Neighborhood Disadvantage, Built Environment, and Breast Cancer Outcomes: Disparities in Tumor Aggressiveness and Survival
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Area Deprivation Index (ADI)
2.3. Built Environment Factors
2.4. Tumor Characteristics and Overall Survival
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Minas, T.Z.; Kiely, M.; Ajao, A.; Ambs, S. An overview of cancer health disparities: New approaches and insights and why they matter. Carcinogenesis 2021, 42, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.E.; Schiemann, W.P.; Varadan, V. Understanding breast cancer disparities—A multi-scale challenge. Ann. Transl. Med. 2020, 8, 906. [Google Scholar] [CrossRef]
- Obeagu, E.I.; Obeagu, G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024, 103, e36905. [Google Scholar] [CrossRef]
- Gomez, S.L.; Shariff-Marco, S.; DeRouen, M.; Keegan, T.H.; Yen, I.H.; Mujahid, M.; Satariano, W.A.; Glaser, S.L. The impact of neighborhood social and built environment factors across the cancer continuum: Current research, methodological considerations, and future directions. Cancer 2015, 121, 2314–2330. [Google Scholar] [CrossRef]
- Fuemmeler, B.F.; Shen, J.; Zhao, H.; Winn, R. Neighborhood deprivation, racial segregation and associations with cancer risk and outcomes across the cancER-control continuum. Mol. Psychiatry 2023, 28, 1494–1501. [Google Scholar] [CrossRef]
- Chen, N.; Mita, C.; Chowdhury-Paulino, I.M.; Shreves, A.H.; Hu, C.R.; Yi, L.; James, P. The built environment and cancer survivorship: A scoping review. Health Place 2024, 86, 103206. [Google Scholar] [CrossRef]
- Wray, A.J.D.; Minaker, L.M. Is cancer prevention influenced by the built environment? A multidisciplinary scoping review. Cancer 2019, 125, 3299–3311. [Google Scholar] [CrossRef]
- Aoki, R.F.; Uong, S.P.; Gomez, S.L.; Alexeeff, S.E.; Caan, B.J.; Kushi, L.H.; Torres, J.M.; Guan, A.; Canchola, A.J.; Morey, B.N.; et al. Individual- and neighborhood-level socioeconomic status and risk of aggressive breast cancer subtypes in a pooled cohort of women from Kaiser Permanente Northern California. Cancer 2021, 127, 4602–4612. [Google Scholar] [CrossRef]
- Chen, J.C.; Handley, D.; Elsaid, M.I.; Fisher, J.L.; Plascak, J.J.; Anderson, L.; Tsung, C.; Beane, J.; Pawlik, T.M.; Obeng-Gyasi, S. Persistent Neighborhood Poverty and Breast Cancer Outcomes. JAMA Netw. Open 2024, 7, e2427755. [Google Scholar] [CrossRef]
- Bhattacharyya, O.; Li, Y.; Fisher, J.L.; Tsung, A.; Eskander, M.F.; Hamad, A.; Obeng-Gyasi, S. Low neighborhood socioeconomic status is associated with higher mortality and increased surgery utilization among metastatic breast cancer patients. Breast 2021, 59, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Hernandez, A.E.; Mazul, A. Neighborhood Disadvantage and Breast CancER-Specific Survival in the US. JAMA Netw. Open 2024, 7, e247336. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Hernandez, A.; Thompson, C.; Choi, S.; Westrick, A.; Stoler, J.; Antoni, M.H.; Rojas, K.; Kesmodel, S.; Figueroa, M.E.; et al. Neighborhood Disadvantage and Breast CancER-Specific Survival. JAMA Netw. Open 2023, 6, e238908. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.M.; George, A.; Attwood, K.; Alaklabi, S.; Patel, A.; Omilian, A.R.; Yao, S.; Gandhi, S. Effect of neighborhood deprivation index on breast cancer survival in the United States. Breast Cancer Res. Treat. 2023, 202, 139–153. [Google Scholar] [CrossRef]
- Barber, L.E.; Maliniak, M.L.; Moubadder, L.; Johnson, D.A.; MillER-Kleinhenz, J.M.; Switchenko, J.M.; Ward, K.C.; McCullough, L.E. Neighborhood Deprivation and Breast Cancer Mortality Among Black and White Women. JAMA Netw. Open 2024, 7, e2416499. [Google Scholar] [CrossRef]
- Coughlin, S.S.; Smith, S.A. The Impact of the Natural, Social, Built, and Policy Environments on Breast Cancer. J. Environ. Health Sci. 2015, 1, 1–4. [Google Scholar] [CrossRef]
- Obeng-Gyasi, S.; Obeng-Gyasi, B.; Tarver, W. Breast Cancer Disparities and the Impact of Geography. Surg. Oncol. Clin. N. Am. 2022, 31, 81–90. [Google Scholar] [CrossRef]
- Cannioto, R.A.; Attwood, K.M.; Davis, E.W.; Mendicino, L.A.; Hutson, A.; Zirpoli, G.R.; Tang, L.; Nair, N.M.; Barlow, W.; Hershman, D.L.; et al. Adherence to Cancer Prevention Lifestyle Recommendations Before, During, and 2 Years After Treatment for High-risk Breast Cancer. JAMA Netw. Open 2023, 6, e2311673. [Google Scholar] [CrossRef]
- White, A.J.; Fisher, J.A.; Sweeney, M.R.; Freedman, N.D.; Kaufman, J.D.; Silverman, D.T.; Jones, R.R. Ambient fine particulate matter and breast cancer incidence in a large prospective US cohort. J. Natl. Cancer Inst. 2024, 116, 53–60. [Google Scholar] [CrossRef]
- Eve, L.; Fervers, B.; Le Romancer, M.; Etienne-Selloum, N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int. J. Mol. Sci. 2020, 21, 9139. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, X.; Gao, Y.; Zhou, J.; Huang, C.; Zhang, Z.; Chu, H. Relationship between particulate matter exposure and female breast cancer incidence and mortality: A systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2021, 94, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, W.; Chen, Q.; Zhou, N.; Xu, Y. The relationship between exposure to particulate matter and breast cancer incidence and mortality: A meta-analysis. Medicine 2019, 98, e18349. [Google Scholar] [CrossRef] [PubMed]
- Kind, A.J.H.; Buckingham, W.R. Making Neighborhood-Disadvantage Metrics Accessible—The Neighborhood Atlas. N. Engl. J. Med. 2018, 378, 2456–2458. [Google Scholar] [CrossRef] [PubMed]
- van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53, 2595–2611. [Google Scholar] [CrossRef]
- Xu, R.; Huang, X.; Zhang, K.; Lyu, W.; Ghosh, D.; Li, Z.; Chen, X. Integrating human activity into food environments can better predict cardiometabolic diseases in the United States. Nat. Commun. 2023, 14, 7326. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.; Freedman, R.A.; Partridge, A.H. The impact of young age at diagnosis (age <40 years) on prognosis varies by breast cancer subtype: A U.S. SEER database analysis. Breast 2022, 61, 77–83. [Google Scholar] [CrossRef]
- Tagliabue, G.; Borgini, A.; Tittarelli, A.; van Donkelaar, A.; Martin, R.V.; Bertoldi, M.; Fabiano, S.; Maghini, A.; Codazzi, T.; Scaburri, A.; et al. Atmospheric fine particulate matter and breast cancer mortality: A population-based cohort study. BMJ Open 2016, 6, e012580. [Google Scholar] [CrossRef]
- Mokbel, K. Breath of Danger: Unveiling PM2.5’s Stealthy Impact on Cancer Risks. Anticancer Res. 2024, 44, 1365–1368. [Google Scholar] [CrossRef]
- Hu, H.; Dailey, A.B.; Kan, H.; Xu, X. The effect of atmospheric particulate matter on survival of breast cancer among US females. Breast Cancer Res. Treat. 2013, 139, 217–226. [Google Scholar] [CrossRef]
- Prada, D.; Baccarelli, A.A.; Terry, M.B.; Valdez, L.; Cabrera, P.; Just, A.; Kloog, I.; Caro, H.; Garcia-Cuellar, C.; Sanchez-Perez, Y.; et al. Long-term PM(2.5) exposure before diagnosis is associated with worse outcome in breast cancer. Breast Cancer Res. Treat. 2021, 188, 525–533. [Google Scholar] [CrossRef]
- Sierra-Vargas, M.P.; Montero-Vargas, J.M.; Debray-Garcia, Y.; Vizuet-de-Rueda, J.C.; Loaeza-Roman, A.; Teran, L.M. Oxidative Stress and Air Pollution: Its Impact on Chronic Respiratory Diseases. Int. J. Mol. Sci. 2023, 24, 853. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, A.; Polsky, J.Y.; Robitaille, E.; Lefebvre, M.; McBrien, T.; Minaker, L.M. Status report—Geographic retail food environment measures for use in public health. Health Promot. Chronic Dis. Prev. Can. 2017, 37, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Cerceo, E.; Sharma, E.; Boguslavsky, A.; Rachoin, J.S. Impact of Food Environments on Obesity Rates: A State-Level Analysis. J. Obes. 2023, 2023, 5052613. [Google Scholar] [CrossRef]
- Seiler, A.; Chen, M.A.; Brown, R.L.; Fagundes, C.P. Obesity, Dietary Factors, Nutrition, and Breast Cancer Risk. Curr. Breast Cancer Rep. 2018, 10, 14–27. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Campion, P.; Bishop, K.S. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 2016, 8, 547. [Google Scholar] [CrossRef]
- Burwell, A.; Kimbro, S.; Mulrooney, T. Geospatial Associations between Female Breast Cancer Mortality Rates and Environmental Socioeconomic Indicators for North Carolina. Int. J. Environ. Res. Public Health 2023, 20, 6372. [Google Scholar] [CrossRef]
- Bevel, M.S.; Tsai, M.H.; Parham, A.; Andrzejak, S.E.; Jones, S.; Moore, J.X. Association of Food Deserts and Food Swamps With Obesity-Related Cancer Mortality in the US. JAMA Oncol. 2023, 9, 909–916. [Google Scholar] [CrossRef]
Variables | |
---|---|
Age, Mean (SD) | N (%) |
Race | 65.71 (12.98) |
White | 2508 (82.47) |
Black | 347 (11.41) |
Other | 178 (5.85) |
Missing | 8 (0.26) |
Menopausal Status | |
Premenopausal | 265 (8.71) |
Postmenopausal | 1523 (50.08) |
Other * | 878 (28.87) |
Missing | 375 (12.33) |
Employment status | |
Employed | 964 (31.70) |
Unemployment | 372 (12.23) |
Disabled | 190 (6.25) |
Retired | 1271 (41.80) |
Missing | 244 (8.02) |
Marital Status | |
Married | 1766 (58.07) |
Others # | 1269 (41.73) |
Missing | 6 (0.20) |
Insurance Type | |
Yes | 2494 (82.02) |
No | 433 (14.24) |
Missing | 117 (3.85) |
Alcohol | |
Never | 1293 (42.52) |
Ever | 1697 (55.80) |
Missing | 51 (1.68) |
Tobacco | |
Never | 1762 (57.94) |
Ever | 1, 248 (41.04) |
Missing | 31 (1.02) |
Tumor Stage | |
I | 1836 (60.37) |
II | 834 (27.43) |
III | 353 (11.61) |
Missing | 18 (0.59) |
Tumor Grade | |
Well differentiated | 329 (10.82) |
Moderately differentiated | 695 (22.85) |
Poorly differentiated | 418 (13.75) |
Missing | 1599 (52.58) |
ER Status | |
Negative | 361 (11.87) |
Positive | 1950 (64.12) |
Missing | 730 (24.01) |
Tri-negative | |
Negative | 2446 (80.43) |
Positive | 211 (6.94) |
Missing | 364 (11.97) |
Chemotherapy | |
Yes | 1089 (35.81) |
No | 1952 (64.19) |
Radiation | |
Yes | 1580 (51.96) |
No | 1461 (48.04) |
Death | |
Yes | 494 (16.24) |
No | 2537 (83.43) |
Missing | 10 (0.33) |
Median Follow-up Time (years) | 31.2 (19.6) |
ADI, Mean (SD) | 53.4 (23.4) |
PM2.5, Mean (SD) | 7.13 (0.99) |
NDVI, Mean (SD) | 0.61 (0.07) |
mRFEI, Mean (SD) | 3.77 (8.06) |
RFAI, Mean (SD) |
Tumor Stage | Tumor Grade | ER Status | TNBC Status | |||
---|---|---|---|---|---|---|
II vs. I | III vs. I | Moderately vs. Well | Poorly vs. Well | Negative vs. Positive | Yes vs. No | |
OR (95% CI) * | OR (95% CI) * | OR (95% CI) * | OR (95% CI) * | OR (95% CI) * | OR (95% CI) * | |
ADI (Continuous) | 1.03 (0.99, 1.07) | 1.06 (1.01, 1.11) | 1.02 (0.96, 1.08) | 1.07 (1.01, 1.15) | 1.06 (1.01, 1.12) | 1.08 (1.02, 1.16) |
ADI (Categorical) | ||||||
Low (1~50) | Reference | Reference | Reference | Reference | Reference | Reference |
High (51~100) | 1.16 (0.98, 1.39) | 1.21 (0.94, 1.55) | 1.20 (0.90, 1.60) | 1.58 (1.14, 2.17) | 1.31 (1.03, 1.66) | 1.51 (1.12, 2.05) |
PM2.5 (continuous) | 1.23 (1.12, 1.34) | 1.24 (1.09, 1.40) | 1.01 (0.86, 1.17) | 1.08 (0.91, 1.28) | 1.03 (0.91, 1.17) | 1.02 (0.87, 1.19) |
PM2.5 (categorical) | ||||||
Low | Reference | Reference | Reference | Reference | Reference | Reference |
High | 1.56 (1.31, 1.86) | 1.43 (1.11, 1.84) | 1.08 (0.78, 1.50) | 1.13 (0.77, 1.65) | 1.07 (0.84, 1.37) | 1.21 (0.89, 1.64) |
NDVI (continuous) | 1.62 (0.49, 5.41) | 0.96 (0.20, 4.74) | 0.25 (0.03, 2.02) | 0.37 (0.04, 3.86) | 3.37 (0.66, 18.79) | 3.46 (0.45, 30.91) |
NDVI (Categorical) | ||||||
Low | Reference | Reference | Reference | Reference | Reference | Reference |
High | 1.06 (0.89, 1.26) | 0.95 (0.74, 1.21) | 0.81 (0.61, 1.06) | 0.79 (0.58, 1.09) | 0.99 (0.79, 1.26) | 0.97 (0.72, 1.30) |
mRFEI | ||||||
Low (=0) | Reference | Reference | Reference | Reference | Reference | Reference |
High (>0) | 1.07 (0.87, 1.31) | 1.26 (0.95, 1.65) | 1.59 (1.14, 2.23) | 1.16 (0.79, 1.71) | 0.94 (0.71, 1.23) | 1.19 (0.89, 1.61) |
RFAI | ||||||
Low (=0) | Reference | Reference | Reference | Reference | Reference | Reference |
High (>0) | 1.07 (0.90, 1.28) | 1.04 (0.82, 1.33) | 1.04 (0.79, 1.37) | 1.01 (0.74, 1.38) | 1.27 (0.99, 1.63) | 1.07 (0.79, 1.46) |
Overall | ER+ (N = 1950) | ER− (N = 361) | TNBC (N = 211) | Non-TNBC (N = 2466) | |
---|---|---|---|---|---|
Coefficient (95% CI) * | Coefficient (95% CI) * | Coefficient (95% CI) * | Coefficient (95% CI) * | Coefficient (95% CI) * | |
ADI | −0.22 (−0.36, −0.09) | −0.27 (−0.43, −0.10) | 0.04 (−0.40, 0.47) | 0.11 (−0.52, 0.73) | −0.23 (−0.38, −0.08) |
PM2.5 | 0.33 (0.01, 0.65) | 0.30 (−0.10, 0.69) | −0.01 (−0.99, 0.99) | 0.70 (−0.82, 2.22) | 0.30 (−0.05, 0.65) |
NDVI | 2.29 (−1.88, 6.45) | 3.57 (−1.38, 8.51) | 3.73 (−10.90, 18.35) | −3.22 (−23.38, 16.95) | 3.04 (−1.39, 7.47) |
mRFEI | |||||
Low (=0) | Reference | Reference | Reference | Reference | Reference |
High (>0) | −0.64 (−1.36, 0.07) | −0.28 (−1.17, 0.60) | −0.87 (−3.17, 1.43) | −0.33 (−3.63, 2.98) | −0.49 (−1.27, 0.29) |
RFAI | |||||
Low (=0) | Reference | Reference | Reference | Reference | Reference |
High (>0) | −0.94 (−1.55, −0.32) | −0.84 (−1.59, −0.08) | −1.09 (−3.17, 0.99) | −2.49 (−5.30, 0.32) | −0.62 (−1.29, 0.05) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | |
ADI | 1.06 (1.02, 1.10) | 1.04 (1.01, 1.09) | 1.02 (0.98, 1.06) | 1.02 (0.98, 1.06) | 1.03 (0.98, 1.08) | 0.98 (0.94, 1.03) |
PM2.5 | 0.92 (0.83, 1.03) | 0.90 (0.80, 0.99) | 0.78 (0.70, 0.88) | 0.88 (0.79, 0.98) | 0.85 (0.75, 0.96) | 0.71 (0.63, 0.82) |
NDVI | 1.45 (0.39, 5.33) | 1.69 (0.45, 6.34) | 2.58 (0.68, 9.83) | 1.65 (0.43, 6.28) | 1.67 (0.36, 7.81) | 2.79 (0.58, 13.33) |
mRFEI | ||||||
Low (=0) | Reference | Reference | Reference | Reference | Reference | Reference |
High (>0) | 0.82 (0.65, 1.03) | 0.80 (0.64, 1.01) | 0.82 (0.65, 1.03) | 0.80 (0.64, 1.01) | 0.81 (0.62, 1.05) | 0.79 (0.61, 1.03) |
RFAI | ||||||
Low (=0) | Reference | Reference | Reference | Reference | Reference | Reference |
High (>0) | 0.91 (0.76, 1.09) | 0.90 (0.75, 1.08) | 0.91 (0.76, 1.09) | 0.89 (0.74, 1.06) | 0.96 (0.78, 1.19) | 0.92 (0.74, 1.14) |
ER+ (N = 1950) | ER− (N = 361) | TNBC (N = 211) | Non-TNBC (N = 2466) | |
---|---|---|---|---|
HR (95% CI) * | HR (95% CI) * | HR (95% CI) * | HR (95% CI) * | |
ADI | 0.99 (0.94, 1.05) | 0.99 (0.89, 1.10) | 0.93 (0.82, 1.06) | 1.01 (0.96, 1.06) |
PM2.5 | 0.72 (0.63, 0.82) | 0.62 (0.47, 0.82) | 0.57 (0.39, 0.83) | 0.71 (0.63, 0.80) |
NDVI | 1.89 (0.32, 11.19) | 20.84 (0.64, 682.38) | 6.60 (0.10, 458.20) | 3.56 (0.69, 18.64) |
mRFEI | ||||
Low (=0) | Reference | Reference | Reference | Reference |
High (>0) | 0.84 (0.62, 1.12) | 0.45 (0.23, 0.85) | 0.40 (0.18, 0.90) | 0.85 (0.65, 1.10) |
RFAI | ||||
Low (=0) | Reference | Reference | Reference | Reference |
High (>0) | 1.01 (0.79, 1.28) | 0.61 (0.38, 0.97) | 0.48 (0.26, 0.87) | 1.06 (0.86, 1.32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Guan, Y.; Gururaj, S.; Zhang, K.; Song, Q.; Liu, X.; Bear, H.D.; Fuemmeler, B.F.; Anderson, R.T.; Zhao, H. Neighborhood Disadvantage, Built Environment, and Breast Cancer Outcomes: Disparities in Tumor Aggressiveness and Survival. Cancers 2025, 17, 1502. https://doi.org/10.3390/cancers17091502
Shen J, Guan Y, Gururaj S, Zhang K, Song Q, Liu X, Bear HD, Fuemmeler BF, Anderson RT, Zhao H. Neighborhood Disadvantage, Built Environment, and Breast Cancer Outcomes: Disparities in Tumor Aggressiveness and Survival. Cancers. 2025; 17(9):1502. https://doi.org/10.3390/cancers17091502
Chicago/Turabian StyleShen, Jie, Yufan Guan, Supraja Gururaj, Kai Zhang, Qian Song, Xin Liu, Harry D. Bear, Bernard F. Fuemmeler, Roger T. Anderson, and Hua Zhao. 2025. "Neighborhood Disadvantage, Built Environment, and Breast Cancer Outcomes: Disparities in Tumor Aggressiveness and Survival" Cancers 17, no. 9: 1502. https://doi.org/10.3390/cancers17091502
APA StyleShen, J., Guan, Y., Gururaj, S., Zhang, K., Song, Q., Liu, X., Bear, H. D., Fuemmeler, B. F., Anderson, R. T., & Zhao, H. (2025). Neighborhood Disadvantage, Built Environment, and Breast Cancer Outcomes: Disparities in Tumor Aggressiveness and Survival. Cancers, 17(9), 1502. https://doi.org/10.3390/cancers17091502