Does Cachexia Matter for Glioblastoma Multiforme?
Simple Summary
Abstract
1. Introduction
2. Epidemiology and Challenges of Identifying Cachexia in GBM
3. Treatment and Tumor Related Confounders
4. A Practical Assessment of Cachexia in GBM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- von Haehling, S.; Anker, S.D. Prevalence, Incidence and Clinical Impact of Cachexia: Facts and Numbers-Update 2014. J. Cachexia Sarcopenia Muscle 2014, 5, 261–263. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer Manag. Res. 2020, 12, 5597–5605. [Google Scholar] [CrossRef]
- Gingrich, A.; Volkert, D.; Kiesswetter, E.; Thomanek, M.; Bach, S.; Sieber, C.C.; Zopf, Y. Prevalence and Overlap of Sarcopenia, Frailty, Cachexia and Malnutrition in Older Medical Inpatients. BMC Geriatr. 2019, 19, 120. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Yan, R.; Jia, S.; Lu, D.; Song, W.; Zhang, W.; Sun, J.; Li, D. Comparative Effectiveness of Exercise and Protein-Based Interventions on Muscle Strength, Mass, and Function in Sarcopenia: A Systematic Review and Network Meta-Analysis. J. Nutr. Health Aging 2025, 29, 100718. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Naito, T. Evaluation of the True Endpoint of Clinical Trials for Cancer Cachexia. Asia Pac. J. Oncol. Nurs. 2019, 6, 227–233. [Google Scholar] [CrossRef]
- Dev, R. Measuring Cachexia-Diagnostic Criteria. Ann. Palliat. Med. 2019, 8, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Batsis, J.A.; Donini, L.M.; Gonzalez, M.C.; Siervo, M. Sarcopenic Obesity in Older Adults: A Clinical Overview. Nat. Rev. Endocrinol. 2024, 20, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Pierscianek, D.; Ahmadipour, Y.; Michel, A.; Chihi, M.; Oppong, M.D.; Kebir, S.; Glas, M.; Stuschke, M.; Sure, U.; Jabbarli, R. Preoperative Survival Prediction in Patients With Glioblastoma by Routine Inflammatory Laboratory Parameters. Anticancer. Res. 2020, 40, 1161–1166. [Google Scholar] [CrossRef]
- Barker, T.; Fulde, G.; Moulton, B.; Nadauld, L.D.; Rhodes, T. An Elevated Neutrophil-to-Lymphocyte Ratio Associates with Weight Loss and Cachexia in Cancer. Sci. Rep. 2020, 10, 7535. [Google Scholar] [CrossRef]
- Hung, K.-C.; Sun, C.-K.; Chang, Y.-P.; Wu, J.-Y.; Huang, P.-Y.; Liu, T.-H.; Lin, C.-H.; Cheng, W.-J.; Chen, I.-W. Association of Prognostic Nutritional Index with Prognostic Outcomes in Patients with Glioma: A Meta-Analysis and Systematic Review. Front. Oncol. 2023, 13, 1188292. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Fram, J.; Vail, C.; Roy, I. Assessment of Cancer-Associated Cachexia—How to Approach Physical Function Evaluation. Curr. Oncol. Rep. 2022, 24, 751–761. [Google Scholar] [CrossRef]
- Blauwhoff-Buskermolen, S.; Ruijgrok, C.; Ostelo, R.W.; de Vet, H.C.W.; Verheul, H.M.W.; de van der Schueren, M.A.E.; Langius, J.A.E. The Assessment of Anorexia in Patients with Cancer: Cut-off Values for the FAACT-A/CS and the VAS for Appetite. Support. Care Cancer 2016, 24, 661–666. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Schag, C.C.; Heinrich, R.L.; Ganz, P.A. Karnofsky Performance Status Revisited: Reliability, Validity, and Guidelines. J. Clin. Oncol. 1984, 2, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Tsukamoto, S.; Ishida, Y.; Kobayashi, Y.; Inagaki, Y.; Mano, T.; Kitamura, T.; Seriu, N.; Nakagawa, I.; Kido, A. The Karnofsky Performance Status at Discharge Is a Prognostic Indicator of Life Expectancy in Patients With Glioblastoma. Cureus 2024, 16, e66226. [Google Scholar] [CrossRef]
- Branco, M.G.; Mateus, C.; Capelas, M.L.; Pimenta, N.; Santos, T.; Mäkitie, A.; Ganhão-Arranhado, S.; Trabulo, C.; Ravasco, P. Bioelectrical Impedance Analysis (BIA) for the Assessment of Body Composition in Oncology: A Scoping Review. Nutrients 2023, 15, 4792. [Google Scholar] [CrossRef] [PubMed]
- Alyodawi, K.; Vermeij, W.P.; Omairi, S.; Kretz, O.; Hopkinson, M.; Solagna, F.; Joch, B.; Brandt, R.M.C.; Barnhoorn, S.; van Vliet, N.; et al. Compression of Morbidity in a Progeroid Mouse Model through the Attenuation of Myostatin/Activin Signalling. J. Cachexia Sarcopenia Muscle 2019, 10, 662–686. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Battezzati, A.; Petruzzi, A.; Leone, A.; De Amicis, R.; Tramacere, E.; Meda, M.; Foppiani, A.; Silvani, A.; Lamperti, E. Anthropometrics and Body Composition in Adults with High-Grade Gliomas: Effects of Disease-Related Variables. Nutr. Cancer 2018, 70, 431–440. [Google Scholar] [CrossRef]
- Forrest, N.; Tran, S.; Nandoliya, K.R.; Houskamp, E.J.; Gruchala, T.; Guggilla, V.; Sun, Z.; Lukas, R.; Wainwright, D.; Furmanchuk, A.; et al. A Dynamic Time Warping Extension to Consensus Weight-Based Cachexia Criteria Improves Prediction of Cancer Patient Outcomes. JCSM Commun. 2025, 8, e107. [Google Scholar] [CrossRef]
- Ten Cate, C.; Huijs, S.M.H.; Willemsen, A.C.H.; Pasmans, R.C.O.S.; Eekers, D.B.P.; Zegers, C.M.L.; Ackermans, L.; Beckervordersandforth, J.; van Raak, E.P.M.; Anten, M.H.M.E.; et al. Correlation of Reduced Temporal Muscle Thickness and Systemic Muscle Loss in Newly Diagnosed Glioblastoma Patients. J. Neurooncol. 2022, 160, 611–618. [Google Scholar] [CrossRef]
- Kirk, B.; Cawthon, P.M.; Arai, H.; Ávila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.-K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53, afae052. [Google Scholar] [CrossRef] [PubMed]
- Troschel, F.M.; Troschel, B.O.; Kloss, M.; Jost, J.; Pepper, N.B.; Völk-Troschel, A.S.; Wiewrodt, R.G.; Stummer, W.; Wiewrodt, D.; Eich, H.T. Sarcopenia Is Associated with Chemoradiotherapy Discontinuation and Reduced Progression-Free Survival in Glioblastoma Patients. Strahlenther. Onkol. 2024, 200, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Huq, S.; Khalafallah, A.M.; Ruiz-Cardozo, M.A.; Botros, D.; Oliveira, L.A.P.; Dux, H.; White, T.; Jimenez, A.E.; Gujar, S.K.; Sair, H.I.; et al. A Novel Radiographic Marker of Sarcopenia with Prognostic Value in Glioblastoma. Clin. Neurol. Neurosurg. 2021, 207, 106782. [Google Scholar] [CrossRef]
- Guven, D.C.; Aksun, M.S.; Cakir, I.Y.; Kilickap, S.; Kertmen, N. The Association of BMI and Sarcopenia with Survival in Patients with Glioblastoma Multiforme. Future Oncol. 2021, 17, 4405–4413. [Google Scholar] [CrossRef]
- Yang, C.; Ma, C.; Xu, C.-S.; Li, S.-R.; Li, C.; Wang, Z.-F.; Li, Z.-Q. Comprehensive Evaluation of Frailty and Sarcopenia Markers to Predict Survival in Glioblastoma Patients. J. Cachexia Sarcopenia Muscle 2025, 16, e13809. [Google Scholar] [CrossRef] [PubMed]
- Furtner, J.; Weller, M.; Weber, M.; Gorlia, T.; Nabors, B.; Reardon, D.A.; Tonn, J.C.; Stupp, R.; Preusser, M. EORTC Brain Tumor Group Temporal Muscle Thickness as a Prognostic Marker in Patients with Newly Diagnosed Glioblastoma: Translational Imaging Analysis of the CENTRIC EORTC 26071-22072 and CORE Trials. Clin. Cancer Res. 2022, 28, 129–136. [Google Scholar] [CrossRef]
- Sipos, D.; Raposa, B.L.; Freihat, O.; Simon, M.; Mekis, N.; Cornacchione, P.; Kovács, Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers 2025, 17, 146. [Google Scholar] [CrossRef]
- Takagi, M.; Sagara, A.; Kumakura, Y.; Watanabe, M.; Inoue, R.; Miyazaki, M.; Ohka, F.; Motomura, K.; Natsume, A.; Wakabayashi, T.; et al. Risk Factors for Nausea and Vomiting Requiring the Daily Administration of 5-HT3 Receptor Antagonists in Radiotherapy Combined with Temozolomide for High-Grade Glioma. Nagoya J. Med. Sci. 2024, 86, 304–313. [Google Scholar] [CrossRef]
- Lee, D.-W.; Cho, S.; Shin, A.; Han, S.-W.; Kim, T.-Y. Body Mass Index and Body Weight Change during Adjuvant Chemotherapy in Colon Cancer Patients: Results from the AVANT Trial. Sci. Rep. 2020, 10, 19467. [Google Scholar] [CrossRef]
- Minhajat, R.; Harjianti, T.; Islam, I.C.; Winarta, S.; Liyadi, Y.N.; Bamatraf, N.P.; Amanuddin, R. Bevacizumab Side Effects and Adverse Clinical Complications in Colorectal Cancer Patients: Review Article. Ann. Med. Surg. 2023, 85, 3931–3937. [Google Scholar] [CrossRef]
- Schei, S.; Solheim, O.; Jakola, A.S.; Sagberg, L.M. Perioperative Fatigue in Patients with Diffuse Glioma. J. Neurooncol. 2020, 147, 97–107. [Google Scholar] [CrossRef]
- Kim, J.; Chuang, H.-C.; Wolf, N.K.; Nicolai, C.J.; Raulet, D.H.; Saijo, K.; Bilder, D. Tumor-Induced Disruption of the Blood-Brain Barrier Promotes Host Death. Dev. Cell 2021, 56, 2712–2721.e4. [Google Scholar] [CrossRef] [PubMed]
- Goo, Y.T.; Grigoriev, V.; Korzun, T.; Sharma, K.S.; Singh, P.; Taratula, O.R.; Marks, D.L.; Taratula, O. Blood-Brain Barrier-Penetrating Nanocarriers Enable Microglial-Specific Drug Delivery in Hypothalamic Neuroinflammation. Adv. Heal. Mater. 2025, 14, e2500521. [Google Scholar] [CrossRef] [PubMed]
- Dixit, K.S.; Kumthekar, P.U. Optimal Management of Corticosteroids in Patients with Intracranial Malignancies. Curr. Treat. Options Oncol. 2020, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Advani, S.M.; Advani, P.G.; VonVille, H.M.; Jafri, S.H. Pharmacological Management of Cachexia in Adult Cancer Patients: A Systematic Review of Clinical Trials. BMC Cancer 2018, 18, 1174. [Google Scholar] [CrossRef]
- Ma, K.; Mallidis, C.; Bhasin, S.; Mahabadi, V.; Artaza, J.; Gonzalez-Cadavid, N.; Arias, J.; Salehian, B. Glucocorticoid-Induced Skeletal Muscle Atrophy Is Associated with Upregulation of Myostatin Gene Expression. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E363–E371. [Google Scholar] [CrossRef]
- Bullock, A.F.; Greenley, S.L.; McKenzie, G.A.G.; Paton, L.W.; Johnson, M.J. Relationship between Markers of Malnutrition and Clinical Outcomes in Older Adults with Cancer: Systematic Review, Narrative Synthesis and Meta-Analysis. Eur. J. Clin. Nutr. 2020, 74, 1519–1535. [Google Scholar] [CrossRef]
- Dolan, R.D.; Lim, J.; McSorley, S.T.; Horgan, P.G.; McMillan, D.C. The Role of the Systemic Inflammatory Response in Predicting Outcomes in Patients with Operable Cancer: Systematic Review and Meta-Analysis. Sci. Rep. 2017, 7, 16717. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, E.W.; Kelly, R.; Henderson, L.; Roy, I. Muscle Wasting and Frailty in Head and Neck Cancer. In Head and Neck Cancer Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2025; pp. 75–98. [Google Scholar]
- Viganó, A.; Bruera, E.; Jhangri, G.S.; Newman, S.C.; Fields, A.L.; Suarez-Almazor, M.E. Clinical Survival Predictors in Patients with Advanced Cancer. Arch. Intern. Med. 2000, 160, 861–868. [Google Scholar] [CrossRef]
- Ezzatvar, Y.; Ramírez-Vélez, R.; Sáez de Asteasu, M.L.; Martínez-Velilla, N.; Zambom-Ferraresi, F.; Izquierdo, M.; García-Hermoso, A. Physical Function and All-Cause Mortality in Older Adults Diagnosed With Cancer: A Systematic Review and Meta-Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1447–1453. [Google Scholar] [CrossRef]
- Cheville, A.L.; Alberts, S.R.; Rummans, T.A.; Basford, J.R.; Lapid, M.I.; Sloan, J.A.; Satele, D.V.; Clark, M.M. Improving Adherence to Cancer Treatment by Addressing Quality of Life in Patients With Advanced Gastrointestinal Cancers. J. Pain Symptom Manag. 2015, 50, 321–327. [Google Scholar] [CrossRef]
- Enright, P.L. The Six-Minute Walk Test. Respir. Care 2003, 48, 783–785. [Google Scholar] [PubMed]
- Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci. 2019, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-W.; Dawson, J.K.; Barnes, O.; Wilson, R.L.; Norris, M.K.; Gonzalo-Encabo, P.; Christopher, C.N.; Ficarra, S.; Dieli-Conwright, C.M. Resistance Exercise and Skeletal Muscle-Related Outcomes in Patients with Cancer: A Systematic Review. Med. Sci. Sports Exerc. 2024, 56, 1747–1758. [Google Scholar] [CrossRef]
- Murthy, A.; Simons, M.; Jablonski, A.; Hurd, M.; Shukla, A.; Goncalves, M.D. Cachexia in Clinical Practice: Experience from an Endocrine-Led Care Model. medRxiv 2025. [Google Scholar] [CrossRef]
- Tabei, S.S.; Kataria, R.; Hou, S.; Singh, A.; Al Hameedi, H.; Hasan, D.; Hsieh, M.; Raheem, O.A. Testosterone Replacement Therapy in Patients with Cachexia: A Contemporary Review of the Literature. Sex. Med. Rev. 2024, 12, 469–476. [Google Scholar] [CrossRef]
- Groarke, J.D.; Crawford, J.; Collins, S.M.; Lubaczewski, S.L.; Breen, D.M.; Harrington, M.A.; Jacobs, I.; Qiu, R.; Revkin, J.; Rossulek, M.I.; et al. Phase 2 Study of the Efficacy and Safety of Ponsegromab in Patients with Cancer Cachexia: PROACC-1 Study Design. J. Cachexia Sarcopenia Muscle 2024, 15, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
| Domain | Assessment/Tool | Description | Benefits | Limitations |
|---|---|---|---|---|
| Clinical | Weight history, body mass index | Unintentional weight loss over time | Simple, widely used | May miss sarcopenic obesity or edema masking weight loss [9] |
| Fearon criteria [6] | Consensus-based clinical definition | Standardized criteria for diagnosis | Does not evaluate functional status | |
| Biochemical | C-reactive protein [10] | Marker of systemic inflammation | Accessible and widely used | Nonspecific; elevated in many GBM patients |
| Neutrophil-to-leukocyte ratio [11] | Inflammation-related biomarkers | Obtained on routine labs | Nonspecific | |
| Prognostic nutritional index [12] | Malnutrition assessment using albumin and lymphocyte count | Easy to obtain | Currently with limited evidence | |
| Functional | Barthel index [13] | Monitoring of activities of daily living | Objective, easy for patients to report | Not specific to cancer or cachexia evaluation |
| FAACT, FACT G, EORTC QLQ-C30 [14,15,16] | Questionnaires to assess quality of life and nutrition | Simple, non-invasive | Patient-reported rather than clinician-assessed data | |
| Karnofsky performance status [17] | Functional status scoring system for cancer patients | Clinically useful for tracking performance in patients with GBM [18] | Subjective, affected by tumor-related symptoms | |
| Imaging | CT/MRI-based muscle mass assessment | Cross-sectional cervical muscle area, temporal muscle thickness | Objective and quantitative | Requires advanced imaging |
| Metabolic | Bioelectrical impedance analysis [19] | Estimates body composition | Quick, non-invasive | Not available in all clinical settings |
| Treatment Type | Intervention | Description |
|---|---|---|
| Nutritional Support | Nutritional counseling | Personalized, can help optimize macronutrient and caloric needs |
| Enteral or parenteral nutrition | Alternative forms of nutrition when patients have difficulty with oral intake | |
| Pharmacologic | Appetite stimulants | Some options include olanzapine, dronabinol and cannabis derivatives, and mirtazapine |
| Physical Activity | Regular exercise | Aerobic exercise reduces systemic inflammation [47]. Resistance training preserves or rebuilds muscle mass and improves performance [48]. |
| Physical, occupational, and speech therapy | Improve functional status, mobility, and cognition/communication | |
| Psychosocial | Psychology support | Address depression, anxiety, and coping |
| Palliative care involvement | Align goals of care and decision making, symptom management, and support mechanisms for patients and caregivers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kelly, R.; Henderson, L.; Roy, I. Does Cachexia Matter for Glioblastoma Multiforme? Cancers 2026, 18, 333. https://doi.org/10.3390/cancers18020333
Kelly R, Henderson L, Roy I. Does Cachexia Matter for Glioblastoma Multiforme? Cancers. 2026; 18(2):333. https://doi.org/10.3390/cancers18020333
Chicago/Turabian StyleKelly, Ryan, Lydia Henderson, and Ishan Roy. 2026. "Does Cachexia Matter for Glioblastoma Multiforme?" Cancers 18, no. 2: 333. https://doi.org/10.3390/cancers18020333
APA StyleKelly, R., Henderson, L., & Roy, I. (2026). Does Cachexia Matter for Glioblastoma Multiforme? Cancers, 18(2), 333. https://doi.org/10.3390/cancers18020333

