Negative Effect of Intravenous Antibiotics on Survival in Patients with Triple-Negative Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 20 February 2025).
- Voduc, K.D.; Cheang, M.C.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast Cancer Subtypes and the Risk of Local and Regional Relapse. J. Clin. Oncol. 2010, 28, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Isakoff, S.J. Triple-Negative Breast Cancer. Cancer J. 2010, 16, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Savas, P.; Salgado, R.; Denkert, C.; Sotiriou, C.; Darcy, P.K.; Smyth, M.J.; Loi, S. Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat. Rev. Clin. Oncol. 2016, 13, 228–241. [Google Scholar] [CrossRef]
- Debien, V.; De Caluwé, A.; Wang, X.; Piccart-Gebhart, M.; Tuohy, V.K.; Romano, E.; Buisseret, L. Immunotherapy in breast cancer: An overview of current strategies and perspectives. npj Breast Cancer 2023, 9, 7. [Google Scholar] [CrossRef]
- Inomata, M.; Matsumoto, M.; Takata, N.; Hayashi, K.; Seto, Z.; Hirai, T.; Tokui, K.; Taka, C.; Okazawa, S.; Kambara, K.; et al. Peripheral CD4 memory T cells predict the efficacy of immune checkpoint inhibitor therapy in patients with non-small cell lung cancer. Sci. Rep. 2023, 13, 10807. [Google Scholar] [CrossRef]
- Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J. Clin. Oncol. 2019, 37, 559–569. [Google Scholar] [CrossRef]
- Denkert, C.; Von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- World Health Organization. Body Mass Index-BMI. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 21 January 2020).
- Hudis, C.A.; Barlow, W.E.; Costantino, J.P.; Gray, R.J.; Pritchard, K.I.; Chapman, J.-A.W.; Sparano, J.A.; Hunsberger, S.; Enos, R.A.; Gelber, R.D.; et al. Proposal for Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials: The STEEP System. J. Clin. Oncol. 2007, 25, 2127–2132. [Google Scholar] [CrossRef]
- Palukuri, N.R.; Yedla, R.P.; Bala, S.C.; Kuruva, S.P.; Chennamaneni, R.; Konatam, M.L.; Gundeti, S. Incidence of febrile neutropenia with commonly used chemotherapy regimen in localized breast cancer. South Asian J. Cancer 2020, 9, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.P.V.M.; Gagliato, D.D.M.; Cossetti, R.J.D.; Gimenez, R.D.; Mano, M.S. Febrile neutropenia risk with adjuvant TC (docetaxel and cyclophosphamide) regimen: Experience of Brazilian cancer centers. J. Clin. Oncol. 2014, 32, e12002. [Google Scholar] [CrossRef]
- Aapro, M.; Bohlius, J.; Cameron, D.; Lago, L.D.; Donnelly, J.P.; Kearney, N.; Lyman, G.; Pettengell, R.; Tjan-Heijnen, V.; Walewski, J.; et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer 2011, 47, 8–32. [Google Scholar] [CrossRef]
- Smith, T.J.; Bohlke, K.; Lyman, G.H.; Carson, K.R.; Crawford, J.; Cross, S.J.; Goldberg, J.M.; Khatcheressian, J.L.; Leighl, N.B.; Perkins, C.L.; et al. Recommendations for the Use of WBC Growth Factors: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2015, 33, 3199–3212. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.-J.; Kim, K.M.; Bilegsaikhan, S.-E.; Suh, Y.J. Machine learning improves the prediction of febrile neutropenia in Korean inpatients undergoing chemotherapy for breast cancer. Sci. Rep. 2020, 10, 14803. [Google Scholar] [CrossRef]
- Kelly, S.; Wheatley, D. Prevention of febrile neutropenia: Use of granulocyte colony-stimulating factors. Br. J. Cancer 2009, 101, S6–S10. [Google Scholar] [CrossRef]
- Kuderer, N.M.; Dale, D.C.; Crawford, J.; Lyman, G.H. Impact of Primary Prophylaxis With Granulocyte Colony-Stimulating Factor on Febrile Neutropenia and Mortality in Adult Cancer Patients Receiving Chemotherapy: A Systematic Review. J. Clin. Oncol. 2007, 25, 3158–3167. [Google Scholar] [CrossRef]
- Zheng, C.; Xu, X.; Wu, M.; Xue, L.; Zhu, J.; Xia, H.; Ding, S.; Fu, S.; Wang, X.; Wang, Y.; et al. Neutrophils in triple-negative breast cancer: An underestimated player with increasingly recognized importance. Breast Cancer Res. 2023, 25, 88. [Google Scholar] [CrossRef]
- Afghahi, A.; Rigdon, J.; Purington, N.; Desai, M.; Pierson, E.; Mathur, M.; Thompson, C.A.; Curtis, C.; West, R.B.; Horst, K.C.; et al. Higher peripheral lymphocyte count to predict survival in triple-negative breast cancer (TNBC). J. Clin. Oncol. 2016, 34, 1010. [Google Scholar] [CrossRef]
- Patel, D.A.; Xi, J.; Luo, J.; Hassan, B.; Thomas, S.; Ma, C.X.; Campian, J.L. Neutrophil-to-lymphocyte ratio as a predictor of survival in patients with triple-negative breast cancer. Breast Cancer Res. Treat. 2019, 174, 443–452. [Google Scholar] [CrossRef]
- Valero, C.; Lee, M.; Hoen, D.; Weiss, K.; Kelly, D.W.; Adusumilli, P.S.; Paik, P.K.; Plitas, G.; Ladanyi, M.; Postow, M.A.; et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat. Commun. 2021, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, J.D.; Ritter, V.; Purington, N.; Andrade, K.; Han, S.; Liu, M.; Liang, S.-Y.; John, E.M.; Gomez, S.L.; Telli, M.L.; et al. Antimicrobial exposure is associated with decreased survival in triple-negative breast cancer. Nat. Commun. 2023, 14, 2053. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Shi, J.; Li, S.; Yang, S.; Gao, W.; Yang, S.; Cheng, M.; Wang, H.; Guo, Z.; et al. Antibiotics modulate neoadjuvant therapy efficiency in patients with breast cancer: A pilot analysis. Sci. Rep. 2021, 11, 14024. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Jain, A.; Jewett, P.I.; Desai, N.; Veer, L.V.; Hirst, G.; Yee, D.; Blaes, A.H. Association of antibiotic exposure with residual cancer burden in HER2-negative early stage breast cancer. npj Breast Cancer 2024, 10, 24. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Ebadi, M.; Zhang, S.; Meybodi, M.A.; Ali, A.M.; DeFor, T.; Shanley, R.; Weisdorf, D.; Ryan, C.; Vasu, S.; et al. Comparative analysis of antibiotic exposure association with clinical outcomes of chemotherapy versus immunotherapy across three tumour types. ESMO Open 2020, 5, e000803. [Google Scholar] [CrossRef] [PubMed]
- Morrell, S.; Kohonen-Corish, M.R.; Ward, R.L.; Sorrell, T.C.; Roder, D.; Currow, D.C. Antibiotic exposure within six months before systemic therapy was associated with lower cancer survival. J. Clin. Epidemiol. 2022, 147, 122–131. [Google Scholar] [CrossRef]
- Wu, C.; Lai, R.; Li, J.; Zhang, J.; Zhao, Y.; Zhang, X.; Zhao, Y.; Guo, Z. Antibiotics Modulate Chemotherapy Efficacy in Patients with Esophageal Cancer. Cancer Manag. Res. 2020, 12, 4991–4997. [Google Scholar] [CrossRef]
- The Premenopausal Breast Cancer Collaborative Group; Schoemaker, M.J.; Nichols, H.B.; Wright, L.B.; Brook, M.N.; Jones, M.E.; O’Brien, K.M.; Adami, H.-O.; Baglietto, L.; Bernstein, L.; et al. Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncol. 2018, 4, e181771. [Google Scholar] [CrossRef]
- Harborg, S.; Zachariae, R.; Olsen, J.; Johannsen, M.; Cronin-Fenton, D.; Bøggild, H.; Borgquist, S. Overweight and prognosis in triple-negative breast cancer patients: A systematic review and meta-analysis. NPJ Breast Cancer 2021, 7, 119. [Google Scholar] [CrossRef]
- Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The microbiome and human cancer. Science 2021, 371, eabc4552. [Google Scholar] [CrossRef]
- Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef]
- Lehouritis, P.; Cummins, J.; Stanton, M.; Murphy, C.T.; McCarthy, F.O.; Reid, G.; Urbaniak, C.; Byrne, W.L.; Tangney, M. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep. 2015, 5, 14554. [Google Scholar] [CrossRef] [PubMed]
- Bawaneh, A.; Wilson, A.S.; Levi, N.; Howard-McNatt, M.M.; Chiba, A.; Soto-Pantoja, D.R.; Cook, K.L. Intestinal Microbiota Influence Doxorubicin Responsiveness in Triple-Negative Breast Cancer. Cancers 2022, 14, 4849. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, S.; Li, H.; Yang, F.; Mushtaq, N.; Ullah, S.; Shi, Y.; An, C.; Xu, J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed. Pharmacother. 2018, 108, 184–193. [Google Scholar] [CrossRef]
- Ziegler, M.; Han, J.H.; Landsburg, D.; Pegues, D.; Reesey, E.; Gilmar, C.; Gorman, T.; Bink, K.; Moore, A.; Kelly, B.J.; et al. Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients with Hematologic Malignancy. Open Forum Infect. Dis. 2019, 6, ofz252. [Google Scholar] [CrossRef] [PubMed]
- Derosa, L.; Hellmann, M.D.; Spaziano, M.; Halpenny, D.; Fidelle, M.; Rizvi, H.; Long, N.; Plodkowski, A.J.; Arbour, K.C.; Chaft, J.E.; et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018, 29, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.-M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef]
- Xue, L.; Ding, Y.; Qin, Q.; Liu, L.; Ding, X.; Zhou, Y.; Liu, K.; Singla, R.K.; Shen, K.; Din, A.U.; et al. Assessment of the impact of intravenous antibiotics treatment on gut microbiota in patients: Clinical data from pre-and post-cardiac surgery. Front. Cell. Infect. Microbiol. 2023, 12, 1043971. [Google Scholar] [CrossRef]
- Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef]
Count | Percentage (%) | ||
---|---|---|---|
Total | 1583 | 100 | |
SUCCESS study | SUCCESS A | 735 | 46.4 |
SUCCESS C | 848 | 53.6 | |
Age [years] | Median and range | 54 (24–86) | |
Body mass index | Underweight | 21 | 1.3 |
Normal weight | 746 | 47.1 | |
Overweight | 483 | 30.5 | |
Adiposity | 333 | 21.0 | |
Menopausal state | Premenopausal | 647 | 40.9 |
Postmenopausal | 936 | 59.1 | |
Tumor stage | pT1 | 805 | 50.9 |
pT2 | 720 | 45.5 | |
pT3 | 45 | 2.8 | |
pT4 | 12 | 0.8 | |
Missing | 1 | 0.1 | |
Nodal stage | pN0 | 1081 | 68.3 |
pN1 | 368 | 23.2 | |
pN2 | 94 | 5.9 | |
pN3 | 37 | 2.3 | |
Missing | 3 | 0.2 | |
Histological type | Invasive ductal | 1369 | 86.5 |
Invasive lobular | 40 | 2.5 | |
Others | 174 | 11.0 | |
Grading | G1 | 13 | 0.8 |
G2 | 272 | 17.2 | |
G3 | 1298 | 82.0 | |
Type of surgery | Lumpectomy | 1340 | 84.6 |
Mastectomy | 212 | 13.4 | |
Others | 31 | 2.0 | |
Chemotherapy | FEC-D | 778 | 49.1 |
FEC-DG | 373 | 23.6 | |
DC | 432 | 27.3 | |
ECOG at start of first chemotherapy cycle | 0 | 1239 | 78.3 |
1 | 298 | 18.8 | |
≥2 | 4 | 0.3 | |
Missing | 42 | 2.7 | |
Febrile neutropenia | Yes | 119 | 7.5 |
No | 1464 | 92.5 | |
Dose reduction | Yes | 220 | 13.9 |
No | 1363 | 86.1 | |
Dose shift (more than 6 days) | Yes | 309 | 19.5 |
No | 1274 | 80.5 | |
Irradiation therapy | Yes | 1384 | 87.4 |
No | 198 | 12.5 | |
Missing | 1 | 0.1 |
No Intervention | 650 (41.4%) |
---|---|
G-CSFs only | 337 (21.3%) |
OABs only | 173 (10.9%) |
IABs only | 16 (1.0%) |
G-CSFs and OABs | 302 (19.1%) |
G-CSFs and IABs | 20 (1.3%) |
OABs and IABs | 24 (1.5%) |
G-CSFs, OABs, and IABs | 61 (3.9%) |
G-CSF Application | OAB Application | IAB Application | |||||||
---|---|---|---|---|---|---|---|---|---|
No (n = 863) | Yes (n = 720) | p-Value | No (n = 1023) | Yes (n = 560) | p-Value | No (n = 1462) | Yes (n = 121) | p-Value | |
Age (median, range) | 53, 24–86 | 54, 25–79 | 0.242 § | 54, 26–78 | 53, 24–86 | 0.715 § | 53, 24–86 | 56, 30–77 | 0.263 § |
SUCCESS Study | 0.007 #,* | 0.674 # | 0.546 # | ||||||
SUCCESS A | 374 (43.3%) | 361 (50.1%) | 471 (46.0%) | 264 (47.1%) | 682 (46.6%) | 53 (43.8%) | |||
SUCCESS C | 489 (56.7%) | 359 (49.9%) | 552 (54.0%) | 296 (52.9%) | 780 (53.4%) | 68 (56.2%) | |||
Body mass index | 0.339 # | 0.799 # | <0.001 #,* | ||||||
Underweight/normal weight | 426 (49.4%) | 341 (47.4%) | 499 (48.8%) | 268 (47.9%) | 728 (49.8%) | 39 (32.2%) | |||
Overweight | 250 (29.0%) | 233 (32.4%) | 314 (30.7%) | 169 (30.2%) | 440 (30.1%) | 43 (35.5%) | |||
Adiposity | 187 (21.7%) | 146 (20.3%) | 210 (20.5%) | 123 (22.0%) | 294 (20.1%) | 39 (32.2%) | |||
Menopausal state | 0.247 # | 0.821 # | 0.506 # | ||||||
Premenopausal | 364 (42.2%) | 283 (39.3%) | 416 (40.7%) | 231 (41.2%) | 601 (41.1%) | 46 (38.0%) | |||
Postmenopausal | 499 (57.8%) | 437 (60.7%) | 607 (59.3%) | 329 (58.8% | 861 (58.9%) | 75 (62.0%) | |||
Tumor stage | 0.998 # | 0.435 # | 0.084 # | ||||||
pT1 | 438 (50.8%) | 367 (51.0%) | 531 (51.9%) | 274 (48.9%) | 755 (51.6%) | 50 (41.3%) | |||
pT2 | 393 (45.5%) | 327 (45.4%) | 457 (44.7%) | 263 (47.0%) | 655 (44.8%) | 65 (53.7%) | |||
pT3/pT4 | 31 (3.6%) | 26 (3.6%) | 34 (3.3%) | 23 (4.1%) | 51 (3.5%) | 6 (5.0%) | |||
Missing | 1 (0.1%) | 0 (0.0%) | 1 (0.1%) | 0 (0.0%) | 1 (0.1%) | 0 (0.0%) | |||
Nodal stage | 0.304 # | 0.496 # | 0.991 # | ||||||
pN0/pN1 | 784 (90.8%) | 665 (92.4%) | 939 (91.8%) | 510 (91.1%) | 1338 (91.5%) | 111 (91.7%) | |||
pN2/pN3 | 77 (8.9%) | 54 (7.5%) | 81 (7.9%) | 50 (8.9%) | 121 (8.3%) | 10 (8.3%) | |||
Missing | 2 (0.2%) | 1 (0.1%) | 3 (0.3%) | 0 (0.0%) | 3 (0.2%) | 0 (0.0%) | |||
Histological type | 0.069 # | 0.470 # | 0.228 # | ||||||
Invasive ductal | 734 (85.1%) | 635 (88.2%) | 880 (86.0%) | 489 (87.3%) | 1260 (86.2%) | 109 (90.1%) | |||
Invasive lobular/others | 129 (14.9%) | 85 (11.8%) | 143 (14.0%) | 71 (12.7%) | 202 (13.8%) | 12 (9.9%) | |||
Grading | 0.634 # | 0.700 # | 0.765 # | ||||||
G1/G2 | 159 (18.4%) | 126 (17.5%) | 187 (18.3%) | 98 (17.5%) | 262 (17.9%) | 23 (19.0%) | |||
G3 | 704 (81.6%) | 594 (82.5%) | 836 (81.7%) | 462 (82.5%) | 1200 (82.1%) | 98 (81.0%) | |||
Type of surgery | 0.295 # | 0.143 # | 0.348 # | ||||||
Lumpectomy | 738 (85.5%) | 602 (83.6%) | 876 (85.6%) | 464 (82.9%) | 1234 (84.4%) | 106 (87.6%) | |||
Mastectomy/others | 125 (14.5%) | 118 (16.4%) | 147 (14.4%) | 96 (17.1%) | 228 (15.6%) | 15 (12.4%) | |||
Chemotherapy | <0.001 #,* | 0.574 # | 0.784 # | ||||||
FEC-D | 452 (52.4%) | 326 (45.3%) | 512 (50.0%) | 266 (47.5%) | 722 (49.4%) | 56 (46.3%) | |||
FEC-DG | 151 (17.5%) | 222 (30.8%) | 234 (22.9%) | 139 (24.8%) | 342 (23.4%) | 31 (25.6%) | |||
DC | 260 (30.1%) | 172 (23.9%) | 277 (27.1%) | 155 (27.7%) | 398 (27.2%) | 34 (28.1%) | |||
ECOG at start of first chemotherapy cycle | <0.001 #,* | 0.126 # | 0.001 #,* | ||||||
0 | 703 (81.5%) | 536 (74.4%) | 813 (79.5%) | 426 (76.1%) | 1159 (79.3%) | 80 (66.1%) | |||
≥1 | 134 (15.5%) | 168 (23.3%) | 184 (18.0%) | 118 (21.1%) | 266 (18.2%) | 36 (29.8%) | |||
Missing | 26 (3.0%) | 16 (2.2%) | 26 (2.5%) | 16 (2.9%) | 37 (2.5%) | 5 (4.1%) | |||
Febrile neutropenia | <0.001 #,* | <0.001 #,* | <0.001 #,* | ||||||
Yes | 31 (3.6%) | 88 (12.2%) | 38 (3.7%) | 81 (14.5%) | 86 (5.9%) | 33 (27.3%) | |||
No | 832 (96.4%) | 632 (87.8%) | 985 (96.3%) | 479 (85.5%) | 1376 (94.1%) | 88 (72.7%) | |||
Dose reduction | <0.001 #,* | <0.001 #,* | <0.001 #,* | ||||||
Yes | 96 (11.1%) | 124 (17.2%) | 115 (11.2%) | 105 (18.8%) | 185 (12.7%) | 35 (28.9%) | |||
No | 767 (88.9%) | 596 (82.8%) | 908 (88.8%) | 455 (81.2%) | 1277 (87.3%) | 86 (71.1%) | |||
Dose shift (more than 6 days) | <0.001 #,* | <0.001 #,* | <0.001 #,* | ||||||
Yes | 141 (16.3%) | 168 (23.3%) | 167 (16.3%) | 142 (25.4%) | 270 (18.5%) | 39 (32.2%) | |||
No | 722 (83.7%) | 552 (76.7%) | 856 (83.7%) | 418 (74.6%) | 1192 (81.5%) | 82 (67.8%) | |||
Irradiation therapy | 0.865 # | 0.333 # | 0.967 # | ||||||
Yes | 753 (87.3%) | 631 (87.6%) | 888 (86.8%) | 496 (88.6%) | 1278 (87.4%) | 106 (87.6%) | |||
No | 109 (12.6%) | 89 (12.4%) | 134 (13.1%) | 64 (11.4%) | 183 (12.5%) | 15 (12.4%) | |||
Missing | 1 (0.1%) | 0 (0.0%) | 1 (0.1%) | 0 (0.0%) | 1 (0.1%) | 0 (0.0%) |
Survival | HR 95%CI | p | |
---|---|---|---|
Granulocyte colony-stimulating factors | Overall survival | 0.98 (0.73–1.31) | 0.879 |
(yes vs. no) | Invasive disease-free survival | 0.93 (0.73–1.18) | 0.538 |
Breast cancer-specific survival | 1.02 (0.74–1.40) | 0.907 | |
Distant disease-free survival | 0.91 (0.68–1.20) | 0.481 | |
Oral antibiotics | Overall survival | 0,94 (0.69–1.28) | 0.705 |
(yes vs. no) | Invasive disease-free survival | 1.04 (0.82–1.32) | 0.751 |
Breast cancer-specific survival | 1.00 (0.72–1.39) | 0.996 | |
Distant disease-free survival | 1.04 (0.78–1.39) | 0.774 | |
Intravenous antibiotics | Overall survival | 1.92 (1.25–2.95) | 0.003 |
(yes vs. no) | Invasive disease-free survival | 1.50 (1.03–2.19) | 0.036 |
Breast cancer-specific survival | 1.84 (1.15–2.95) | 0.011 | |
Distant disease-free survival | 1.58 (1.01–2.46) | 0.044 |
OS | iDFS | BCSS | DDFS | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Categories | Hazard Ratio (95% CI) | p | Hazard Ratio (95% CI) | p | Hazard Ratio (95% CI) | p | Hazard Ratio (95% CI) | p |
G-CSF | Yes vs. no | 0.98 (0.70–1.36) | 0.891 | 0.91 (0.70–1.18) | 0.469 | 1.03 (0.72–1.46) | 0.886 | 0.85 (0.63–1.16) | 0.311 |
Oral antibiotics | Yes vs. no | 0.87 (0.62–1.23) | 0.437 | 1.01 (0.77–1.33) | 0.933 | 0.88 (0.61–1.26) | 0.473 | 0.95 (0.69–1.31) | 0.766 |
Intravenous antibiotics | Yes vs. no | 1.81 (1.10–2.98) | 0.020 * | 1.37 (0.89–2.10) | 0.153 | 1.88 (1.12–3.18) | 0.018 * | 1.66 (1.01–2.71) | 0.044 * |
Febrile neutropenia | Yes vs. no | 0.92 (0.52–1.61) | 0.762 | 0.96 (0.61–1.50) | 0.848 | 0.92 (0.52–1.65) | 0.788 | 0.86 (0.51–1.46) | 0.584 |
Age (years) | 1.00 (0.97–1.02) | 0.654 | 0.99 (0.97–1.01) | 0.187 | 0.98 (0.96–1.00) | 0.108 | 0.98 (0.96–1.00) | 0.037 * | |
Menopausal status | Postmenopausal vs. premenopausal | 1.43 (0.87–2.38) | 0.161 | 1.15 (0.78–1.71) | 0.474 | 1.64 (0.96–2.77) | 0.068 | 1.36 (0.86–2.15) | 0.189 |
Body mass index (kg/m2) | 0.003 * | 0.027 * | 0.011 * | 0.060 | |||||
25–29.9 vs. <25 | 1.13 (0.77–1.64) | 0.541 | 1.02 (0.76–1.37) | 0.894 | 0.99 (0.66–1.48) | 0.964 | 1.00 (0.71–1.41) | 0.987 | |
≥30 vs. <25 | 1.87 (1.28–2.74) | 0.001 * | 1.47 (1.09–1.99) | 0.013 * | 1.71 (1.15–2.54) | 0.008 * | 1.48 (1.04–2.12) | 0.031 * | |
Tumor stage | <0.001 * | <0.001 * | <0.001 * | 0.018 * | |||||
pT2 vs. pT1 | 1.87 (1.31–2.66) | <0.001 * | 1.54 (1.18–2.01) | 0.002 * | 2.04 (1.40–2.98) | <0.001 * | 1.56 (1.14–2.14) | 0.006 * | |
pT3/pT4 vs. pT1 | 2.67 (1.43–5.00) | 0.002 * | 2.57 (1.54–4.26) | <0.001 * | 2.82 (1.43–5.56) | 0.003 * | 1.73 (0.91–3.26) | 0.092 | |
Nodal stage | pN2/pN3 vs. pN0/pN1 | 3.74 (2.57–5.46) | <0.001 * | 3.24 (2.36–4.46) | <0.001 * | 3.60 (2.39–5.41) | <0.001 * | 3.57 (2.48–5.14) | <0.001 * |
Grading | G3 vs. G1/G2 | 1.11 (0.75–1.64) | 0.610 | 0.97 (0.72–1.32) | 0.861 | 1.06 (0.70–1.60) | 0.795 | 0.84 (0.59–1.19) | 0.333 |
Histological type | Lobular/other vs. ductal | 0.89 (0.56–1.42) | 0.633 | 0.69 (0.46–1.03) | 0.071 | 0.98 (0.60–1.58) | 0.926 | 0.68 (0.42–1.11) | 0.121 |
Type of surgery | Ablative/other vs. breast-conserving | 1.43 (0.94–2.19) | 0.096 | 1.27 (0.90–1.80) | 0.176 | 1.45 (0.92–2.29) | 0.109 | 1.79 (1.21–2.64) | 0.003 * |
Chemotherapy | 0.648 | 0.899 | 0.421 | 0.627 | |||||
FEC-DOCG vs. FEC-DOC | 0.92 (0.61–1.39) | 0.683 | 0.94 (0.67–1.33) | 0.735 | 0.91 (0.59–1.41) | 0.678 | 0.89 (0.61–1.32) | 0.573 | |
DOC-C vs. FEC-DOC | 1.23 (0.77–1.97) | 0.395 | 1.06 (0.75–1.50) | 0.748 | 1.39 (0.83–2.32) | 0.208 | 1.19 (0.77–1.84) | 0.425 | |
Irradiation therapy | Yes vs. no | 0.69 (0.42–1.12) | 0.135 | 0.74 (0.49–1.11) | 0.148 | 0.88 (0.51–1.54) | 0.659 | 1.27 (0.74–2.18) | 0.390 |
Success study | SUCCESS C vs. SUCCESS A | 0.66 (0.42–1.04) | 0.073 | 0.96 (0.67–1.37) | 0.823 | 0.61 (0.37–1.01) | 0.053 | 0.73 (0.48–1.11) | 0.143 |
Dose reduction | Yes vs. no | 0.82 (0.51–1.31) | 0.401 | 1.00 (0.70–1.42) | 0.983 | 0.90 (0.55–1.47) | 0.666 | 1.13 (0.75–1.71) | 0.559 |
Dose shift (more than 6 days) | Yes vs. no | 1.08 (0.74–1.57) | 0.691 | 1.09 (0.81–1.47) | 0.575 | 1.10 (0.74–1.64) | 0.637 | 1.17 (0.82–1.66) | 0.387 |
ECOG at start of first chemotherapy cycle | ≥1 vs. 0 | 0.96 (0.66–1.40) | 0.840 | 0.97 (0.72–1.30) | 0.820 | 0.95 (0.64–1.42) | 0.804 | 1.03 (0.73–1.46) | 0.854 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukac, S.; Fink, V.; Dayan, D.; Rack, B.; Janni, W.; Lato, K.; Veselinovic, K.; Heublein, S.; Friedl, T.W.P.; Leinert, E. Negative Effect of Intravenous Antibiotics on Survival in Patients with Triple-Negative Breast Cancer. Cancers 2025, 17, 1498. https://doi.org/10.3390/cancers17091498
Lukac S, Fink V, Dayan D, Rack B, Janni W, Lato K, Veselinovic K, Heublein S, Friedl TWP, Leinert E. Negative Effect of Intravenous Antibiotics on Survival in Patients with Triple-Negative Breast Cancer. Cancers. 2025; 17(9):1498. https://doi.org/10.3390/cancers17091498
Chicago/Turabian StyleLukac, Stefan, Visnja Fink, Davut Dayan, Brigitte Rack, Wolfgang Janni, Krisztian Lato, Kristina Veselinovic, Sabine Heublein, Thomas Wolfram Paul Friedl, and Elena Leinert. 2025. "Negative Effect of Intravenous Antibiotics on Survival in Patients with Triple-Negative Breast Cancer" Cancers 17, no. 9: 1498. https://doi.org/10.3390/cancers17091498
APA StyleLukac, S., Fink, V., Dayan, D., Rack, B., Janni, W., Lato, K., Veselinovic, K., Heublein, S., Friedl, T. W. P., & Leinert, E. (2025). Negative Effect of Intravenous Antibiotics on Survival in Patients with Triple-Negative Breast Cancer. Cancers, 17(9), 1498. https://doi.org/10.3390/cancers17091498