Beyond Survival: Understanding Ethnic and Socioeconomic Disparities in Post-Cancer Healthcare Use in England
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Data Sources
2.2. Population and Follow-Up
2.3. Outcomes
- Primary care consultations: Total number and annual rates of any recorded consultation with a general practitioner or other primary care staff.
- Planned hospital admissions: Elective admissions identified within HES-APC.
- Emergency hospital admissions: Unplanned or urgent admissions, excluding maternity-related episodes.
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Primary-Care Consultations
3.3. Hospital Admissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, T.; Ullah, A.Z.M.D.; Chelala, C.; Taylor, S.J.C. Ethnic and Socio-Economic Variations in Comorbidity and Mortality in Cancer Survivors: A UK Population-Based Observational Study. Cancers 2025, 17, 983. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Zheng, Y.; Li, C.-C. Health Disparities Across Lung Cancer Continuum Among Asian Americans: A Systematic Review. J. Immigr. Minor. Health 2022, 24, 526–545. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA A Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Abel, G.; Ukoumunne, O.C.; Mounce, L.T.A.; Price, S.; Lyratzopoulos, G.; Chinegwundoh, F.; Hamilton, W. Ethnic inequalities in routes to diagnosis of cancer: A population-based UK cohort study. Br. J. Cancer 2022, 127, 863–871. [Google Scholar] [CrossRef]
- Khan, N.F.; Mant, D.; Carpenter, L.; Forman, D.; Rose, P.W. Long-term health outcomes in a British cohort of breast, colorectal and prostate cancer survivors: A database study. Br. J. Cancer 2011, 105, S29–S37. [Google Scholar] [CrossRef]
- Nord, C.; Mykletun, A.; Thorsen, L.; Bjøro, T.; Fosså, S.D. Self-reported health and use of health care services in long-term cancer survivors. Int. J. Cancer 2005, 114, 307–316. [Google Scholar] [CrossRef]
- Joly, F.; Henry-Amar, M.; Arveux, P.; Reman, O.; Tanguy, A.; Peny, A.-M.; Lebailly, P.; Macé-Lesec’h, J.; Vié, B.; Génot, J.-Y. Late psychosocial sequelae in Hodgkin’s disease survivors: A French population-based case-control study. J. Clin. Oncol. 1996, 14, 2444–2453. [Google Scholar] [CrossRef]
- Ewing, M.; Naredi, P.; Nemes, S.; Zhang, C.; Månsson, J. Increased consultation frequency in primary care, a risk marker for cancer: A case–control study. Scand. J. Prim. Health Care 2016, 34, 205–212. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Jensen, H.; Virgilsen, L.F.; Falborg, A.Z.; Møller, H.; Vedsted, P. Healthcare utilisation in general practice and hospitals in the year preceding a diagnosis of cancer recurrence or second primary cancer: A population-based register study. BMC Health Serv. Res. 2019, 19, 941. [Google Scholar] [CrossRef]
- Marmot, M. Health equity in England: The Marmot review 10 years on. BMJ 2020, 368, m693. [Google Scholar] [CrossRef]
- Lyratzopoulos, G.; Abel, G.A.; Brown, C.H.; Rous, B.A.; Vernon, S.A.; Roland, M.; Greenberg, D.C. Socio-demographic inequalities in stage of cancer diagnosis: Evidence from patients with female breast, lung, colon, rectal, prostate, renal, bladder, melanoma, ovarian and endometrial cancer. Ann. Oncol. 2013, 24, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Herrett, E.; Gallagher, A.M.; Bhaskaran, K.; Forbes, H.; Mathur, R.; van Staa, T.; Smeeth, L. Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int. J. Epidemiol. 2015, 44, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Eto F, S.M.; Finer, S. MULTIPLY-Initiative. 2023. Available online: https://github.com/Fabiola-Eto/MULTIPLY-Initiative/blob/main/METHODS.md (accessed on 21 July 2025).
- Sarfati, D.; Gurney, J.; Lim, B.T.; Bagheri, N.; Simpson, A.; Koea, J.; Dennett, E. Identifying important comorbidity among cancer populations using administrative data: Prevalence and impact on survival. Asia-Pac. J. Clin. Oncol. 2016, 12, e47–e56. [Google Scholar] [CrossRef] [PubMed]
- Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 2019, 394, 1041–1054. [Google Scholar] [CrossRef]
- Khan, N.F.; Watson, E.; Rose, P.W. Primary care consultation behaviours of long-term, adult survivors of cancer in the UK. Br. J. Gen. Pract. 2011, 61, 197–199. [Google Scholar] [CrossRef]
- Thomsen, J.L.; Parner, E.T. Methods for analysing recurrent events in health care data. Examples from admissions in Ebeltoft Health Promotion Project. Fam. Pract. 2006, 23, 407–413. [Google Scholar] [CrossRef]
- Feng, C.X. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J. Stat. Distrib. Appl. 2021, 8, 8. [Google Scholar] [CrossRef]
- Weaver, C.G.; Ravani, P.; Oliver, M.J.; Austin, P.C.; Quinn, R.R. Analyzing hospitalization data: Potential limitations of Poisson regression. Nephrol. Dial. Transplant. 2015, 30, 1244–1249. [Google Scholar] [CrossRef]
- Young, D.S.; Roemmele, E.S.; Yeh, P. Zero-inflated modeling part I: Traditional zero-inflated count regression models, their applications, and computational tools. Wiley Interdiscip. Rev. Comput. Stat. 2022, 14, e1541. [Google Scholar] [CrossRef]
- Ahmad, T.A.; Gopal, D.P.; Chelala, C.; Dayem Ullah, A.Z.; Taylor, S.J. Multimorbidity in people living with and beyond cancer: A scoping review. Am. J. Cancer Res. 2023, 13, 4346–4365. [Google Scholar]
- Pham, T.M.; Carpenter, J.R.; Morris, T.P.; Sharma, M.; Petersen, I. Ethnic differences in the prevalence of type 2 diabetes diagnoses in the UK: Cross-sectional analysis of the health improvement network primary care database. Clin. Epidemiol. 2019, 11, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Gasevic, D.; Ross, E.S.; Lear, S.A. Ethnic differences in cardiovascular disease risk factors: A systematic review of North American evidence. Can. J. Cardiol. 2015, 31, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shin, S.H.; Gu, S.; Zhao, D.; Kang, D.; Joi, Y.R.; Suh, G.Y.; Pastor-Barriuso, R.; Guallar, E.; Cho, J. Racial differences in comorbidity profile among patients with chronic obstructive pulmonary disease. BMC Med. 2018, 16, 178. [Google Scholar] [CrossRef] [PubMed]
- Primatesta, P.; Bost, L.; Poulter, N. Blood pressure levels and hypertension status among ethnic groups in England. J. Hum. Hypertens. 2000, 14, 143–148. [Google Scholar] [CrossRef]
- Ahmad, T.A.; Ullah, A.Z.D.; Chelala, C.; Gopal, D.P.; Eto, F.; Henkin, R.; Samuel, M.; Finer, S.; Taylor, S.J. Prevalence of multimorbidity in survivors of 28 cancer sites: An English nationwide cross-sectional study. Am. J. Cancer Res. 2024, 14, 880. [Google Scholar] [CrossRef]
- Kenzik, K.M. Health care use during cancer survivorship: Review of 5 years of evidence. Cancer 2019, 125, 673–680. [Google Scholar] [CrossRef]
- Lyratzopoulos, G.; Neal, R.D.; Barbiere, J.M.; Rubin, G.P.; Abel, G.A. Variation in number of general practitioner consultations before hospital referral for cancer: Findings from the 2010 National Cancer Patient Experience Survey in England. Lancet Oncol. 2012, 13, 353–365. [Google Scholar] [CrossRef]
- Lyratzopoulos, G.; Elliott, M.; Barbiere, J.; Henderson, A.; Staetsky, L.; Paddison, C.; Campbell, J.; Roland, M. Understanding ethnic and other socio-demographic differences in patient experience of primary care: Evidence from the English General Practice Patient Survey. BMJ Qual. Saf. 2012, 21, 21–29. [Google Scholar] [CrossRef]
- Jain, R. The Cultural Conceptualisations of Psychological Distress and Help-Seeking among South Asian Immigrants in the UK and Canada; London School of Hygiene & Tropical Medicine: London, UK, 2025. [Google Scholar]
- Sproston, K.A.; Pitson, L.B.; Walker, E. The use of primary care services by the Chinese population living in England: Examining inequalities. Ethn. Health 2001, 6, 189–196. [Google Scholar] [CrossRef]
- Petersen, J.; Kandt, J.; Longley, P. Ethnic disparities in preventable hospitalisation in England: An analysis of 916 375 emergency admissions. J. Epidemiol. Community Health 2022, 76, 85–91. [Google Scholar] [CrossRef]
- Cookson, R.; Propper, C.; Asaria, M.; Raine, R. Socio-economic inequalities in health care in England. Fisc. Stud. 2016, 37, 371–403. [Google Scholar] [CrossRef]
- Goddard, M.; Smith, P. Equity of access to health care services: Theory and evidence from the UK. Soc. Sci. Med. 2001, 53, 1149–1162. [Google Scholar] [CrossRef]
- Smith, S.G.; Osborne, K.; Tring, S.; George, H.; Power, E. Evaluating the impact of a community-based cancer awareness roadshow on awareness, attitudes and behaviors. Prev. Med. 2016, 87, 138–143. [Google Scholar] [CrossRef]



| Characteristic | Non-Cancer Patients | Cancer Survivors |
|---|---|---|
| Total number of patients (n, %) | 415,975 (70.9%) | 170,352 (29.05%) |
| Sex | ||
| Male | 182,386 (43.8%) | 80,087 (47.0%) |
| Female | 233,589 (56.2%) | 90,265 (53.0%) |
| Age group | ||
| 18–30 | 2523 (0.6%) | 867 (0.5%) |
| 31–45 | 30,227 (7.3%) | 10,245 (6.0%) |
| 46–60 | 84,460 (20.3%) | 28,632 (16.8%) |
| 61–75 | 172,847 (41.6%) | 61,998 (36.4%) |
| 76–90 | 113,434 (27.3%) | 58,864 (34.6%) |
| >90 | 12,484 (3.0%) | 9746 (5.7%) |
| Ethnicity | ||
| White | 327,489 (78.7%) | 156,236 (91.7%) |
| Mixed | 1544 (0.4%) | 651 (0.4%) |
| Asian or Asian British | 10,368 (2.5%) | 3341 (2.0%) |
| Black or Black British | 4956 (1.2%) | 2138 (1.3%) |
| Other | 4301 (1.0%) | 1701 (1.0%) |
| Unknown | 15,022 (3.6%) | 3224 (1.9%) |
| Missing | 52,295 (12.6%) | 3061 (1.8%) |
| IMD quintile | ||
| 1 | 104,784 (25.2%) | 44,483 (26.1%) |
| 2 | 95,027 (22.8%) | 39,938 (23.4%) |
| 3 | 86,632 (20.8%) | 35,463 (20.8%) |
| 4 | 72,682 (17.5%) | 28,791 (16.9%) |
| 5 (Most deprived) | 56,850 (13.7%) | 21,677 (12.7%) |
| Smoking status | ||
| Non-smoker | 220,523 (53.0%) | 87,194 (51.2%) |
| Smoker | 73,986 (17.8%) | 28,071 (16.5%) |
| Former smoker | 121,466 (29.2%) | 55,087 (32.3%) |
| Alcohol drinking status | ||
| Current drinker | 224,266 (53.9%) | 93,436 (54.8%) |
| Excess drinker | 6995 (1.7%) | 2518 (1.5%) |
| Former drinker | 16,527 (4.0%) | 7492 (4.4%) |
| Non-drinker | 128,844 (31.0%) | 51,682 (30.3%) |
| Missing | 39,343 (9.5%) | 15,224 (8.9%) |
| BMI | ||
| Mean (SD) | 26.8 (±5.2) | 26.9 (±5.0) |
| Median (SD) | 26.8 (±5.3) | 26.9 (±5.1) |
| Male (Mean (SD)) | 27.3 (±4.6) | 27.2 (±4.3) |
| Female (Mean (SD)) | 26.5 (±5.6) | 26.6 (±5.6) |
| Underweight (BMI <18.5) | 8226 (2.0%) | 2451 (1.4%) |
| Normal (BMI 18.5–24.9) | 160,919 (38.7%) | 63,912 (37.5%) |
| Overweight (BMI 25.0–29.9) | 153,902 (37.0%) | 66,398 (39.0%) |
| Obese (BMI >30.0) | 92,147 (22.2%) | 37,304 (21.9%) |
| Missing | 781 (0.2%) | 287 (0.2%) |
| Death | ||
| Mean age (SD) | 79.0 (±10.7) | 77.5 (±12.7) |
| Death above 75 | 35,337 (8.5%) | 21,414 (12.6%) |
| Premature death (death below 75) | 15,096 (3.6%) | 11,997 (7.0%) |
| Multimorbidity | ||
| >1 conditions | 394,487 (94.8%) | 163,155 (95.8%) |
| >2 conditions | 336,763 (81.0%) | 146,553 (86.0%) |
| >3 conditions | 265,117 (63.7%) | 125,729 (73.8%) |
| >4 conditions | 202,332 (48.6%) | 104,221 (61.2%) |
| >5 conditions | 151,062 (36.3%) | 83,857 (49.2%) |
| Cancer Survivors | Non-Cancer Patients | ||||
|---|---|---|---|---|---|
| Ethnicity | Mean | Median (IQR) | Adjusted Incidence Rate (95% CI) | Mean | Median (IQR) |
| White | 172 | 138 (67–238) | Reference | 145 | 111(52–200) |
| Pakistani | 188 | 134 (70–258) | 1.16 (1.12–1.20) | 170 | 128 (64–223) |
| Bangladeshi | 157 | 114 (61–214) | 1.14 (1.07–1.22) | 167 | 125 (61.5–239) |
| Indian | 182 | 138 (75–245) | 1.11 (1.08–1.13) | 166 | 130 (66–225) |
| Other Asian | 151 | 117 (59–198) | 0.96 (0.93–0.99) | 150 | 115 (58–206) |
| Black Caribbean | 167 | 133 (78–221) | 0.95 (0.92–0.98) | 146 | 114 (57–202) |
| Mixed | 135 | 104 (48–183) | 0.90 (0.87–0.94) | 129 | 95 (43–173) |
| Black Others | 132 | 104 (53.8–168) | 0.90 (0.86–0.95) | 134 | 100 (44–187) |
| Black African | 137 | 105 (50–184) | 0.87 (0.84–0.90) | 129 | 98 (48–173) |
| Others | 139 | 106 (49–191) | 0.86 (0.84–0.88) | 128 | 95 (44–171) |
| Chinese | 128 | 101 (48–178) | 0.77 (0.74–0.81) | 123 | 93 (48–166) |
| IMD 1 (Least deprived) | 161 | 129 (57–229) | Reference | 114 | 80 (16–168) |
| IMD 2 | 159 | 127 (57–223) | 1.00 (1.00–1.01) | 115 | 82 (21–168) |
| IMD 3 | 165 | 132 (60–233) | 1.07 (1.06–1.07) | 123 | 87 (24–181) |
| IMD 4 | 169 | 134 (60–236) | 1.13 (1.12–1.14) | 128 | 92 (28–187) |
| IMD 5 (Most deprived) | 175 | 136 (63–246) | 1.23 (1.22–1.24) | 136 | 98 (31–195) |
| Planned Admission | Emergency Admission | |||
|---|---|---|---|---|
| Person-Years (PY) of Follow-Up | Incidence per 1000 PY (95% CI) | Person-Years (PY) of Follow-Up | Incidence per 1000 PY (95% CI) | |
| Ethnicity | ||||
| White | 1,815,964,028 | 1.62 (1.62–1.63) | 1,815,964,028 | 0.75 (0.75–0.75) |
| Bangladeshi | 2,793,584 | 2.10 (2.05–2.16) | 2,793,584 | 0.82 (0.78–0.85) |
| Black African | 9,999,317 | 2.03 (2.01–2.06) | 9,999,317 | 0.68 (0.66–0.70) |
| Black Caribbean | 12,355,325 | 2.72 (2.69–2.75) | 12,355,325 | 0.86 (0.84–0.88) |
| Black—Others | 5,075,400 | 2.45 (2.40–2.49) | 5,075,400 | 0.68 (0.65–0.70) |
| Chinese | 4,750,558 | 1.55 (1.52–1.59) | 4,750,558 | 0.46 (0.45–0.48) |
| Indian | 23,732,648 | 2.01 (1.99–2.03) | 23,732,648 | 0.74 (0.72–0.75) |
| Mixed | 8,579,009 | 1.92 (1.89–1.95) | 8,579,009 | 0.61 (0.59–0.63) |
| Other Asian | 12,027,840 | 1.76 (1.73–1.79) | 12,027,840 | 0.72 (0.70–0.73) |
| Other ethnicities | 23,247,347 | 1.47 (1.46–1.49) | 2,3247,347 | 0.54 (0.53–0.55) |
| Pakistani | 9,566,149 | 2.79 (2.76–2.83) | 9,566,149 | 1.01 (0.99–1.03) |
| IMD category | ||||
| IMD 1 (Least deprived) | 571,615,907 | 1.31 (1.30–1.31) | 571,615,907 | 0.50 (0.50–0.50) |
| IMD 2 | 291,857,066 | 1.63 (1.63–1.64) | 291,857,066 | 0.93 (0.93–0.94) |
| IMD 3 | 381,169,715 | 1.54 (1.53–1.54) | 381,169,715 | 0.76 (0.75–0.76) |
| IMD 4 | 512,246,208 | 1.43 (1.40–1.41) | 512,246,208 | 0.59 (0.59–0.59) |
| IMD 5 | 461,054,398 | 1.47 (1.47–1.48) | 461,054,398 | 0.65 (0.65–0.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ahmad, T.; Dayem Ullah, A.Z.M.; Chelala, C.; Taylor, S.J.C. Beyond Survival: Understanding Ethnic and Socioeconomic Disparities in Post-Cancer Healthcare Use in England. Cancers 2026, 18, 47. https://doi.org/10.3390/cancers18010047
Ahmad T, Dayem Ullah AZM, Chelala C, Taylor SJC. Beyond Survival: Understanding Ethnic and Socioeconomic Disparities in Post-Cancer Healthcare Use in England. Cancers. 2026; 18(1):47. https://doi.org/10.3390/cancers18010047
Chicago/Turabian StyleAhmad, Tahania, Abu Z. M. Dayem Ullah, Claude Chelala, and Stephanie J. C. Taylor. 2026. "Beyond Survival: Understanding Ethnic and Socioeconomic Disparities in Post-Cancer Healthcare Use in England" Cancers 18, no. 1: 47. https://doi.org/10.3390/cancers18010047
APA StyleAhmad, T., Dayem Ullah, A. Z. M., Chelala, C., & Taylor, S. J. C. (2026). Beyond Survival: Understanding Ethnic and Socioeconomic Disparities in Post-Cancer Healthcare Use in England. Cancers, 18(1), 47. https://doi.org/10.3390/cancers18010047

