Minimally Invasive Pancreatoduodenectomy for Pancreatic Cancer: Current Perspectives and Future Directions
Simple Summary
Abstract
1. Introduction
2. Technical Feasibility of MIPD
3. Evidence from RCTs and Meta-Analyses of MIPD vs. OPD
4. Oncologic Outcomes of MIPD Versus OPD in Pancreatic Cancer
5. Special Populations and Expanded Indications
5.1. MIPD After Neoadjuvant Therapy for Borderline/Locally Advanced PDAC
5.2. Frail and Elderly Patients
5.3. Tumors Requiring Vascular Resection
6. Cost and Resource Utilization
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- Fernández-del Castillo, C.; Morales-Oyarvide, V.; McGrath, D.; Wargo, J.A.; Ferrone, C.R.; Thayer, S.P.; Lillemoe, K.D.; Warshaw, A.L. Evolution of the whipple procedure at the massachusetts general hospital. Surgery 2012, 152, S56–S63. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.C.; Wlodarczyk, J.; Abadchi, S.N.; Shababi, N.; Cameron, J.L.; Harmon, J.W. Revolutionary transformation lowering the mortality of pancreaticoduodenectomy: A historical review. eGastroenterology 2023, 1, e100014. [Google Scholar] [CrossRef] [PubMed]
- Del Chiaro, M.; Valente, R.; Arnelo, U. Minimally invasive pancreaticoduodenectomy for the treatment of pancreatic-head and periampullary tumors. JAMA Surg. 2017, 152, 343. [Google Scholar] [CrossRef]
- Kang, C.M.; Lee, W.J. Is laparoscopic pancreaticoduodenectomy feasible for pancreatic ductal adenocarcinoma? Cancers 2020, 12, 3430. [Google Scholar] [CrossRef]
- Miyasaka, Y.; Ohtsuka, T.; Nakamura, M. Minimally invasive surgery for pancreatic cancer. Surg. Today 2021, 51, 194–203. [Google Scholar] [CrossRef]
- van Hilst, J.; de Rooij, T.; Klompmaker, S.; Rawashdeh, M.; Aleotti, F.; Al-Sarireh, B.; Alseidi, A.; Ateeb, Z.; Balzano, G.; Berrevoet, F.; et al. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (diploma): A pan-european propensity score matched study. Ann. Surg. 2019, 269, 10–17. [Google Scholar] [CrossRef]
- Inoue, Y.; Saiura, A.; Yoshioka, R.; Ono, Y.; Takahashi, M.; Arita, J.; Takahashi, Y.; Koga, R. Pancreatoduodenectomy with systematic mesopancreas dissection using a supracolic anterior artery-first approach. Ann. Surg. 2015, 262, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Hwang, H.K.; Rho, S.Y.; Lee, W.J.; Kang, C.M. Comparing laparoscopic and open pancreaticoduodenectomy in patients with pancreatic head cancer: Oncologic outcomes and inflammatory scores. J. Hepatobiliary Pancreat Sci. 2020, 27, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.K.; Song, K.B.; Hong, S.; Park, Y.; Kwak, B.J.; Jun, E.; Lee, W.; Lee, J.H.; Hwang, D.W.; Kim, S.C. Laparoscopic versus open pancreaticoduodenectomy with major vein resection for pancreatic head cancer. J. Hepatobiliary Pancreat Sci. 2023, 30, 970–982. [Google Scholar] [CrossRef]
- Croome, K.P.; Farnell, M.B.; Que, F.G.; Reid-Lombardo, K.M.; Truty, M.J.; Nagorney, D.M.; Kendrick, M.L. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: Oncologic advantages over open approaches? Ann. Surg. 2014, 260, 633–638; discussion 638-640. [Google Scholar] [CrossRef]
- Gagner, M.; Pomp, A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg. Endosc. 1994, 8, 408–410. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Mangano, A.; Bustos, R.E.; Gheza, F.; Fernandes, E.; Masrur, M.A.; Gangemi, A.; Bianco, F.M. Operative technique in robotic pancreaticoduodenectomy (rpd) at university of illinois at chicago (uic): 17 steps standardized technique: Lessons learned since the first worldwide rpd performed in the year 2001. Surg. Endosc. 2018, 32, 4329–4336. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.G.; Kang, C.M. Pitfalls for laparoscopic pancreaticoduodenectomy: Need for a stepwise approach. Ann. Gastroenterol. Surg. 2019, 3, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Wang, R.; Liu, Z.; Zhan, H. Historical development of the da vinci robotic surgical system in pancreaticoduodenectomy. Intell. Surg. 2025, 8, 99–105. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Mangano, A.; Bustos, R.E.; Fernandes, E.; Masrur, M.A.; Valle, V.; Gangemi, A.; Bianco, F.M. Educational step-by-step surgical video about operative technique in robotic pancreaticoduodenectomy (rpd) at university of illinois at chicago (uic): 17 steps standardized technique: Lessons learned since the first worldwide rpd performed in the year 2001. Surg. Endosc. 2020, 34, 2758–2762. [Google Scholar] [CrossRef]
- Choi, M.; Hwang, H.K.; Lee, W.J.; Kang, C.M. Total laparoscopic pancreaticoduodenectomy in patients with periampullary tumors: A learning curve analysis. Surg. Endosc. 2020, 35, 2636–2644. [Google Scholar] [CrossRef]
- Wang, M.; Meng, L.; Cai, Y.; Li, Y.; Wang, X.; Zhang, Z.; Peng, B. Learning curve for laparoscopic pancreaticoduodenectomy: A cusum analysis. J. Gastrointest Surg. 2016, 20, 924–935. [Google Scholar] [CrossRef]
- Chan, K.S.; Wang, Z.K.; Syn, N.; Goh, B.K.P. Learning curve of laparoscopic and robotic pancreas resections: A systematic review. Surgery 2021, 170, 194–206. [Google Scholar] [CrossRef]
- Biau, D.J.; Porcher, R. A method for monitoring a process from an out of control to an in control state: Application to the learning curve. Stat. Med. 2010, 29, 1900–1909. [Google Scholar] [CrossRef]
- Kuroki, T.; Kitasato, A.; Adachi, T.; Tanaka, T.; Hirabaru, M.; Matsushima, H.; Soyama, A.; Hidaka, M.; Takatsuki, M.; Eguchi, S. Learning curve for laparoscopic pancreaticoduodenectomy: A single surgeon’s experience with consecutive patients. Hepatogastroenterology 2014, 61, 838–841. [Google Scholar] [PubMed]
- Lee, J.S.; Hong, T.H. In vivo porcine training model for laparoscopic roux-en-y choledochojejunostomy. Ann. Surg. Treat Res. 2015, 88, 306–310. [Google Scholar] [CrossRef]
- Narumi, S.; Toyoki, Y.; Ishido, K.; Kudo, D.; Umehara, M.; Kimura, N.; Miura, T.; Muroya, T.; Hakamada, K. Introduction of a simulation model for choledocho- and pancreaticojejunostomy. Hepatogastroenterology 2012, 59, 2333–2334. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, J.J.; Kang, C.M.; Hwang, H.K.; Lee, W.J. A dog model of pancreaticojejunostomy without duct-to-mucosa anastomosis. Jop 2012, 13, 30–35. [Google Scholar]
- Kuroki, T.; Fujioka, H. Training for laparoscopic pancreaticoduodenectomy. Surg. Today 2019, 49, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Kang, C.M. Developing an in vivo porcine model of duct-to-mucosa pancreaticojejunostomy (yonsei-pj(dtm)). Ann. Gastroenterol. Surg. 2020, 4, 180–184. [Google Scholar] [CrossRef]
- van Hilst, J.; de Rooij, T.; Bosscha, K.; Brinkman, D.J.; van Dieren, S.; Dijkgraaf, M.G.; Gerhards, M.F.; de Hingh, I.H.; Karsten, T.M.; Lips, D.J.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (leopard-2): A multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 199–207. [Google Scholar] [CrossRef]
- Khachfe, H.H.; Nassour, I.; Hammad, A.Y.; Hodges, J.C.; AlMasri, S.; Liu, H.; deSilva, A.; Kraftician, J.; Lee, K.K.; Pitt, H.A.; et al. Robotic pancreaticoduodenectomy: Increased adoption and improved outcomes: Is laparoscopy still justified? Ann. Surg. 2023, 278, e563–e569. [Google Scholar] [CrossRef]
- Palanivelu, C.; Senthilnathan, P.; Sabnis, S.C.; Babu, N.S.; Srivatsan Gurumurthy, S.; Anand Vijai, N.; Nalankilli, V.P.; Praveen Raj, P.; Parthasarathy, R.; Rajapandian, S. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br. J. Surg. 2017, 104, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Poves, I.; Burdio, F.; Morato, O.; Iglesias, M.; Radosevic, A.; Ilzarbe, L.; Visa, L.; Grande, L. Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: The padulap randomized controlled trial. Ann. Surg. 2018, 268, 731–739. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Chen, R.; Huang, X.; Li, J.; Liu, Y.; Liu, J.; Cheng, W.; Chen, X.; Zhao, W.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours: A multicentre, open-label, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2021, 6, 438–447. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Lee, W.; Kang, C.M.; Hong, T.; Shin, S.H.; Lee, J.W.; Hwang, D.W.; Song, K.B.; Kwon, J.W.; Sung, M.K.; et al. Laparoscopic versus open pancreatoduodenectomy for periampullary tumors: A randomized clinical trial. Int. J. Surg. 2024, 110, 7011–7019. [Google Scholar] [CrossRef]
- Neshan, M.; Padmanaban, V.; Chick, R.C.; Pawlik, T.M. Open vs robotic-assisted pancreaticoduodenectomy, cost-effectiveness and long-term oncologic outcomes: A systematic review and meta-analysis. J. Gastrointest. Surg. 2024, 28, 1933–1942. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Zhuo, Q.; Tang, W.; Wensheng, L.; Shi, Y.; Xu, W.; Gao, H.; Liu, M.; Chen, H.; et al. Laparoscopic versus open pancreatoduodenectomy following neoadjuvant chemotherapy for borderline resectable pancreatic ductal adenocarcinoma: Protocol of a multicenter, open-label randomized clinical trial (cspac-5). Res. Sq. 2024. [Google Scholar] [CrossRef]
- Sattari, S.A.; Sattari, A.R.; Makary, M.A.; Hu, C.; He, J. Laparoscopic versus open pancreatoduodenectomy in patients with periampullary tumors: A systematic review and meta-analysis. Ann. Surg. 2023, 277, 742–755. [Google Scholar] [CrossRef]
- Joseph, N.; Varghese, C.; Lucocq, J.; McGuinness, M.J.; Tingle, S.; Marchegiani, G.; Soreide, K.; Abu-Hilal, M.; Samra, J.; Besselink, M.; et al. Network meta-analysis and trial sequential analysis of randomised controlled trials comparing robotic, laparoscopic, and open pancreatoduodenectomy. Ann. Surg. Open 2024, 5, e507. [Google Scholar] [CrossRef]
- Ielpo, B.; Anselmo, A.; Masuda, Y.; Xuan, M.Y.H.; Burdio, F.; De Blasi, V.; Sanchez-Velazquez, P.; Giuliani, A.; Azagra, J.S.; Viola, G.M.; et al. Superior mesenteric artery first approach for minimally invasive pancreaticoduodenectomy: A step-by-step surgical technique video. Ann. Surg. Oncol. 2023, 30, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Nagakawa, Y.; Watanabe, Y.; Kozono, S.; Boggi, U.; Palanivelu, C.; Liu, R.; Wang, S.E.; He, J.; Nishino, H.; Ohtsuka, T.; et al. Surgical approaches to the superior mesenteric artery during minimally invasive pancreaticoduodenectomy: A systematic review. J. Hepatobiliary Pancreat Sci. 2022, 29, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, D.P.; Adam, M.A.; Youngwirth, L.M.; Ganapathi, A.M.; Roman, S.A.; Tyler, D.S.; Sosa, J.A.; Blazer, D.G. Minimally invasive pancreaticoduodenectomy does not improve use or time to initiation of adjuvant chemotherapy for patients with pancreatic adenocarcinoma. Ann. Surg. Oncol. 2016, 23, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.L.; Zhang, R.C.; Zhou, Y.C. Comparison of overall survival and perioperative outcomes of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. BMC Cancer 2019, 19, 781. [Google Scholar] [CrossRef]
- Da Dong, X.; Felsenreich, D.M.; Gogna, S.; Rojas, A.; Zhang, E.; Dong, M.; Azim, A.; Gachabayov, M. Robotic pancreaticoduodenectomy provides better histopathological outcomes as compared to its open counterpart: A meta-analysis. Sci. Rep. 2021, 11, 3774. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Pan, S.; Qin, T.; Xu, X.; Huang, X.; Liu, J.; Chen, X.; Zhao, W.; Li, J.; Liu, C.; et al. Short-term outcomes following laparoscopic vs open pancreaticoduodenectomy in patients with pancreatic ductal adenocarcinoma: A randomized clinical trial. JAMA Surg. 2023, 158, 1245–1253. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Z.; Zhang, X.; Wang, W.; Han, B.; Chen, X.; Tan, X.; Xu, S.; Zhao, G.; Gao, Y.; et al. Perioperative and oncological outcomes of robotic versus open pancreaticoduodenectomy in low-risk surgical candidates: A multicenter propensity score-matched study. Ann. Surg. 2023, 277, e864–e871. [Google Scholar] [CrossRef]
- Tol, J.A.; Gouma, D.J.; Bassi, C.; Dervenis, C.; Montorsi, M.; Adham, M.; Andren-Sandberg, A.; Asbun, H.J.; Bockhorn, M.; Buchler, M.W.; et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: A consensus statement by the international study group on pancreatic surgery (isgps). Surgery 2014, 156, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Palmer, D.; Jackson, R.; Cox, T.; Neoptolemos, J.P.; Ghaneh, P.; Rawcliffe, C.L.; Bassi, C.; Stocken, D.D.; Cunningham, D.; et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: Ongoing lessons from the espac-3 study. J. Clin. Oncol. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.H.; Jackson, R.; Springfeld, C.; Ghaneh, P.; Rawcliffe, C.; Halloran, C.M.; Faluyi, O.; Cunningham, D.; Wadsley, J.; Darby, S.; et al. Pancreatic adenocarcinoma: Long-term outcomes of adjuvant therapy in the espac4 phase iii trial. J. Clin. Oncol. 2025, 43, 1240–1253. [Google Scholar] [CrossRef]
- Schwarz, R.E.; Smith, D.D. Extent of lymph node retrieval and pancreatic cancer survival: Information from a large us population database. Ann. Surg. Oncol. 2006, 13, 1189–1200. [Google Scholar] [CrossRef]
- Esposito, I.; Kleeff, J.; Bergmann, F.; Reiser, C.; Herpel, E.; Friess, H.; Schirmacher, P.; Büchler, M.W. Most pancreatic cancer resections are r1 resections. Ann. Surg. Oncol. 2008, 15, 1651–1660. [Google Scholar] [CrossRef]
- Orci, L.A.; Meyer, J.; Combescure, C.; Bühler, L.; Berney, T.; Morel, P.; Toso, C. A meta-analysis of extended versus standard lymphadenectomy in patients undergoing pancreatoduodenectomy for pancreatic adenocarcinoma. HPB 2015, 17, 565–572. [Google Scholar] [CrossRef]
- Janssen, Q.P.; van Dam, J.L.; van Bekkum, M.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Bouwense, S.A.W.; Brouwer-Hol, L.; Bruynzeel, A.M.E.; Busch, O.R.; et al. Neoadjuvant folfirinox versus neoadjuvant gemcitabine-based chemoradiotherapy in resectable and borderline resectable pancreatic cancer (preopanc-2): A multicentre, open-label, phase 3 randomised trial. Lancet Oncol. 2025, 26, 1346–1356. [Google Scholar] [CrossRef]
- Cardell, C.F.; Dekker, E.N.; Katz, M.H.G.; Tzeng, C.-W.D. The landmark series: Neoadjuvant therapy for resectable pancreatic cancer. Ann. Surg. Oncol. 2025, 32, 6467–6476. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhuo, Q.; Li, B.; Liu, M.; Chen, C.; Shi, Y.; Xu, W.; Liu, W.; Ji, S.; Yu, X.; et al. Feasibility of laparoscopic versus open pancreatoduodenectomy following neoadjuvant chemotherapy for borderline resectable pancreatic cancer: A retrospective cohort study. World J. Surg. Oncol. 2024, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Robertson, F.P.; Parks, R.W. A review of the current evidence for the role of minimally invasive pancreatic surgery following neo-adjuvant chemotherapy. Laparosc. Endosc. Robot. Surg. 2022, 5, 47–51. [Google Scholar] [CrossRef]
- Nassour, I.; Tohme, S.; Hoehn, R.; Adam, M.A.; Zureikat, A.H.; Alessandro, P. Safety and oncologic efficacy of robotic compared to open pancreaticoduodenectomy after neoadjuvant chemotherapy for pancreatic cancer. Surg. Endosc. 2021, 35, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Al Abbas, A.I.; Meier, J.; Hester, C.A.; Radi, I.; Yan, J.; Zhu, H.; Mansour, J.C.; Porembka, M.R.; Wang, S.C.; Yopp, A.C.; et al. Impact of neoadjuvant treatment and minimally invasive surgery on perioperative outcomes of pancreatoduodenectomy: An acs nsqip analysis. J. Gastrointest. Surg. 2023, 27, 2823–2842. [Google Scholar] [CrossRef]
- Makary, M.A.; Segev, D.L.; Pronovost, P.J.; Syin, D.; Bandeen-Roche, K.; Patel, P.; Takenaga, R.; Devgan, L.; Holzmueller, C.G.; Tian, J.; et al. Frailty as a predictor of surgical outcomes in older patients. J. Am. Coll. Surg. 2010, 210, 901–908. [Google Scholar] [CrossRef]
- Collard, R.M.; Boter, H.; Schoevers, R.A.; Oude Voshaar, R.C. Prevalence of frailty in community-dwelling older persons: A systematic review. J. Am. Geriatr. Soc. 2012, 60, 1487–1492. [Google Scholar] [CrossRef]
- Farah, E.; Al Abbas, A.; Abreu, A.A.; Cheng, M.; Yopp, A.; Wang, S.; Mansour, J.; Porembka, M.; Zeh, H.J., 3rd; Polanco, P.M. Minimally invasive pancreaticoduodenectomy: A favorable approach for frail patients with pancreatic cancer. Surgery 2024, 175, 1168–1175. [Google Scholar] [CrossRef]
- Paolini, C.; Bencini, L.; Gabellini, L.; Urciuoli, I.; Pacciani, S.; Tribuzi, A.; Moraldi, L.; Calistri, M.; Coratti, A. Robotic versus open pancreaticoduodenectomy: Is there any difference for frail patients? Surg. Oncol. 2021, 37, 101515. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, G.; Du, P.; He, J.; Li, Y. Minimally invasive pancreaticoduodenectomy in elderly patients: Systematic review and meta-analysis. World J. Surg. 2021, 45, 1186–1201. [Google Scholar] [CrossRef] [PubMed]
- Ballarin, R.; Esposito, G.; Guerrini, G.P.; Magistri, P.; Catellani, B.; Guidetti, C.; Di Sandro, S.; Di Benedetto, F. Minimally invasive pancreaticoduodenectomy in elderly versus younger patients: A meta-analysis. Cancers 2024, 16, 323. [Google Scholar] [CrossRef]
- Pędziwiatr, M.; Małczak, P.; Major, P.; Witowski, J.; Kuśnierz-Cabala, B.; Ceranowicz, P.; Budzyński, A. Minimally invasive pancreatic cancer surgery: What is the current evidence? Med. Oncol. 2017, 34, 125. [Google Scholar] [CrossRef]
- Nakao, A. Selection and outcome of portal vein resection in pancreatic cancer. Cancers 2010, 2, 1990–2000. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, M.; Rho, S.Y.; Hong, S.S.; Kim, S.H.; Hwang, H.K.; Kang, C.M. Minimally invasive pancreatoduodenectomy with combined venous vascular resection: A comparative analysis with open approach. Ann. Hepatobiliary Pancreat Surg. 2024, 28, 500–507. [Google Scholar] [CrossRef]
- Mejia, A.; Vivian, E.; Shah, J.; Gutierrez, J.C.B. Comparative 30-day mortality and complications in robotic vs. Open pancreaticoduodenectomy with portal-mesenteric vein resection: A systematic review and meta-analysis. Surg. Endosc. 2025, 39, 5569–5576. [Google Scholar] [CrossRef]
- Marino, M.V.; Giovinazzo, F.; Podda, M.; Gomez Ruiz, M.; Gomez Fleitas, M.; Pisanu, A.; Latteri, M.A.; Takaori, K. Robotic-assisted pancreaticoduodenectomy with vascular resection. Description of the surgical technique and analysis of early outcomes. Surg. Oncol. 2020, 35, 344–350. [Google Scholar] [CrossRef]
- Lin, Z.; Feng, F.; Ye, Y.; Yang, Y.; Zhu, H.; Zhou, X.; Li, H.; Lu, C.; Fang, J. Comparison of laparoscopic versus open pancreaticoduodenectomy combined with portal vein/superior mesenteric vein resection and reconstruction for pancreatic cancer: A propensity score matching analysis. Gland. Surg. 2024, 13, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Kauffmann, E.F.; Ginesini, M.; Di Dato, A.; Viti, V.; Gianfaldoni, C.; Lami, L.; Cappelli, C.; Rotondo, M.I.; Campani, D.; et al. Robotic versus open pancreatoduodenectomy with vein resection and reconstruction: A propensity score-matched analysis. Ann. Surg. Open 2024, 5, e409. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wu, X.; Chen, G.; Liu, Y.; Zhu, C.; Huang, F.; Tan, Z.; Zhong, X. Laparoscopic pancreatoduodenectomy for pancreatic cancer using in-situ no-touch isolation technique. J. Vis. Exp. 2022, 180, e63450. [Google Scholar] [CrossRef]
- Baker, E.H.; Ross, S.W.; Seshadri, R.; Swan, R.Z.; Iannitti, D.A.; Vrochides, D.; Martinie, J.B. Robotic pancreaticoduodenectomy for pancreatic adenocarcinoma: Role in 2014 and beyond. J. Gastrointest. Oncol. 2015, 6, 396–405. [Google Scholar] [PubMed]
- Choi, M.; Lee, S.J.; Shin, D.M.; Hwang, H.K.; Lee, W.J.; Kang, C.M. Laparoscopic repeated pancreatectomy for isolated local recurrence in remnant pancreas following laparoscopic radical pancreatectomy for pancreatic ductal adenocarcinoma: Two cases report. Ann. Hepatobiliary Pancreat Surg. 2020, 24, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Groot, V.P.; van Santvoort, H.C.; Rombouts, S.J.; Hagendoorn, J.; Borel Rinkes, I.H.; van Vulpen, M.; Herman, J.M.; Wolfgang, C.L.; Besselink, M.G.; Molenaar, I.Q. Systematic review on the treatment of isolated local recurrence of pancreatic cancer after surgery; re-resection, chemoradiotherapy and sbrt. HPB 2017, 19, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Fukami, Y.; Harada, T.; Maeda, A.; Takayama, Y.; Takahashi, T.; Uji, M.; Kaneoka, Y. Laparoscopic pancreaticoduodenectomy for remnant pancreatic recurrence after laparoscopic distal pancreatectomy and hepatectomy for greater omentum leiomyosarcoma. Asian J. Endosc. Surg. 2020, 13, 117–120. [Google Scholar] [CrossRef]
- Klotz, R.; Mihaljevic, A.L.; Kulu, Y.; Sander, A.; Klose, C.; Behnisch, R.; Joos, M.C.; Kalkum, E.; Nickel, F.; Knebel, P.; et al. Robotic versus open partial pancreatoduodenectomy (europa): A randomised controlled stage 2b trial. Lancet Reg. Health Eur. 2024, 39, 100864. [Google Scholar] [CrossRef]
- Rosemurgy, A.; Ross, S.; Bourdeau, T.; Jacob, K.; Thomas, J.; Przetocki, V.; Luberice, K.; Sucandy, I. Cost analysis of pancreaticoduodenectomy at a high-volume robotic hepatopancreaticobiliary surgery program. J. Am. Coll. Surg. 2021, 232, 461–469. [Google Scholar] [CrossRef]
| Trial (Year) | Patients (MIPD vs. OPD) | Tumor Types | Key Endpoints | Key Findings |
|---|---|---|---|---|
| Palanivelu et al., 2017 [29] | 64 (LPD 32 vs. OPD 32) | Periampullary (Single center, India; pancreatic cancer, 17.2%) | Primary: LOS; Secondary: blood loss, R0 margin, LNs, complications | LPD had shorter median LOS (7 vs. 13 days, p < 0.001) and less blood loss (250 vs. 401 mL, p < 0.001). Operative time was longer for LPD. No differences in R0 resection, lymph nodes harvested, or major complications; mortality 3% in each arm. |
| Poves et al. (PADULAP), 2018 [30] | 66 (LPD 34 vs. OPD 32) | Periampullary (Single center, Spain; pancreatic cancer, 59%) | Primary: LOS; Secondary: operative time, Clavien ≥ 3 complications, CCI score, “poor quality outcome”, margin/LNs | LPD had shorter LOS (median 13.5 vs. 17 days, p = 0.024). LPD had longer OR time (486 vs. 365 min). Severe complications were fewer with LPD (5 vs. 11 patients, p < 0.05); comprehensive complication index and composite poor-outcome measures favored LPD. No differences in transfusions, pancreatic fistula, DGE, R0 rate or LN yield. |
| van Hilst et al. (LEOPARD-2), 2019 [27] | 99 (LPD 50 vs. OPD 49) | Periampullary (Multicenter, Netherlands; pancreatic cancer, 29.3%) | Primary: functional recovery; Secondary: Serious complication rate | Trial stopped early due to safety: 90-day mortality was higher in LPD group (approx. 8% vs. 2% in OPD) leading to termination. No significant differences in overall complication rates were observed before stopping, but concern for learning-curve effect was noted. Emphasized importance of surgeon experience and caution in new adopters. |
| Wang et al., 2021 [31] | 594 (LPD 297 vs. OPD 297) | Periampullary (multicenter, China pancreatic cancer, 33.8%) | Primary: LOS; Secondary: estimated intraoperative blood loss, operative time, complication rate, mortality, CCI | LPD by expert surgeons showed lower overall complications (49% vs. 71%, p < 0.01) and fewer severe complications (12% vs. 22%). Postoperative LOS was modestly shorter (by 1 day). No differences in 90-day mortality or oncologic outcomes (R0 resection, LN yield). Concluded LPD is feasible and safe in high-volume settings. |
| Yoon et al. (K-MIPS), 2024 [32] | 252 (LPD 125 vs. OPD 127) | Periampullary (multicenter, Korea; pancreatic cancer, 23.1%) | Primary: Functional recovery Secondary: complications, oncologic metrics, time to adjuvant therapy | LPD significantly improved functional recovery time (median 7.7 vs. 9.0 days, p = 0.03). No differences in major complications, 90-day mortality, R0 resection rate or lymph node count. Demonstrated holistic recovery benefits with MIPD when performed by experienced surgeons, while maintaining equivalent oncologic and safety outcomes. |
| Klotz et al. (EUROPA, robotic), 2024 [33] | 62 (RPD 29 vs. OPD 33) | Periampullary (single center, Germany; pancreatic cancer, 35.48%) | Primary: cumulative morbidity within 90 days after PD; Secondary: CCI, CR-POPF, costs, conversion rate | No difference in overall morbidity (mean CCI 34.02 vs. 36.45, p = 0.71). RPD had more CR-POPF (58.6% vs. 33.3%, p = 0.046), longer operative time, and higher median costs. Conversion to open was required in 23% of RPD cases. 90-day mortality was <5% overall (acceptable for both arms). Concluded that in an expert center RPD is feasible but not superior to OPD, and highlighted the resource and cost drawbacks. |
| Liu et al. (China), 2024 [34] | 161 (RPD 81 vs. OPD 80) | Periampullary (multicenter, China; pancreatic cancer, 35.4%) | Primary: LOS; Secondary: operative time, complications | RPD achieved shorter median hospital stay (11.0 vs. 13.5 days, p = 0.03). No significant differences in major complication rates (Clavien ≥ 3) or 90-day mortality (1% in each arm). R0 resection and lymph node yield were comparable (13 nodes in each). Notably, adjuvant therapy was initiated sooner after RPD (by 6.5 days on average). Demonstrated that RPD can enhance recovery without compromising safety or oncologic efficacy in experienced hands. |
| Study (Year) | Study Design | Patients (MIPD vs. OPD) | MIPD Type | R0 Resection Rate | Lymph Nodes Retrieved | Disease-Free Survival (DFS) | Overall Survival (OS) | Adjuvant Therapy | Key Findings |
|---|---|---|---|---|---|---|---|---|---|
| Croome et al., 2014 [11] | Retrospective, single-center (USA) | LPD, 108 vs. OPD, 214 | LPD | No difference in margin status (LPD 77.8% vs. OPD 76.6%) | Not specifically reported | Longer progression-free survival in LPD group | No difference in OS (p = 0.12) | LPD patients had significantly lower proportion with >90-day delay or omission of adjuvant therapy: 5% vs. 12% in OPD (p = 0.04) | Faster recovery with LPD corresponded with longer progression-free survival. Earlier initiation of adjuvant chemotherapy may confer survival benefit. |
| Nussbaum et al., 2016 [39] | Retrospective, National Cancer Data Base (USA) | MIPD, 1191 vs. OPD, 6776 | LPD & RPD | no difference in the rate of positive margins (20.4 vs. 22.1%; p = 0.15) | MIPD, 17.4 vs. OPD 16.5; p = 0.01 | Not reported | 2-year OS: equivalent | Found no significant improvement in adjuvant therapy use or timing with MIPD for PDAC (OR 1.00; p = 0.98). | Large database analysis suggesting that in broader practice, the advantage of earlier adjuvant therapy may not consistently manifest with MIPD. |
| Jiang et al., 2019 [40] | Meta-analysis (8 studies) | >15,000 PDAC patients total | LPD | LPD achieved higher R0 rate than OPD | LPD harvested more lymph nodes than OPD | Not separately reported | 5-year OS: equivalent | Not reported | Meta-analysis specifically focused on PDAC. LPD showed slightly better odds of negative margins and greater number of nodes examined, likely reflecting meticulous dissection and enhanced visualization. Long-term survival equivalent. |
| Choi et al., 2020 [9] | Retrospective, single-center (Korea) | LPD, 27 vs. OPD 34 | LPD | No difference in margin status | Not specifically reported | LPD, 34.2 vs. OPD, 23.3 months, p < 0.05 | LPD, 44.6 vs. OPD, 45.3 months, p = 0.223 | Found no significant improvement in adjuvant therapy | Improved disease-free survival for LPD over OPD in PDAC, though overall survival was similar. Suggests MIPD does not compromise curative intent. |
| Da Dong et al., 2021 [41] | Meta-analysis | RPD vs. OPD | RPD | RPD provides better histopathological outcomes compared to open | RPD associated with improved lymph node harvest (MD, 2.88 (1.12, 4.65); p = 0.001 | Not reported | Not reported | Not reported | Meta-analysis showing robotic approach provides better histopathological outcomes. Improved visualization and fine instrument control facilitate thorough lymphadenectomy. |
| Wang et al., 2023 [42] | RCT, multicenter (China) | LPD, 100 vs. OPD 100 | LPD | Not reported in short-term analysis | No difference in positive resection margin (p = 0.25) | Not yet reported (short-term outcomes only) | Not yet reported (short-term outcomes only) | Not reported | RCT specifically in PDAC patients. Showed no difference in 30-day morbidity or mortality between approaches. Confirmed expected longer operative time and lower blood loss with LPD. Long-term follow-up needed for survival data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Choi, M.; Kang, C.M. Minimally Invasive Pancreatoduodenectomy for Pancreatic Cancer: Current Perspectives and Future Directions. Cancers 2026, 18, 197. https://doi.org/10.3390/cancers18020197
Choi M, Kang CM. Minimally Invasive Pancreatoduodenectomy for Pancreatic Cancer: Current Perspectives and Future Directions. Cancers. 2026; 18(2):197. https://doi.org/10.3390/cancers18020197
Chicago/Turabian StyleChoi, Munseok, and Chang Moo Kang. 2026. "Minimally Invasive Pancreatoduodenectomy for Pancreatic Cancer: Current Perspectives and Future Directions" Cancers 18, no. 2: 197. https://doi.org/10.3390/cancers18020197
APA StyleChoi, M., & Kang, C. M. (2026). Minimally Invasive Pancreatoduodenectomy for Pancreatic Cancer: Current Perspectives and Future Directions. Cancers, 18(2), 197. https://doi.org/10.3390/cancers18020197

