of coffee, cashew and avocado due to climate change. PLoS ONE 2022, 17, e0261976. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Azam-Ali, S.N.; Gregory, P.J.; Jahanshiri, E. Diversifying the UK Agrifood System: A Role for Neglected and Underutilised Crops. Agronomy 2024, 14, 853. [Google Scholar] [CrossRef]
- Reina, J.V.; Garzón, J.C.; Schulz, K.; Rüttinger, L.; Mosello, B.; Ivleva, D.; Buderath, M.; Gorricho, J. Un Clima Peligroso: Deforestación, Cambio Climático y Violencia Contra los Defensores Ambientales en la Amazonía Colombiana; Technical Report; WWF Colombia, WWF Alemania, Tropenbos, FCDS— Fundación Conservación y Desarrollo Sostenible, FZS—Frankfurt Zoological Society, GAIA Amazonas, ACT (Amazon Conservation Team) Colombia: Berlin, Germany, 2021. [Google Scholar]
- Instituto de Hidrología. Informe del Estado del Ambiente y los Recursos Naturales Renovables, 2022; Technical Report; IDEAM: Bogotá, Colombia, 2024.
- Martín-López, J.M.; Verchot, L.V.; Martius, C.; da Silva, M. Modeling the Spatial Distribution of Soil Organic Carbon and Carbon Stocks in the Casanare Flooded Savannas of the Colombian Llanos. Wetlands 2023, 43, 65. [Google Scholar] [CrossRef]
- Parra-Londono, S.; Tigreros, J.A.; Montoya-Correa, C.A. Colombian Crop Resilience: Evaluating National Yield Stability for Fruit and Vegetable Systems. Agriculture 2024, 14, 1546. [Google Scholar] [CrossRef]
- Anacona Mopan, Y.; Solis Pino, A.; Rubiano-Ovalle, O.; Paz, H.; Ramirez Mejia, I. Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. ISPRS Int. J. Geo. Inf. 2023, 12, 136. [Google Scholar] [CrossRef]
- Cortés-Cataño, C.F.; Foronda-Tobón, Y.; Paez-Ricardo, J.A.; Parra-Herrera, J.E.; Cañon Ayala, M.J. The effect of environmental variations on the production of the principal agricultural products in Colombia. PLoS ONE 2024, 19, e0304035. [Google Scholar] [CrossRef]
- de Estadística, D.A.N. Encuesta Nacional Agropecuaria; Technical Report; DANE: Bogotá, Colombia, 2019.
- The Observatory of Economic Complexity. Coffee in Colombia; Technical Report; OEC: Taipei, Taiwan, 2022. [Google Scholar]
- Organización de las Naciones Unidas Para la Alimentación y Agricultura. Una Introducción a los Conceptos Básicos de la Seguridad Alimentaria; Technical Report; Programa CE-FAO: Rome, Italy, 2011. [Google Scholar]
- Iwegbu, O.; de Mattos, L.B. Financial development, trade globalisation and agricultural output performance among BRICS and WAMZ member countries. SN Bus. Econ. 2022, 2, 89. [Google Scholar] [CrossRef]
- Sánchez, J.; Rodríguez, J.; Espitia, H. Design of a neuro-fuzzy model for agricultural employment in Colombia using fuzzy clustering. AIMS Environ. Sci. 2024, 11, 759–775. [Google Scholar] [CrossRef]
- Gutiérrez-Magaã, S.M.; García-Díaz, N.; Soriano-Equigua, L.; Mata-López, W.A.; García-Virgen, J.; Brizuela-Ramírez, J.E. Neuro-Fuzzy System to Predict Timely Harvest in Stevia Crops. Agriculture 2025, 15, 840. [Google Scholar] [CrossRef]
- Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Mondal, S.; Mondal, S.; Adhikari, S. Applications of Big Data in Various Fields: A Survey. Recent Trends Intell. Enabled Res. 2023, 1446, 221–233. [Google Scholar] [CrossRef]
- Raisinghani, M.; Idemudia, E.; Wang, F. From Big Data to Big Insights: A Synthesis of Real-World Applications of Big Data Analytics. Development Methodologies for Big Data Analytics Systems. Transactions on Computational Science and Computational Intelligence; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Badshah, A.; Daud, A.; Alharbey, R.; Banjar, A.; Bukhari, A.; Alshemaimri, B. Big data applications: Overview, challenges and future. Recent Trends Intell. Enabled Res. 2024, 57, 290. [Google Scholar] [CrossRef]
- Kim, D.; Cho, W.; Na, I.; Na, M.H. Prediction of Live Bulb Weight for Field Vegetables Using Functional Regression Models and Machine Learning Methods. Agriculture 2024, 14, 754. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, S.; Zhang, X. Foreign Trade Survey Data: Do They Help in Forecasting Exports and Imports? J. Syst. Sci. Complex. 2022, 35, 1839–1862. [Google Scholar] [CrossRef]
- Athey, S.; Imbens, G.W. Machine Learning Methods That Economists Should Know About. Annu. Rev. Econ. 2019, 11, 685–725. [Google Scholar] [CrossRef]
- Çağlayan Akay, E.; Yılmaz Soydan, N.T.; Kocarık Gacar, B. Bibliometric analysis of the published literature on machine learning in economics and econometrics. Soc. Netw. Anal. Min. 2022, 12, 109. [Google Scholar] [CrossRef]
- Joshi, A.V. Machine Learning and Artificial Intelligence; Springer Nature Switzerland AG: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Zhu, H. Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. Sustainability 2023, 15, 13592. [Google Scholar] [CrossRef]
- Frison, L.; Gölzhäuser, S.; Bitterling, M.; Kramer, W. Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation. Energy 2024, 307, 132745. [Google Scholar] [CrossRef]
- Das, P.K.; Das, P.K. Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach. J. Quant. Econ. 2024, 22, 439–517. [Google Scholar] [CrossRef]
- González-Orozco, C.E.; Porcel, M.; Byrareddy, V.M.; Rahn, E.; Cardona, W.A.; Salinas Velandia, D.A.; Araujo-Carrillo, G.A.; Kath, J. Preparing Colombian coffee production for climate change: Integrated spatial modelling to identify potential robusta coffee (Coffea canephora P.) growing areas. Clim. Chang. 2024, 177, 67. [Google Scholar] [CrossRef]
- Abdul Baseer, M.; Almunif, A.; Alsaduni, I.; Tazeen, N. Electrical Power Generation Forecasting from Renewable Energy Systems Using Artificial Intelligence Techniques. Energies 2023, 16, 6414. [Google Scholar] [CrossRef]
- Ayaz Atalan, Y.; Atalan, A. Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance. Appl. Sci. 2025, 15, 241. [Google Scholar] [CrossRef]
- Chin, M.Y.; Qin, Y.; Hoy, Z.X.; Farooque, A.A.; Wong, K.Y.; Mong, G.R.; Tan, J.P.; Woon, K.S. Assessing carbon budgets and reduction pathways in different income levels with neural network forecasting. Energy 2024, 305, 132331. [Google Scholar] [CrossRef]
- Wang, D.; Cao, J.; Zhang, B.; Zhang, Y.; Xie, L. A Novel Flexible Geographically Weighted Neural Network for High-Precision PM2.5 Mapping across the Contiguous United States. ISPRS Int. J. Geo. Inf. 2024, 13, 217. [Google Scholar] [CrossRef]
- Sarwar, S.; Aziz, G.; Balsalobre-Lorente, D. Forecasting Accuracy of Traditional Regression, Machine Learning, and Deep Learning: A Study of Environmental Emissions in Saudi Arabia. Sustainability 2023, 15, 14957. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.K.; Kumari, P. A Machine Learning Approach to Forecast the Food Prices for Food Security Issues. In Proceedings of the 11th International Conference on Intelligent Systems and Embedded Design (ISED), Dehradun, India, 15–17 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Li, R.; Shalamzari, M.J.; Ren, Y.; Silakhori, E. Comprehensive Assessment of Drought Susceptibility Using Predictive Modeling, Climate Change Projections, and Land Use Dynamics for Sustainable Management. Land 2025, 14, 337. [Google Scholar] [CrossRef]
- Alhussaini, A.J.; Steele, J.D.; Jawli, A.; Nabi, G. Radiomics Machine Learning Analysis of Clear Cell Renal Cell Carcinoma for Tumour Grade Prediction Based on Intra-Tumoural Sub-Region Heterogeneity. Cancers 2024, 16, 1454. [Google Scholar] [CrossRef]
- Barbieri, F.; Pfeifer, B.E.; Senoner, T.; Dobner, S.; Spitaler, P.; Semsroth, S.; Lambert, T.; Zweiker, D.; Neururer, S.B.; Scherr, D.; et al. A Neuronal Network-Based Score Predicting Survival in Patients Undergoing Aortic Valve Intervention: The ABC-AS Score. J. Clin. Med. 2024, 13, 3691. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.; Al-Timemy, A.H.; et al. A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- Felix, J.; Alexandre, M.; Lima, G.T. Applying Machine Learning Algorithms to Predict the Size of the Informal Economy. Comput. Econ. 2024, 65, 1169–1189. [Google Scholar] [CrossRef]
- El Sakka, M.; Ivanovici, M.; Chaari, L.; Mothe, J. A Review of CNN Applications in Smart Agriculture Using Multimodal Data. Sensors 2025, 25, 472. [Google Scholar] [CrossRef] [PubMed]
- Kayaci Çodur, M. Ensemble Machine Learning Approaches for Prediction of Türkiye’s Energy Demand. Energies 2024, 17, 74. [Google Scholar] [CrossRef]
- Panahi, F.; Ahmed, A.N.; Singh, V.P.; Ehtearm, M.; Elshafie, A.; Torabi Haghighi, A. Predicting freshwater production in seawater greenhouses using hybrid artificial neural network models. J. Clean. Prod. 2021, 329, 129721. [Google Scholar] [CrossRef]
- Das, P.; Jha, G.K.; Lama, A.; Parsad, R. Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil (Lens culinaris Medik.). Agriculture 2023, 13, 596. [Google Scholar] [CrossRef]
- Alshdaifat, S.M.; Aziz, N.H.A.; Alhasnawi, M.Y.; Alharasis, E.E.; Al Qadi, F.; Al Amosh, H. The Role of Digital Technologies in Corporate Sustainability: A Bibliometric Review and Future Research Agenda. J. Risk Finan. Manag. 2024, 17, 509. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X. The Impact of Technological Innovations on Agricultural Productivity and Environmental Sustainability in China. Sustainability 2024, 16, 8480. [Google Scholar] [CrossRef]
- Xiong, R.; Peng, H.; Chen, X.; Shuai, C. Machine learning-enhanced evaluation of food security across 169 economies. Environ. Dev. Sustain. 2024, 26, 26971–27000. [Google Scholar] [CrossRef]
- Flórez, M.; Becerra, O.; Carrillo, E.; Villa, M.; Álvarez, Y.; Suárez, J.; Mendes, F. Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves. ISPRS Int. J. Geo. Inf. 2024, 13, 358. [Google Scholar] [CrossRef]
- Banerjee, R.; Bharti; Das, P.; Khan, S. Crop Yield Prediction Using Artificial Intelligence and Remote Sensing Methods. Artificial Intelligence and Smart Agriculture. Advances in Geographical and Environmental Sciences; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Jabed, M.A.; Azmi Murad, M.A. Crop yield prediction in agriculture: A comprehensive review of machine learning and deep learning approaches, with insights for future research and sustainability. Heliyon 2024, 10, e40836. [Google Scholar] [CrossRef]
- Castillo-Girones, S.; Munera, S.; Martínez-Sober, M.; Blasco, J.; Cubero, S.; Gómez-Sanchis, J. Artificial Neural Networks in Agriculture, the core of artificial intelligence: What, When, and Why. Comput. Electron. Agric. 2025, 230, 109938. [Google Scholar] [CrossRef]
- Kittichotsatsawat, Y.; Tippayawong, N.; Tippayawong, K. Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques. Soil Tillage Res. 2022, 12, 14488. [Google Scholar] [CrossRef] [PubMed]
- Abrougui, K.; Gabsi, K.; Mercatoris, B.; Khemis, C.; Amami, R.; Chehaibi, S. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 2019, 190, 202–208. [Google Scholar] [CrossRef]
- Almady, S.S.; Abdel-Sattar, M.; Al-Sager, S.M.; Al-Hamed, S.A.; Aboukarima, A.M. Employing an Artificial Neural Network Model to Predict Citrus Yield Based on Climate Factors. Agronomy 2024, 14, 1548. [Google Scholar] [CrossRef]
- Thimmegowda, M.N.; Manjunatha, M.H.; Huggi, L.; Shivaramu, H.S.; Soumya, D.V.; Nagesha, L.; Padmashri, H.S. Weather-Based Statistical and Neural Network Tools for Forecasting Rice Yields in Major Growing Districts of Karnataka. Agronomy 2023, 13, 704. [Google Scholar] [CrossRef]
- Satpathi, A.; Setiya, P.; Das, B.; Nain, A.S.; Jha, P.K.; Singh, S.; Singh, S. Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India. Sustainability 2023, 15, 2786. [Google Scholar] [CrossRef]
- Abraham, E.R.; Mendes dos Reis, J.G.; Vendrametto, O.; Oliveira Costa Neto, P.L.D.; Carlo Toloi, R.; Souza, A.E.D.; Oliveira Morais, M.D. Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production. Agriculture 2020, 10, 475. [Google Scholar] [CrossRef]
- Varga, I.; Radocaj, D.; Jurišic, M.; Markulj Kulundžic, A.; Antunovic, M. Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks. Comput. Electron. Agric. 2023, 212, 108076. [Google Scholar] [CrossRef]
- Dhanaraj, R.K.; Chandraprabha, M. Ant lion optimization in deep neural network for forecasting the rice crop yield based on soil nutrients. Prog. Artif. Intell. 2024, 14, 101–116. [Google Scholar] [CrossRef]
- Sannakki, S.; Rajpurohit, V.S.; Sumira, F.; Venkatesh, H. A neural network approach for disease forecasting in grapes using weather parameters. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Beiranvandi, M.; Ahmadi, A.; Nikoloudakis, N. Predictive modeling of Satureja rechingeri essential oil yield and composition under water deficit and soil amendment conditions using artificial neural networks (ANNs). Comput. Electron. Agric. 2024, 222, 109072. [Google Scholar] [CrossRef]
- Sudhamathi, T.; Perumal, K. A novel hybrid DNN-RNN framework for precise crop yield prediction. Int. J. Syst. Assur. Eng. Manag. 2024, 1–13. [Google Scholar] [CrossRef]
- Chavan, Y.; Swamikan, B.; Gupta, M.; Bobade, S.; Malhan, A. Enhanced Crop Yield Forecasting Using Deep Reinforcement Learning and Multi-source Remote Sensing Data. Remote Sens. Earth Syst. Sci. 2024, 7, 426–442. [Google Scholar] [CrossRef]
- Aslan, M.F.; Sabanci, K.; Aslan, B. Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability 2024, 16, 8277. [Google Scholar] [CrossRef]
- Atsalakis, G. Agriculture Commodity Prices Forecasting Using a Fuzzy Inference System. Agricultural Cooperative Management and Policy. Cooperative Management; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Dutta, A.; Nayak, A.; Aditya; Panda, R.R.; Nagwani, N.K. A Neuro Fuzzy System Based Inflation Prediction of Agricultural Commodities. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, Inida, 1–3 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Abd Elfattah, M.; Ewees, A.; Sayed, G.; Darwish, A.; Ella Hassanien, A. Carbon price time series forecasting utilizing an optimized ANFIS model. Evol. Intell. 2024, 17, 3745–3765. [Google Scholar] [CrossRef]
- Remya, S. An adaptive neuro-fuzzy inference system to monitor and manage the soil quality to improve sustainable farming in agriculture. Soft Comput. 2022, 26, 13119–13132. [Google Scholar] [CrossRef]
- Burmakova, A.; Kalibatiene, D. An ANFIS-based Model to Predict the Oil Spill Consequences on the Ground. In Proceedings of the IEEE Open Conference of Electrical, Electronic and Information Sciences, Vilnius, Lithuania, 22–22 April 2021. [Google Scholar] [CrossRef]
- Ghose, D.K.; Tanaya, K.; Sahoo, A.; Kumar, U. Performance Evaluation of hybrid ANFIS model for Flood Prediction. In Proceedings of the 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022. [Google Scholar] [CrossRef]
- Garg, B.; Sah, T. Prediction of Crop Yield Using Fuzzy-Neural System. In EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing; EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ananthara, M.G.; Arunkumar, T.; Hemavathy, R. CRY—An improved crop yield prediction model using bee hive clustering approach for agricultural data sets. In Proceedings of the 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, India, 21–22 February 2013; pp. 473–478. [Google Scholar] [CrossRef]
- Euzébio, T.A.M.; Ramirez, M.A.P.; Reinecke, S.F.; Hampel, U. Energy Price as an Input to Fuzzy Wastewater Level Control in Pump Storage Operation. IEEE Access 2023, 11, 93701–93712. [Google Scholar] [CrossRef]
- Małlolepsza, O.; Mikołlajewski, D.; Prokopowicz, P. Using Fuzzy Logic to Analyse Weather Conditions. Electronics 2025, 14, 85. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.F.; Gómez, P.I.; Bonet, I.; Sánchez-Pinzón, M.S.; Caraffini, F.; Lochmuller, C. Assessing Climate Transition Risks in the Colombian Processed Food Sector: A Fuzzy Logic and Multi-Criteria Decision-Making Approach. Mathematics 2024, 12, 2713. [Google Scholar] [CrossRef]
- Abrego-Perez, A.L.; Pacheco-Carvajal, N.; Diaz-Jimenez, M.C. Forecasting Agricultural Financial Weather Risk Using PCA and SSA in an Index Insurance Model in Low-Income Economies. Appl. Sci. 2023, 13, 2425. [Google Scholar] [CrossRef]
- Zakri, A.A.; Mustafa, M.W.; Tribowo, I. ANFIS Design Based on Prediction Models for The Photovoltaic System. In Proceedings of the 2019 International Conference on Sustainable Information Engineering and Technology (SIET), Lombok, Indonesia, 28–30 September 2019. [Google Scholar] [CrossRef]
- Suparta, W.; Alhasa, K.M. Modeling of Tropospheric Delays Using ANFIS; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Khalid, E.T.; Jassim, S.A.; Saqaeeyan, S. Fuzzy C-mean clustering technique based visual features fusion for automatic video summarization method. Multimed. Tools Appl. 2024, 83, 87673–87696. [Google Scholar] [CrossRef]
- Fuzzy Logic Designer. Available online: https://la.mathworks.com/help/fuzzy/types-of-fuzzy-inference-systems.html (accessed on 19 July 2024).
Product | ||||||
---|---|---|---|---|---|---|
Banano | 1 | 0 | 0 | 0 | 0 | 0 |
Cocoa | 0 | 1 | 0 | 0 | 0 | 0 |
Coffee | 0 | 0 | 1 | 0 | 0 | 0 |
Sugar cane | 0 | 0 | 0 | 1 | 0 | 0 |
Orange | 0 | 0 | 0 | 0 | 1 | 0 |
Plantain | 0 | 0 | 0 | 0 | 0 | 1 |
Region | |||||
---|---|---|---|---|---|
Andean | 1 | 0 | 0 | 0 | 0 |
Caribbean | 0 | 1 | 0 | 0 | 0 |
Pacific | 0 | 0 | 1 | 0 | 0 |
Orinoco | 0 | 0 | 0 | 1 | 0 |
Amazon | 0 | 0 | 0 | 0 | 1 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0080970067 | 0.0006520287 | 0.0005858619 | 0.0006163937 | 0.0249175713 | 0.0052764293 | 0.0052706751 | 0.0052861664 |
Min | 0.0014464026 | 0.0003501009 | 0.0003490070 | 0.0003447610 | 0.0117108493 | 0.0051697209 | 0.0051806223 | 0.0052047847 |
Mean | 0.0067106225 | 0.0004471362 | 0.0005047289 | 0.0004856341 | 0.0189376298 | 0.0052271251 | 0.0052329461 | 0.0052357157 |
STD | 0.0016604761 | 0.0001058163 | 0.0000907092 | 0.0001115018 | 0.0036777510 | 0.0000277730 | 0.0000244748 | 0.0000259180 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0073218711 | 0.0002474675 | 0.0002564712 | 0.0002637826 | 0.0217646402 | 0.0007907762 | 0.0007628882 | 0.0008177421 |
Min | 0.0023902338 | 0.0001435086 | 0.0001356283 | 0.0001550074 | 0.0123038452 | 0.0005510538 | 0.0005491428 | 0.0005835823 |
Mean | 0.0056626572 | 0.0001842301 | 0.0001735653 | 0.0001830093 | 0.0164622460 | 0.0006806250 | 0.0006540321 | 0.0007090027 |
STD | 0.0015862618 | 0.0000262825 | 0.0000322725 | 0.0000241794 | 0.0042100060 | 0.0000700964 | 0.0000631287 | 0.0000615479 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0045380144 | 0.0001090544 | 0.0001342405 | 0.0001131843 | 0.0211840993 | 0.0006555216 | 0.0006108346 | 0.0010487058 |
Min | 0.0016559719 | 0.0000486169 | 0.0000498980 | 0.0000480308 | 0.0120151509 | 0.0003943222 | 0.0004207806 | 0.0004225335 |
Mean | 0.0038691020 | 0.0000785151 | 0.0000855817 | 0.0000845127 | 0.0130940059 | 0.0005117056 | 0.0005137023 | 0.0005594526 |
STD | 0.0007621738 | 0.0000165233 | 0.0000161395 | 0.0000155993 | 0.0024534777 | 0.0000624163 | 0.0000500255 | 0.0001286913 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0060855859 | 0.0000606032 | 0.0000611575 | 0.0000671140 | 0.0231051217 | 0.0010458541 | 0.0005400185 | 0.0005874693 |
Min | 0.0009424633 | 0.0000362497 | 0.0000366652 | 0.0000369707 | 0.0027984844 | 0.0004273985 | 0.0003833400 | 0.0003728754 |
Mean | 0.0036256780 | 0.0000495981 | 0.0000449943 | 0.0000463380 | 0.0123707484 | 0.0005140109 | 0.0004550287 | 0.0004679564 |
STD | 0.0012175436 | 0.0000074309 | 0.0000058180 | 0.0000076688 | 0.0041170621 | 0.0001340749 | 0.0000406167 | 0.0000628095 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0177270665 | 0.0017306865 | 0.0016536181 | 0.0016825147 | 0.0380765329 | 0.0033676067 | 0.0033351392 | 0.0033845704 |
Min | 0.0049653296 | 0.0007409856 | 0.0007724999 | 0.0009364512 | 0.0262334413 | 0.0032905059 | 0.0032860476 | 0.0032862555 |
Mean | 0.0147951478 | 0.0013472609 | 0.0014447894 | 0.0013908057 | 0.0323204918 | 0.0033077720 | 0.0033054794 | 0.0033150417 |
STD | 0.0029340639 | 0.0002370994 | 0.0002461751 | 0.0002274188 | 0.0038952120 | 0.0000159508 | 0.0000134508 | 0.0000277304 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0161630609 | 0.0015018339 | 0.0016231431 | 0.0031428354 | 0.0386211841 | 0.0013500815 | 0.0014401097 | 0.0011474682 |
Min | 0.0049583293 | 0.0004787222 | 0.0003209476 | 0.0003192737 | 0.0262220038 | 0.0007167421 | 0.0007071209 | 0.0007056395 |
Mean | 0.0129764764 | 0.0008683176 | 0.0011153713 | 0.0009696354 | 0.0304980798 | 0.0008774251 | 0.0009008648 | 0.0008391093 |
STD | 0.0029232616 | 0.0002887291 | 0.0003697260 | 0.0006032062 | 0.0049499088 | 0.0001941584 | 0.0001999813 | 0.0001262611 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0115235927 | 0.0048586801 | 0.0026209845 | 0.0131033631 | 0.0373192962 | 0.0011724928 | 0.0011374321 | 0.0020260329 |
Min | 0.0030184090 | 0.0003339608 | 0.0003691388 | 0.0002626520 | 0.0259555461 | 0.0007780004 | 0.0006801332 | 0.0007437698 |
Mean | 0.0094294556 | 0.0017391407 | 0.0010667581 | 0.0021194622 | 0.0275721857 | 0.0009383672 | 0.0009151844 | 0.0010106556 |
STD | 0.0025344718 | 0.0014325040 | 0.0005853278 | 0.0027979129 | 0.0032272685 | 0.0001131231 | 0.0001031128 | 0.0002552771 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0146152499 | 0.0239827729 | 0.0023409806 | 0.0092491020 | 0.0372450722 | 0.0019471766 | 0.0010586234 | 0.0017299126 |
Min | 0.0027474770 | 0.0003747091 | 0.0003172813 | 0.0004326232 | 0.0072052374 | 0.0005863290 | 0.0005309827 | 0.0005327444 |
Mean | 0.0094949746 | 0.0020764764 | 0.0009556653 | 0.0015936895 | 0.0257768722 | 0.0009473666 | 0.0008034998 | 0.0008209868 |
STD | 0.0029479844 | 0.0051699035 | 0.0005913655 | 0.0020833794 | 0.0062185545 | 0.0003490905 | 0.0001212417 | 0.0002468106 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0043934754 | 0.0006233736 | 0.0006295172 | 0.0005384344 | 0.0293803543 | 0.0055045847 | 0.0054772233 | 0.0057506063 |
Min | 0.0029855557 | 0.0003555075 | 0.0003483190 | 0.0003494133 | 0.0115164188 | 0.0049961235 | 0.0050100447 | 0.0050115597 |
Mean | 0.0041232171 | 0.0004068735 | 0.0004425067 | 0.0004043567 | 0.0236613301 | 0.0051179760 | 0.0050968506 | 0.0051524248 |
STD | 0.0003276122 | 0.0000666921 | 0.0000907333 | 0.0000507982 | 0.0052578472 | 0.0001238407 | 0.0001037868 | 0.0001743111 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0041614789 | 0.0004674037 | 0.0004165398 | 0.0004781249 | 0.0255641611 | 0.0034971303 | 0.0035295927 | 0.0035163343 |
Min | 0.0027758755 | 0.0001358777 | 0.0001239747 | 0.0001173833 | 0.0163570851 | 0.0007398282 | 0.0007050922 | 0.0007424269 |
Mean | 0.0032761198 | 0.0002261646 | 0.0002160883 | 0.0002296571 | 0.0203340710 | 0.0024660962 | 0.0028801868 | 0.0025841186 |
STD | 0.0006050975 | 0.0001130203 | 0.0000984471 | 0.0001305877 | 0.0036724829 | 0.0010968779 | 0.0010478754 | 0.0011448758 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0028167201 | 0.0001171199 | 0.0001098330 | 0.0002845319 | 0.0239702270 | 0.0035729387 | 0.0036808833 | 0.0033936204 |
Min | 0.0010043421 | 0.0000352087 | 0.0000490594 | 0.0000498544 | 0.0144242214 | 0.0005373898 | 0.0005598528 | 0.0005331879 |
Mean | 0.0026057086 | 0.0000726908 | 0.0000656849 | 0.0000800069 | 0.0178406682 | 0.0012369186 | 0.0011307390 | 0.0011542260 |
STD | 0.0004307405 | 0.0000218625 | 0.0000158173 | 0.0000502282 | 0.0016170392 | 0.0008345779 | 0.0007968789 | 0.0007561475 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0028387853 | 0.0000411117 | 0.0000468695 | 0.0000436516 | 0.0176777479 | 0.0033342812 | 0.0032632847 | 0.0031787204 |
Min | 0.0005556958 | 0.0000146977 | 0.0000192886 | 0.0000153475 | 0.0081891746 | 0.0003173075 | 0.0003215709 | 0.0005053861 |
Mean | 0.0023273360 | 0.0000304944 | 0.0000287421 | 0.0000297959 | 0.0162558365 | 0.0008894551 | 0.0009721553 | 0.0007936620 |
STD | 0.0007763069 | 0.0000065186 | 0.0000075674 | 0.0000071628 | 0.0023087981 | 0.0007353002 | 0.0007013533 | 0.0006100003 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0025004015 | 0.0012171711 | 0.0012486271 | 0.0012544732 | 0.0200408172 | 0.0080520530 | 0.0079636284 | 0.0082941530 |
Min | 0.0017151553 | 0.0003584566 | 0.0003429069 | 0.0003413725 | 0.0044835418 | 0.0076621132 | 0.0076718162 | 0.0076801546 |
Mean | 0.0019799632 | 0.0005580612 | 0.0006626626 | 0.0005890328 | 0.0146996705 | 0.0077323982 | 0.0077181862 | 0.0077600574 |
STD | 0.0002396672 | 0.0002021701 | 0.0002678870 | 0.0002564924 | 0.0050679074 | 0.0000931165 | 0.0000656214 | 0.0001422642 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0025334958 | 0.0057841969 | 0.0086395508 | 0.0235916360 | 0.0173879882 | 0.0055505935 | 0.0055594446 | 0.0055526054 |
Min | 0.0017628329 | 0.0003211319 | 0.0003893655 | 0.0002791330 | 0.0075944727 | 0.0009849162 | 0.0009187042 | 0.0009509613 |
Mean | 0.0023136221 | 0.0013952595 | 0.0016740056 | 0.0023678043 | 0.0102814095 | 0.0038696104 | 0.0046698654 | 0.0040424918 |
STD | 0.0002383873 | 0.0012532080 | 0.0017825421 | 0.0050587283 | 0.0036520839 | 0.0019060835 | 0.0016200637 | 0.0019767727 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0025996079 | 0.0072061428 | 0.0093240427 | 0.1591769209 | 0.0177997723 | 0.0057965730 | 0.0058095432 | 0.0055260254 |
Min | 0.0012774951 | 0.0008266469 | 0.0004873639 | 0.0006863235 | 0.0023396645 | 0.0008652328 | 0.0009536177 | 0.0009072779 |
Mean | 0.0023362433 | 0.0019367101 | 0.0023185716 | 0.0098046723 | 0.0078798024 | 0.0021384581 | 0.0019968072 | 0.0020126783 |
STD | 0.0002543260 | 0.0014902849 | 0.0020416854 | 0.0351940641 | 0.0026174278 | 0.0015932382 | 0.0013030162 | 0.0011910029 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0066337975 | 0.0069880224 | 0.0757956205 | 0.0031532754 | 0.0168650985 | 0.0061098327 | 0.0066425154 | 0.0062429654 |
Min | 0.0012631418 | 0.0008839887 | 0.0006815937 | 0.0012493217 | 0.0022755568 | 0.0008785804 | 0.0006645863 | 0.0005455133 |
Mean | 0.0025081702 | 0.0024120951 | 0.0063911199 | 0.0020131347 | 0.0069720418 | 0.0016237977 | 0.0022132220 | 0.0015372202 |
STD | 0.0010402884 | 0.0016886826 | 0.0167336134 | 0.0004807928 | 0.0031121560 | 0.0015011146 | 0.0020694847 | 0.0012245736 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0069982325 | 0.0044072995 | 0.0029144193 | 0.0043935860 | 0.0119370878 | 0.0109344334 | 0.0078518059 | 0.0078569119 |
Min | 0.0053127815 | 0.0025352697 | 0.0023432721 | 0.0023304691 | 0.0113277092 | 0.0079464922 | 0.0076566094 | 0.0077534165 |
Mean | 0.0064576709 | 0.0036425895 | 0.0024385145 | 0.0025172939 | 0.0116541721 | 0.0092527565 | 0.0077944349 | 0.0078061320 |
STD | 0.0006455609 | 0.0005778870 | 0.0001791452 | 0.0004676873 | 0.0002782727 | 0.0013988212 | 0.0000536557 | 0.0000208386 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0064857536 | 0.0023260011 | 0.0017355063 | 0.0017512598 | 0.0123169849 | 0.0079584507 | 0.0048800610 | 0.0046525032 |
Min | 0.0064855693 | 0.0011245956 | 0.0008549682 | 0.0009070289 | 0.0123119506 | 0.0064035964 | 0.0043256984 | 0.0043299794 |
Mean | 0.0064856187 | 0.0017165399 | 0.0012871068 | 0.0015373040 | 0.0123143437 | 0.0073239501 | 0.0044097660 | 0.0044146060 |
STD | 0.0000000583 | 0.0002326932 | 0.0003444591 | 0.0002368792 | 0.0000023760 | 0.0002998893 | 0.0001240684 | 0.0000902811 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0064857149 | 0.0018103145 | 0.0011540461 | 0.0011394766 | 0.0123188079 | 0.0050374271 | 0.0039618373 | 0.0040610837 |
Min | 0.0064643914 | 0.0012150584 | 0.0005462101 | 0.0004670573 | 0.0123140631 | 0.0045186805 | 0.0023164727 | 0.0023652725 |
Mean | 0.0064844557 | 0.0015622306 | 0.0008899317 | 0.0008583213 | 0.0123147456 | 0.0048044510 | 0.0032953912 | 0.0029579023 |
STD | 0.0000047237 | 0.0001604705 | 0.0001624248 | 0.0001883688 | 0.0000010522 | 0.0001379490 | 0.0004582761 | 0.0005270630 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0064846653 | 0.0014671957 | 0.0007941515 | 0.0007146169 | 0.0123109728 | 0.0045526289 | 0.0027694723 | 0.0027418833 |
Min | 0.0057198122 | 0.0012111682 | 0.0002903829 | 0.0002635031 | 0.0082344246 | 0.0044703654 | 0.0017080855 | 0.0017304822 |
Mean | 0.0063699165 | 0.0013111511 | 0.0004796575 | 0.0004897928 | 0.0116994137 | 0.0045110743 | 0.0022679496 | 0.0022310550 |
STD | 0.0002801882 | 0.0000622567 | 0.0001240400 | 0.0001149768 | 0.0014933809 | 0.0000225322 | 0.0002620396 | 0.0002977945 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0172352278 | 0.0122765967 | 0.0064946191 | 0.0121738573 | 0.0224340945 | 0.0291427487 | 0.0120644621 | 0.0121034889 |
Min | 0.0152803532 | 0.0063540796 | 0.0056154445 | 0.0055803549 | 0.0212473722 | 0.0124733872 | 0.0098370246 | 0.0110405045 |
Mean | 0.0163954571 | 0.0088372379 | 0.0057546236 | 0.0060467222 | 0.0219563922 | 0.0200806291 | 0.0114545983 | 0.0116125450 |
STD | 0.0008384501 | 0.0018361548 | 0.0002853881 | 0.0014635442 | 0.0004787592 | 0.0077178175 | 0.0006250579 | 0.0002143604 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0133220201 | 0.0072065295 | 0.0049744339 | 0.0052839471 | 0.0267205716 | 0.0165710026 | 0.0104229922 | 0.0094742808 |
Min | 0.0133170225 | 0.0025137405 | 0.0015224211 | 0.0018813195 | 0.0267113535 | 0.0124020612 | 0.0088845156 | 0.0087871646 |
Mean | 0.0133192786 | 0.0055544990 | 0.0032927033 | 0.0043509156 | 0.0267169661 | 0.0130355495 | 0.0091337105 | 0.0091131271 |
STD | 0.0000015980 | 0.0009132302 | 0.0013481999 | 0.0009846865 | 0.0000034036 | 0.0010974823 | 0.0003228145 | 0.0001548588 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0133465021 | 0.0548908212 | 0.0055334731 | 0.0056975141 | 0.0267270703 | 0.0127582696 | 0.0088304911 | 0.0081842984 |
Min | 0.0133253104 | 0.0053407206 | 0.0013708250 | 0.0010200057 | 0.0267112382 | 0.0111728886 | 0.0052701950 | 0.0052908074 |
Mean | 0.0133416334 | 0.0111383126 | 0.0032425136 | 0.0030137443 | 0.0267139164 | 0.0123813723 | 0.0069063848 | 0.0062151911 |
STD | 0.0000039935 | 0.0119201163 | 0.0011019821 | 0.0013588233 | 0.0000037412 | 0.0004618051 | 0.0010659602 | 0.0009436170 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0133356916 | 0.1606264866 | 0.0058242326 | 0.0062292837 | 0.0267069815 | 0.0126451056 | 0.0064600390 | 0.0064658082 |
Min | 0.0117594177 | 0.0045636519 | 0.0008688279 | 0.0006732161 | 0.0159652613 | 0.0125385554 | 0.0043919896 | 0.0040299573 |
Mean | 0.0130993767 | 0.0371743021 | 0.0027645668 | 0.0029558510 | 0.0250956281 | 0.0125947296 | 0.0051014085 | 0.0051233568 |
STD | 0.0005765763 | 0.0503018352 | 0.0014379277 | 0.0016549429 | 0.0039345795 | 0.0000275380 | 0.0006025698 | 0.0007006443 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0048506596 | 0.0015469246 | 0.0015480940 | 0.0017401581 | 0.0178432591 | 0.0111986106 | 0.0097820331 | 0.0088869809 |
Min | 0.0048506304 | 0.0012754479 | 0.0012626486 | 0.0012602458 | 0.0178432500 | 0.0096069131 | 0.0086511995 | 0.0081913207 |
Mean | 0.0048506367 | 0.0014055594 | 0.0013655549 | 0.0015285514 | 0.0178432548 | 0.0099709277 | 0.0093596313 | 0.0084057658 |
STD | 0.0000000085 | 0.0001149538 | 0.0001067231 | 0.0001859197 | 0.0000000018 | 0.0003142496 | 0.0003490482 | 0.0003096864 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0048484363 | 0.0016329469 | 0.0016935848 | 0.0016138973 | 0.0178522968 | 0.0061628552 | 0.0056893464 | 0.0079089000 |
Min | 0.0048484322 | 0.0015103215 | 0.0016644175 | 0.0008647555 | 0.0178513826 | 0.0061492122 | 0.0056151903 | 0.0048539310 |
Mean | 0.0048484346 | 0.0015829170 | 0.0016753089 | 0.0010192659 | 0.0178518055 | 0.0061552988 | 0.0056652303 | 0.0077344605 |
STD | 0.0000000018 | 0.0000444477 | 0.0000086412 | 0.0001466348 | 0.0000002461 | 0.0000041701 | 0.0000141565 | 0.0006782212 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0048482991 | 0.0014018601 | 0.0014409998 | 0.0013582577 | 0.0287252744 | 0.0057405322 | 0.0108752987 | 0.0105797261 |
Min | 0.0033456302 | 0.0012224327 | 0.0012299191 | 0.0007079524 | 0.0050223410 | 0.0056009590 | 0.0054390467 | 0.0015664727 |
Mean | 0.0039960672 | 0.0012871517 | 0.0013648569 | 0.0012148570 | 0.0105779337 | 0.0056358986 | 0.0098777599 | 0.0059346292 |
STD | 0.0007045022 | 0.0000622807 | 0.0000914213 | 0.0002153173 | 0.0073881520 | 0.0000258046 | 0.0018572749 | 0.0026029491 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0047792054 | 0.0011756434 | 0.0012008834 | 0.0012184889 | 0.0287250489 | 0.0057751863 | 0.0106043722 | 0.0105243163 |
Min | 0.0033373937 | 0.0011137324 | 0.0010482460 | 0.0003951683 | 0.0050283807 | 0.0057261509 | 0.0104706630 | 0.0017787307 |
Mean | 0.0039215831 | 0.0011469064 | 0.0011778816 | 0.0008540607 | 0.0062237791 | 0.0057414341 | 0.0105654177 | 0.0047988146 |
STD | 0.0004966080 | 0.0000197239 | 0.0000387720 | 0.0002731092 | 0.0052962689 | 0.0000146702 | 0.0000265286 | 0.0023025050 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0013853527 | 0.0027097016 | 0.0027802999 | 0.0024513282 | 0.0076208483 | 0.0101675704 | 0.0101137009 | 0.0107280161 |
Min | 0.0013825454 | 0.0010521765 | 0.0009316701 | 0.0008875321 | 0.0076208373 | 0.0092721406 | 0.0092977764 | 0.0089434370 |
Mean | 0.0013851873 | 0.0019912551 | 0.0020739087 | 0.0014539695 | 0.0076208389 | 0.0099682814 | 0.0096148623 | 0.0101331653 |
STD | 0.0000006228 | 0.0006970058 | 0.0005801907 | 0.0005032252 | 0.0000000029 | 0.0002441021 | 0.0001789323 | 0.0007498761 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0013959173 | 0.0040678350 | 0.0024629558 | 0.0418754454 | 0.0076244810 | 0.0026626105 | 0.0035996567 | 0.0108567520 |
Min | 0.0013957871 | 0.0010439709 | 0.0022345675 | 0.0009070154 | 0.0076234150 | 0.0026339686 | 0.0032497170 | 0.0056295300 |
Mean | 0.0013958398 | 0.0021272849 | 0.0022622197 | 0.0051085485 | 0.0076237915 | 0.0026445806 | 0.0034718168 | 0.0104920583 |
STD | 0.0000000631 | 0.0011529093 | 0.0000484240 | 0.0091267681 | 0.0000004332 | 0.0000100515 | 0.0000613838 | 0.0011464662 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0013973232 | 0.0736593288 | 0.0073906263 | 0.0037214665 | 0.0182143549 | 0.0065044786 | 0.0042540944 | 0.0086863591 |
Min | 0.0007338815 | 0.0008559171 | 0.0008669978 | 0.0008956907 | 0.0013061990 | 0.0058693040 | 0.0024263960 | 0.0014432050 |
Mean | 0.0011426088 | 0.0057090444 | 0.0020340595 | 0.0017610129 | 0.0042577531 | 0.0062652735 | 0.0039959552 | 0.0058096363 |
STD | 0.0002132448 | 0.0160362096 | 0.0017869834 | 0.0007081161 | 0.0044012690 | 0.0001750238 | 0.0005820412 | 0.0021182686 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0013638019 | 0.0134376327 | 0.0039151203 | 0.0039882157 | 0.0182299648 | 0.0067477803 | 0.0044040427 | 0.0075041045 |
Min | 0.0009420390 | 0.0008632560 | 0.0008559350 | 0.0006603341 | 0.0013047184 | 0.0037314160 | 0.0041232760 | 0.0016793748 |
Mean | 0.0011764402 | 0.0018769806 | 0.0029698930 | 0.0015041857 | 0.0022570614 | 0.0054866117 | 0.0042231588 | 0.0046657596 |
STD | 0.0001270135 | 0.0027839459 | 0.0011450323 | 0.0009118754 | 0.0037632159 | 0.0006430364 | 0.0000479420 | 0.0020469260 |
Linear | Constant | |||
---|---|---|---|---|
Model | Training | Validation | Training | Validation |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0053292600 | 0.0004060109 | 0.0004438863 | 0.0004180377 | 0.0196978942 | 0.0050409284 | 0.0050386693 | 0.0050158100 |
Min | 0.0027803512 | 0.0001827136 | 0.0001819501 | 0.0001812179 | 0.0081160434 | 0.0031746558 | 0.0029127259 | 0.0034310978 |
Mean | 0.0046439670 | 0.0002644968 | 0.0002316052 | 0.0002539799 | 0.0156070691 | 0.0041595898 | 0.0041126637 | 0.0043089835 |
STD | 0.0009531646 | 0.0000784435 | 0.0000745914 | 0.0000930047 | 0.0032238989 | 0.0005918965 | 0.0006206530 | 0.0004791798 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0050750971 | 0.0001243341 | 0.0001405120 | 0.0001257583 | 0.0175915709 | 0.0005825397 | 0.0005492823 | 0.0005491278 |
Min | 0.0009980269 | 0.0000712486 | 0.0000810241 | 0.0000769846 | 0.0090454796 | 0.0004188570 | 0.0004352400 | 0.0004177740 |
Mean | 0.0032113183 | 0.0000989969 | 0.0001078496 | 0.0000973204 | 0.0119598296 | 0.0004916083 | 0.0004760829 | 0.0004715419 |
STD | 0.0011408935 | 0.0000156722 | 0.0000172312 | 0.0000161272 | 0.0029840736 | 0.0000491722 | 0.0000301938 | 0.0000337984 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0027485577 | 0.0000549521 | 0.0000693590 | 0.0000597283 | 0.0153248692 | 0.0004350121 | 0.0005236697 | 0.0005168433 |
Min | 0.0004909324 | 0.0000268831 | 0.0000274818 | 0.0000263048 | 0.0085658775 | 0.0002851397 | 0.0002751776 | 0.0003024105 |
Mean | 0.0023312164 | 0.0000388382 | 0.0000399444 | 0.0000403465 | 0.0104176357 | 0.0003411169 | 0.0003656765 | 0.0003709913 |
STD | 0.0005935942 | 0.0000079775 | 0.0000103665 | 0.0000102101 | 0.0013559253 | 0.0000479596 | 0.0000741969 | 0.0000568863 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0025455464 | 0.0000231807 | 0.0000421453 | 0.0000366212 | 0.0100999430 | 0.0008487727 | 0.0003951713 | 0.0005972200 |
Min | 0.0004977681 | 0.0000129153 | 0.0000057140 | 0.0000063398 | 0.0051396564 | 0.0002645714 | 0.0002067919 | 0.0002349152 |
Mean | 0.0021095840 | 0.0000178495 | 0.0000183418 | 0.0000167561 | 0.0095058617 | 0.0003558566 | 0.0002984997 | 0.0003407384 |
STD | 0.0007972064 | 0.0000029969 | 0.0000074028 | 0.0000066778 | 0.0013287222 | 0.0001256467 | 0.0000504845 | 0.0000877377 |
Clusters | 2 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0235563819 | 0.0112156916 | 0.0105737760 | 0.0117430602 | 0.0455201380 | 0.0229539038 | 0.0230566278 | 0.0232422471 |
Min | 0.0173422891 | 0.0025090957 | 0.0021403051 | 0.0026365829 | 0.0287684057 | 0.0047471863 | 0.0047836978 | 0.0046726179 |
Mean | 0.0218417286 | 0.0055234911 | 0.0059155567 | 0.0062953060 | 0.0386389990 | 0.0193798864 | 0.0201932601 | 0.0199095693 |
STD | 0.0023511721 | 0.0027038297 | 0.0024340078 | 0.0029942847 | 0.0051706466 | 0.0052305545 | 0.0040612598 | 0.0053811967 |
Clusters | 3 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0226924509 | 0.0134878641 | 0.0253683213 | 0.0630020225 | 0.0427741650 | 0.0031073942 | 0.0031819043 | 0.0030090038 |
Min | 0.0067113956 | 0.0028004050 | 0.0036740169 | 0.0030820502 | 0.0291867968 | 0.0017104703 | 0.0018080674 | 0.0018142282 |
Mean | 0.0176036047 | 0.0080245692 | 0.0082541929 | 0.0148593111 | 0.0324997501 | 0.0023298785 | 0.0022610204 | 0.0022041344 |
STD | 0.0036603990 | 0.0031563687 | 0.0052181174 | 0.0159469333 | 0.0047415560 | 0.0004391231 | 0.0003605095 | 0.0002996196 |
Clusters | 4 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.0170129544 | 0.1405747492 | 0.0646945647 | 0.1686702544 | 0.0421768214 | 0.0049480763 | 0.0033480070 | 0.0033080639 |
Min | 0.0026643098 | 0.0027932122 | 0.0027656525 | 0.0038577444 | 0.0244981629 | 0.0019479774 | 0.0018024609 | 0.0015143868 |
Mean | 0.0142102810 | 0.0212833587 | 0.0126934967 | 0.0253835209 | 0.0298068348 | 0.0028120517 | 0.0026689420 | 0.0025681594 |
STD | 0.0044322575 | 0.0333101615 | 0.0152146240 | 0.0413667737 | 0.0031255302 | 0.0006155931 | 0.0004353978 | 0.0004861269 |
Clusters | 5 | |||||||
Output Functions | Linear | Constant | ||||||
Exponent | 1.1 | 2.0 | 3.0 | 4.0 | 1.1 | 2.0 | 3.0 | 4.0 |
Max | 0.2618335799 | 0.0987098440 | 0.1313852727 | 0.0752032269 | 0.0368387540 | 0.0061134887 | 0.0108268125 | 0.0063217016 |
Min | 0.0022546367 | 0.0033117612 | 0.0023646510 | 0.0040732959 | 0.0223592712 | 0.0021569927 | 0.0022836379 | 0.0017891166 |
Mean | 0.0261613324 | 0.0168706148 | 0.0191141660 | 0.0223257217 | 0.0289779644 | 0.0031098090 | 0.0041498095 | 0.0033573824 |
STD | 0.0556222357 | 0.0207570155 | 0.0275837322 | 0.0208547204 | 0.0026656601 | 0.0009840858 | 0.0026467951 | 0.0011534380 |
Linear | Constant | |||
---|---|---|---|---|
Data Selection | Training | Validation | Training | Validation |
Random sampling | ||||
Segmented data |
System | Training | Validation |
---|---|---|
FIS-L | ||
FIS-C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, A.C.; Bejarano, L.A.; Espitia, H.E. Model for Agricultural Production in Colombia Using a Neuro-Fuzzy Inference System. Computers 2025, 14, 168. https://doi.org/10.3390/computers14050168
Gómez AC, Bejarano LA, Espitia HE. Model for Agricultural Production in Colombia Using a Neuro-Fuzzy Inference System. Computers. 2025; 14(5):168. https://doi.org/10.3390/computers14050168
Chicago/Turabian StyleGómez, Andrea C., Lilian A. Bejarano, and Helbert E. Espitia. 2025. "Model for Agricultural Production in Colombia Using a Neuro-Fuzzy Inference System" Computers 14, no. 5: 168. https://doi.org/10.3390/computers14050168
APA StyleGómez, A. C., Bejarano, L. A., & Espitia, H. E. (2025). Model for Agricultural Production in Colombia Using a Neuro-Fuzzy Inference System. Computers, 14(5), 168. https://doi.org/10.3390/computers14050168