The Role of Visfatin in Gastric and Esophageal Cancer: From Biomarker to Therapeutic Target
Simple Summary
Abstract
1. Introduction
2. Visfatin: Biochemistry and General Functions
3. The Role of Visfatin in Metabolic Disorders
4. The Role of Visfatin in Upper GI Cancer
4.1. Angiogenesis and Tumor Progression
4.2. Tumor Microenvironment and Immune Modulation
4.3. Cell Proliferation and Oncogenic Signaling
4.4. Epithelial-to-Mesenchymal Transition (EMT)
5. The Application of Visfatin as a Tumor Biomarker in Upper GI Cancer
6. The Inhibition of Visfatin as Therapeutic Approach for Upper GI Cancer
7. Future Directions and Research Needs
7.1. What Is Missing About Visfatin’s Role in Upper GI Cancers?
7.2. State-of-the-Art Assessment of Visfatin
7.3. Proposals for Future Research Focusing on Translational and Clinical Studies
- Determine optimal cutoff values for visfatin levels in serum, tissue, and alternative biofluids (e.g., saliva, peritoneal fluid).
- Assess whether preoperative visfatin levels predict surgical outcomes, recurrence risk, or complications.
- Investigate whether visfatin dynamics during chemotherapy or immunotherapy correlate with treatment response and survival.
- Compare visfatin levels across different tumor subtypes (intestinal vs. diffuse gastric cancer, esophageal adenocarcinoma vs. squamous cell carcinoma) to identify disease-specific patterns.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; McNiece, I. Cloning and Characterization of the cDNA Encoding a Novel Human Pre-B-Cell Colony-Enhancing Factor. Mol. Cell. Biol. 1994, 14, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, A.; Matsuda, M.; Nishizawa, M.; Segawa, K.; Tanaka, M.; Kishimoto, K.; Matsuki, Y.; Murakami, M.; Ichisaka, T.; Murakami, H.; et al. Retraction. Science 2007, 318, 565. [Google Scholar] [CrossRef] [PubMed]
- Adeghate, E. Visfatin: Structure, Function and Relation to Diabetes Mellitus and Other Dysfunctions. Curr. Med. Chem. 2008, 15, 1851–1862. [Google Scholar] [CrossRef]
- Cymbaluk-Płoska, A.; Chudecka-Głaz, A.; Pius-Sadowska, E.; Sompolska-Rzechuła, A.; Machaliński, B.; Menkiszak, J. Circulating Serum Level of Visfatin in Patients with Endometrial Cancer. BioMed Res. Int. 2018, 2018, 8576179. [Google Scholar] [CrossRef]
- Ju, H.-Q.; Zhuang, Z.-N.; Li, H.; Tian, T.; Lu, Y.-X.; Fan, X.-Q.; Zhou, H.-J.; Mo, H.-Y.; Sheng, H.; Chiao, P.J.; et al. Regulation of the Nampt-Mediated NAD Salvage Pathway and Its Therapeutic Implications in Pancreatic Cancer. Cancer Lett. 2016, 379, 1–11. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, S.; Wu, Z.; Huang, Y.; Liu, C.; Tang, S.; Wei, L. Elevated Serum Visfatin Levels Are Associated with Poor Prognosis of Hepatocellular Carcinoma. Oncotarget 2017, 8, 23427–23435. [Google Scholar] [CrossRef]
- Zhang, H.-P.; Zou, J.; Xu, Z.-Q.; Ruan, J.; Yang, S.-D.; Yin, Y.; Mu, H.-J. Association of Leptin, Visfatin, Apelin, Resistin and Adiponectin with Clear Cell Renal Cell Carcinoma. Oncol. Lett. 2017, 13, 463–468. [Google Scholar] [CrossRef]
- Revollo, J.R.; Grimm, A.A.; Imai, S. The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells. J. Biol. Chem. 2004, 279, 50754–50763. [Google Scholar] [CrossRef]
- Rongvaux, A.; Shea, R.J.; Mulks, M.H.; Gigot, D.; Urbain, J.; Leo, O.; Andris, F. Pre-B-Cell Colony-Enhancing Factor, Whose Expression Is up-Regulated in Activated Lymphocytes, Is a Nicotinamide Phosphoribosyltransferase, a Cytosolic Enzyme Involved in NAD Biosynthesis. Eur. J. Immunol. 2002, 32, 3225–3234. [Google Scholar] [CrossRef]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and Pathophysiological Roles of NAMPT and NAD Metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Burgos, E.S. NAMPT in Regulated NAD Biosynthesis and Its Pivotal Role in Human Metabolism. Curr. Med. Chem. 2011, 18, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Yoshino, J. The Importance of NAMPT/NAD/SIRT1 in the Systemic Regulation of Metabolism and Ageing. Diabetes Obes. Metab. 2013, 15, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Saboori, S.; Hosseinzadeh-Attar, M.J.; Yousefi rad, E.; Hosseini, M.; Mirzaei, K.; Ahmadivand, Z. The Comparison of Serum Vaspin and Visfatin Concentrations in Obese and Normal Weight Women. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 320–323. [Google Scholar] [CrossRef]
- Chen, M.-P.; Chung, F.-M.; Chang, D.-M.; Tsai, J.C.-R.; Huang, H.-F.; Shin, S.-J.; Lee, Y.-J. Elevated Plasma Level of Visfatin/Pre-B Cell Colony-Enhancing Factor in Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2006, 91, 295–299. [Google Scholar] [CrossRef]
- Dogru, T.; Sonmez, A.; Tasci, I.; Bozoglu, E.; Yilmaz, M.I.; Genc, H.; Erdem, G.; Gok, M.; Bingol, N.; Kilic, S.; et al. Plasma Visfatin Levels in Patients with Newly Diagnosed and Untreated Type 2 Diabetes Mellitus and Impaired Glucose Tolerance. Diabetes Res. Clin. Pract. 2007, 76, 24–29. [Google Scholar] [CrossRef]
- Li, L.; Yang, G.; Li, Q.; Tang, Y.; Yang, M.; Yang, H.; Li, K. Changes and Relations of Circulating Visfatin, Apelin, and Resistin Levels in Normal, Impaired Glucose Tolerance, and Type 2 Diabetic Subjects. Exp. Clin. Endocrinol. Diabetes 2006, 114, 544–548. [Google Scholar] [CrossRef]
- Grolla, A.A.; Travelli, C.; Genazzani, A.A.; Sethi, J.K. Extracellular Nicotinamide Phosphoribosyltransferase, a New Cancer Metabokine. Br. J. Pharmacol. 2016, 173, 2182–2194. [Google Scholar] [CrossRef]
- Carbone, F.; Liberale, L.; Bonaventura, A.; Vecchiè, A.; Casula, M.; Cea, M.; Monacelli, F.; Caffa, I.; Bruzzone, S.; Montecucco, F.; et al. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr. Physiol. 2017, 7, 603–621. [Google Scholar] [CrossRef]
- Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; et al. Nampt/PBEF/Visfatin Regulates Insulin Secretion in β Cells as a Systemic NAD Biosynthetic Enzyme. Cell Metab. 2007, 6, 363–375. [Google Scholar] [CrossRef]
- Hara, N.; Yamada, K.; Shibata, T.; Osago, H.; Tsuchiya, M. Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma. PLoS ONE 2011, 6, e22781. [Google Scholar] [CrossRef] [PubMed]
- Behrouzfar, K.; Alaee, M.; Nourbakhsh, M.; Gholinejad, Z.; Golestani, A. Extracellular NAMPT/Visfatin Causes P53 Deacetylation via NAD Production and SIRT1 Activation in Breast Cancer Cells. Cell Biochem. Funct. 2017, 35, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Semerena, E.; Nencioni, A.; Masternak, K. Extracellular Nicotinamide Phosphoribosyltransferase: Role in Disease Pathophysiology and as a Biomarker. Front. Immunol. 2023, 14, 1268756. [Google Scholar] [CrossRef] [PubMed]
- Moschen, A.R.; Kaser, A.; Enrich, B.; Mosheimer, B.; Theurl, M.; Niederegger, H.; Tilg, H. Visfatin, an Adipocytokine with Proinflammatory and Immunomodulating Properties1. J. Immunol. 2007, 178, 1748–1758. [Google Scholar] [CrossRef]
- Présumey, J.; Courties, G.; Louis-Plence, P.; Escriou, V.; Scherman, D.; Pers, Y.-M.; Yssel, H.; Pène, J.; Kyburz, D.; Gay, S.; et al. Nicotinamide Phosphoribosyltransferase/Visfatin Expression by Inflammatory Monocytes Mediates Arthritis Pathogenesis. Ann. Rheum. Dis. 2013, 72, 1717–1724. [Google Scholar] [CrossRef]
- Yun, M.R.; Seo, J.M.; Park, H.Y. Visfatin Contributes to the Differentiation of Monocytes into Macrophages through the Differential Regulation of Inflammatory Cytokines in THP-1 Cells. Cell. Signal. 2014, 26, 705–715. [Google Scholar] [CrossRef]
- Adya, R.; Tan, B.K.; Punn, A.; Chen, J.; Randeva, H.S. Visfatin Induces Human Endothelial VEGF and MMP-2/9 Production via MAPK and PI3K/Akt Signalling Pathways: Novel Insights into Visfatin-Induced Angiogenesis. Cardiovasc. Res. 2008, 78, 356–365. [Google Scholar] [CrossRef]
- Wang, P.; Xu, T.-Y.; Guan, Y.-F.; Su, D.-F.; Fan, G.-R.; Miao, C.-Y. Perivascular Adipose Tissue-Derived Visfatin Is a Vascular Smooth Muscle Cell Growth Factor: Role of Nicotinamide Mononucleotide. Cardiovasc. Res. 2009, 81, 370–380. [Google Scholar] [CrossRef]
- Lin, T.-C. The Role of Visfatin in Cancer Proliferation, Angiogenesis, Metastasis, Drug Resistance and Clinical Prognosis. Cancer Manag. Res. 2019, 11, 3481–3491. [Google Scholar] [CrossRef]
- Auguet, T.; Terra, X.; Porras, J.A.; Orellana-Gavaldà, J.M.; Martinez, S.; Aguilar, C.; Lucas, A.; Pellitero, S.; Hernández, M.; Del Castillo, D.; et al. Plasma Visfatin Levels and Gene Expression in Morbidly Obese Women with Associated Fatty Liver Disease. Clin. Biochem. 2013, 46, 202–208. [Google Scholar] [CrossRef]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Silva, C.; Rotellar, F.; Cienfuegos, J.A.; Salvador, J.; Frühbeck, G. Association of Increased Visfatin/PBEF/NAMPT Circulating Concentrations and Gene Expression Levels in Peripheral Blood Cells with Lipid Metabolism and Fatty Liver in Human Morbid Obesity. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Friebe, D.; Löffler, D.; Schönberg, M.; Bernhard, F.; Büttner, P.; Landgraf, K.; Kiess, W.; Körner, A. Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes. PLoS ONE 2011, 6, e19526. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, C.; Sadikoglu, G.; Orhan, H.; Guclu, M.; Sarandol, E.; Akgun, M.D.; Ozcakir, A.; Imamoglu, S. Body Fat Distribution Has No Effect on Serum Visfatin Levels in Healthy Female Subjects. Cytokine 2010, 49, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh-Attar, M.J.; Golpaie, A.; Janani, L.; Derakhshanian, H. Effect of Weight Reduction Following Bariatric Surgery on Serum Visfatin and Adiponectin Levels in Morbidly Obese Subjects. Obes. Facts 2013, 6, 193–202. [Google Scholar] [CrossRef]
- Barth, S.; Klein, P.; Horbach, T.; Dötsch, J.; Rauh, M.; Rascher, W.; Knerr, I. Expression of Neuropeptide Y, Omentin and Visfatin in Visceral and Subcutaneous Adipose Tissues in Humans: Relation to Endocrine and Clinical Parameters. Obes. Facts 2010, 3, 245–251. [Google Scholar] [CrossRef]
- Dahl, T.B.; Haukeland, J.W.; Yndestad, A.; Ranheim, T.; Gladhaug, I.P.; Damås, J.K.; Haaland, T.; Løberg, E.M.; Arntsen, B.; Birkeland, K.; et al. Intracellular Nicotinamide Phosphoribosyltransferase Protects against Hepatocyte Apoptosis and Is Down-Regulated in Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2010, 95, 3039–3047. [Google Scholar] [CrossRef]
- Filippatosm, T.D.; Derdemezis, C.S.; Kiortsis, D.N.; Tselepis, A.D.; Elisaf, M.S. Increased Plasma Levels of Visfatin/Pre-B Cell Colony-Enhancing Factor in Obese and Overweight Patients with Metabolic Syndrome. J. Endocrinol. Investig. 2007, 30, 323–326. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Lagos, K.; Kiortsis, D.N.; Tselepis, A.D.; Elisaf, M.S. Increased Plasma Visfatin Levels in Subjects with the Metabolic Syndrome. Eur. J. Clin. Investig. 2008, 38, 71–72. [Google Scholar] [CrossRef]
- Dahl, T.B.; Yndestad, A.; Skjelland, M.; Øie, E.; Dahl, A.; Michelsen, A.; Damås, J.K.; Tunheim, S.H.; Ueland, T.; Smith, C.; et al. Increased Expression of Visfatin in Macrophages of Human Unstable Carotid and Coronary Atherosclerosis: Possible Role in Inflammation and Plaque Destabilization. Circulation 2007, 115, 972–980. [Google Scholar] [CrossRef]
- Kamińska, A.; Kopczyńska, E.; Bronisz, A.; Zmudzińska, M.; Bieliński, M.; Borkowska, A.; Tyrakowski, T.; Junik, R. An Evaluation of Visfatin Levels in Obese Subjects. Endokrynol. Pol. 2010, 61, 169–173. [Google Scholar]
- Kukla, M.; Ciupińska-Kajor, M.; Kajor, M.; Wyleżoł, M.; Żwirska-Korczala, K.; Hartleb, M.; Berdowska, A.; Mazur, W. Liver Visfatin Expression in Morbidly Obese Patients with Nonalcoholic Fatty Liver Disease Undergoing Bariatric Surgery. Pol. J. Pathol. 2010, 61, 147–153. [Google Scholar] [PubMed]
- Li, H.; Xu, M.; Lee, J.; He, C.; Xie, Z. Leucine Supplementation Increases SIRT1 Expression and Prevents Mitochondrial Dysfunction and Metabolic Disorders in High-Fat Diet-Induced Obese Mice. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1234–E1244. [Google Scholar] [CrossRef] [PubMed]
- Gaddipati, R.; Sasikala, M.; Padaki, N.; Mukherjee, R.M.; Sekaran, A.; Jayaraj-Mansard, M.; Rabella, P.; Rao-Guduru, V.; Reddy-Duvvuru, N. Visceral Adipose Tissue Visfatin in Nonalcoholic Fatty Liver Disease. Ann. Hepatol. 2010, 9, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-L.; Achudhan, D.; Liu, P.-I.; Lin, Y.-Y.; Liu, S.-C.; Guo, J.-H.; Liu, C.-L.; Wu, C.-Y.; Wang, S.-W.; Tang, C.-H. Visfatin Upregulates VEGF-C Expression and Lymphangiogenesis in Esophageal Cancer by Activating MEK1/2-ERK and NF-κB Signaling. Aging 2023, 15, 4774–4793. [Google Scholar] [CrossRef]
- Okuda, S.; Ohuchida, K.; Nakamura, S.; Tsutsumi, C.; Hisano, K.; Mochida, Y.; Kawata, J.; Ohtsubo, Y.; Shinkawa, T.; Iwamoto, C.; et al. Neoadjuvant Chemotherapy Enhances Anti-Tumor Immune Response of Tumor Microenvironment in Human Esophageal Squamous Cell Carcinoma. iScience 2023, 26, 106480. [Google Scholar] [CrossRef]
- Bi, T.-Q.; Che, X.-M.; Liao, X.-H.; Zhang, D.-J.; Long, H.-L.; Li, H.-J.; Zhao, W. Overexpression of Nampt in Gastric Cancer and Chemopotentiating Effects of the Nampt Inhibitor FK866 in Combination with Fluorouracil. Oncol. Rep. 2011, 26, 1251–1257. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, F.-H.; Liang, J.-M.; Xiang, Y.-Y.; Liu, S.-H.; Zhang, S.-W.; Zhu, C.-M.; He, Y.-L.; Zhang, C. Targeting NAD Metabolism Regulates Extracellular Adenosine Levels to Improve the Cytotoxicity of CD8+ Effector T Cells in the Tumor Microenvironment of Gastric Cancer. J. Cancer Res. Clin. Oncol. 2022, 149, 2743–2756. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zarghami, N.; Hedayati, M.; Ghaemmaghami, S. Synergistic Effects of Resistin and Visfatin as Adipocyte Derived Hormones on Telomerase Gene Expression in AGS Gastric Cancer Cell Line. Acta Med. Iran. 2017, 55, 621–627. [Google Scholar]
- Lucena-Cacace, A.; Otero-Albiol, D.; Jiménez-García, M.P.; Muñoz-Galvan, S.; Carnero, A. NAMPT Is a Potent Oncogene in Colon Cancer Progression That Modulates Cancer Stem Cell Properties and Resistance to Therapy through Sirt1 and PARP. Clin. Cancer Res. 2018, 24, 1202–1215. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Lee, J.E.; Shin, S.-J.; Oh, S.; Kwon, G.; Kim, H.; Choi, Y.Y.; White, M.A.; Paik, S.; et al. Selective Cytotoxicity of the NAMPT Inhibitor FK866 Toward Gastric Cancer Cells with Markers of the Epithelial-Mesenchymal Transition, Due to Loss of NAPRT. Gastroenterology 2018, 155, 799–814.e13. [Google Scholar] [CrossRef]
- Cao, D.; Chu, L.; Xu, Z.; Gong, J.; Deng, R.; Wang, B.; Zhou, S. Visfatin Facilitates Gastric Cancer Malignancy by Targeting Snai1 via the NF-κB Signaling. Hum. Exp. Toxicol. 2021, 40, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.-W.; Wang, Q.-J.; Xia, M.-M.; Qian, J. Elevated Plasma Visfatin Levels Correlate with Poor Prognosis of Gastric Cancer Patients. Peptides 2014, 58, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Miura, N.; Harada, T.; Wang, Z.; Wang, X.; Tsubokura, H.; Oshima, Y.; Hasegawa, J.; Inagaki, Y.; Shiota, G. Prognostic Impact of Clinical Course-Specific mRNA Expression Profiles in the Serum of Perioperative Patients with Esophageal Cancer in the ICU: A Case Control Study. J. Transl. Med. 2010, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-H.; Wu, Q.-F.; Fu, J.-K.; Che, X.-M.; Li, H.-J. Obesity Potentiates Esophageal Squamous Cell Carcinoma Growth and Invasion by AMPK-YAP Pathway. J. Immunol. Res. 2020, 2020, 6765474. [Google Scholar] [CrossRef]
- Nakajima, T.E.; Yamada, Y.; Hamano, T.; Furuta, K.; Gotoda, T.; Katai, H.; Kato, K.; Hamaguchi, T.; Shimada, Y. Adipocytokine Levels in Gastric Cancer Patients: Resistin and Visfatin as Biomarkers of Gastric Cancer. J. Gastroenterol. 2009, 44, 685–690. [Google Scholar] [CrossRef]
- Nakajima, T.E.; Yamada, Y.; Hamano, T.; Furuta, K.; Oda, I.; Kato, H.; Kato, K.; Hamaguchi, T.; Shimada, Y. Adipocytokines and Squamous Cell Carcinoma of the Esophagus. J. Cancer Res. Clin. Oncol. 2010, 136, 261–266. [Google Scholar] [CrossRef]
- Liu, J.; Che, X.; You, J.; Zhang, G.; Zhao, R.; Fu, J.; Li, H. Intracellular Nampt Impairs Esophageal Squamous Cell Carcinoma Neo-Adjuvant Chemotherapy Response Independent of eNampt. Am. J. Transl. Res. 2021, 13, 1411–1421. [Google Scholar]
- Li, H.; Bai, E.; Zhang, Y.; Jia, Z.; He, S.; Fu, J. Role of Nampt and Visceral Adiposity in Esophagogastric Junction Adenocarcinoma. J. Immunol. Res. 2017, 2017, 3970605. [Google Scholar] [CrossRef]
- McKay-Corkum, G.B.; Collins, V.J.; Yeung, C.; Ito, T.; Issaq, S.H.; Holland, D.; Vulikh, K.; Zhang, Y.; Lee, U.; Lei, H.; et al. Inhibition of NAD+-Dependent Metabolic Processes Induces Cellular Necrosis and Tumor Regression in Rhabdomyosarcoma Models. Clin. Cancer Res. 2023, 29, 4479–4491. [Google Scholar] [CrossRef]
- Tang, H.; Wang, L.; Wang, T.; Yang, J.; Zheng, S.; Tong, J.; Jiang, S.; Zhang, X.; Zhang, K. Recent Advances of Targeting Nicotinamide Phosphoribosyltransferase (NAMPT) for Cancer Drug Discovery. Eur. J. Med. Chem. 2023, 258, 115607. [Google Scholar] [CrossRef]
- Hassan, S.B.; Lövborg, H.; Lindhagen, E.; Karlsson, M.O.; Larsson, R. CHS 828 Kill Tumour Cells by Inhibiting the Nuclear Factor-κB Translocation but Unlikely through Down-Regulation of Proteasome. Anticancer Res. 2006, 26, 4431–4436. [Google Scholar] [PubMed]
- Olesen, U.H.; Christensen, M.K.; Björkling, F.; Jäättelä, M.; Jensen, P.B.; Sehested, M.; Nielsen, S.J. Anticancer Agent CHS-828 Inhibits Cellular Synthesis of NAD. Biochem. Biophys. Res. Commun. 2008, 367, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Roulston, A.; Shore, G.C. New Strategies to Maximize Therapeutic Opportunities for NAMPT Inhibitors in Oncology. Mol. Cell. Oncol. 2016, 3, e1052180. [Google Scholar] [CrossRef] [PubMed]
- Dcona, M.M.; Chougoni, K.K.; Dcona, D.T.; West, J.L.; Singh, S.J.; Ellis, K.C.; Grossman, S.R. Combined Targeting of NAD Biosynthesis and the NAD-Dependent Transcription Factor C-Terminal Binding Protein as a Promising Novel Therapy for Pancreatic Cancer. Cancer Res. Commun. 2023, 3, 2003–2013. [Google Scholar] [CrossRef]
- Adams, D.J.; Ito, D.; Rees, M.G.; Seashore-Ludlow, B.; Puyang, X.; Ramos, A.H.; Cheah, J.H.; Clemons, P.A.; Warmuth, M.; Zhu, P.; et al. NAMPT Is the Cellular Target of STF-31-like Small-Molecule Probes. ACS Chem. Biol. 2014, 9, 2247–2254. [Google Scholar] [CrossRef]
- Senter, P.D. Data from Targeted Delivery of Cytotoxic NAMPT Inhibitors Using Antibody–Drug Conjugates. Mol. Cancer Ther. 2018, 17, 2633–2642. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.; Yao, J.; Bu, Z.; Kyani, A.; Liang, B.; Chen, S.; Zheng, Y.; Liang, H.; Neamati, N.; et al. Design of FK866-Based Degraders for Blocking the Nonenzymatic Functions of Nicotinamide Phosphoribosyltransferase. J. Med. Chem. 2024, 67, 8099–8121. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Liu, H.; Wang, Y.; Sun, R.; Jiang, Z.; Hou, C.; Hou, X.; Huang, S.; Zhang, H.; et al. NAMPT-Targeting PROTAC and Nicotinic Acid Co-Administration Elicit Safe and Robust Anti-Tumor Efficacy in NAPRT-Deficient Pan-Cancers. Cell Chem. Biol. 2024, 31, 1203–1218.e17. [Google Scholar] [CrossRef]
- Colombo, G.; Travelli, C.; Colombo, M.P.; Sangaletti, S.; Genazzani, A. 1341 Extracellular Nicotinamide Phosphoribosyltransferase (eNAMPT) Neutralization Counteracts T Cell Immune Evasion in Breast Cancer. J. Immunother. Cancer 2023, 11, e007010. [Google Scholar] [CrossRef]
- Berndt, J.; Klöting, N.; Kralisch, S.; Kovacs, P.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Blüher, M. Plasma Visfatin Concentrations and Fat Depot–Specific mRNA Expression in Humans. Diabetes 2005, 54, 2911–2916. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, J.; Zhang, R. Visfatin Mediates Doxorubicin Resistance in Human Colorectal Cancer Cells via up Regulation of Multidrug Resistance 1 (MDR1). Cancer Chemother. Pharmacol. 2017, 80, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Long, Y.; Cheng, W.; Huang, Y.; Li, J.; Li, Y.; Li, X.; Guo, X.; Li, Y.; Li, G.-K.; et al. Visfatin Inhibits Colon Cancer Cell Apoptosis and Decreases Chemosensitivity to 5-FU by Promoting the SDF-1/CXCR4/Akt Axis. Int. J. Oncol. 2022, 60, 75. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Christodoulatos, G.S. Visfatin, Obesity, and Cancer. In Adipocytokines, Energy Balance, and Cancer; Reizes, O., Berger, N.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 109–136. ISBN 978-3-319-41677-9. [Google Scholar]
- Eroglu Içli, H.; Bildaci, T.B. Measuring Visfatin Levels in Saliva: An Alternative Approach to Gestational Diabetes Screening. Arch. Endocrinol. Metab. 2021, 65, 747–751. [Google Scholar] [CrossRef] [PubMed]
Targeted NAMPT Form | Therapeutic Agents | Mechanism of Action | Observed Antitumor Effects | Clinical/Experimental Outcomes | Limitations/Toxicity |
---|---|---|---|---|---|
Intracellular NAMPT (iNAMPT) | FK866, CHS828, OT-82 | Small-molecule inhibitors; deplete NAD levels by inhibiting NAMPT enzymatic activity; suppress NF-κB signaling (via IKKβ inhibition) | Inhibited cancer cell proliferation, migration, anchorage-independent growth; enhanced apoptosis; sensitization to chemotherapy (5-FU); downregulation of VEGF, MMP2, MMP9, NF-κB (p65) | Reduced gastric cancer cell viability and migration at 3–30 nM FK866; significant sensitization to 5-FU (lower IC50) | Thrombocytopenia, gastrointestinal effects, retinal, neurological, cardiac toxicities observed in clinical trials |
Intracellular NAMPT (iNAMPT)(EMT-SubType Specific) | FK866 | Selectively induces cytotoxicity in EMT-subtype gastric cancer cells lacking NAPRT due to promoter hypermethylation | Significant in vitro and in vivo antitumor activity specifically against EMT-subtype tumors; tumor regression in xenograft models; NAPRT as a predictive biomarker | Effective selective killing of aggressive EMT-subtype gastric cancer cells; no activity against non-EMT cells | Potential limitation in tumors expressing NAPRT (resistance) |
Intracellular NAMPT (iNAMPT) + CtBP Dual Inhibition | GMX1778 + 4-Cl-HIPP | Dual-targeting: NAMPT inhibition (GMX1778) disrupts CtBP dimerization; 4-Cl-HIPP inhibits CtBP oligomerization and oncogenic gene transcription | Reduced cancer cell proliferation, migration, transcription of oncogenic genes (e.g., TIAM1); effective in pancreatic cancer xenograft models | Potent in vitro and in vivo efficacy; no observable preclinical toxicity | Awaiting clinical validation |
Intracellular NAMPT (iNAMPT) + GLUT1 Dual Inhibition | STF-31 | Inhibits both NAMPT and GLUT1; disrupts NAD metabolism and glucose uptake | Potent antitumor activity by interfering with metabolic pathways | Significant antitumor effects in preclinical models | Awaiting clinical validation |
Intracellular and Extracellular NAMPT (iNAMPT and eNAMPT) | PROTAC-based NAMPT degraders; Antibody-Drug Conjugates (ADCs) | Novel drug delivery systems: Selectively deliver NAMPT inhibitors and promote targeted degradation of NAMPT | Enhanced specificity; simultaneous targeting of intracellular and extracellular NAMPT; reduced toxicity | Preclinical effectiveness demonstrated; selective targeting achieved | Early experimental stages; clinical translation pending |
Extracellular NAMPT (eNAMPT) | Anti-eNAMPT neutralizing antibodies; PROTAC technology | Neutralization or degradation of extracellular cytokine activity of eNAMPT independent of NAD synthesis; inhibition of inflammatory signaling (MAPK, NF-κB, PI3K/Akt) | Suppression of tumor-associated inflammation, angiogenesis, and tumor progression | Effective experimental reduction in eNAMPT-mediated inflammatory and pro-tumor effects | Awaiting clinical validation; precise receptors remain unclear |
Visfatin Receptor Pathway (Future Perspectives) | Future receptor-specific agents or downstream inhibitors (PI3K/Akt, MAPK) | Identification and targeting of undefined visfatin receptors or downstream signaling pathways | Potential enhancement of specificity; suppression of pro-oncogenic signaling | Hypothesized improvement in therapeutic specificity and efficacy | Currently theoretical; receptor identity and efficacy need validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mylonakis, A.; Kozadinos, A.; Frountzas, M.; Kapetanakis, E.I.; Lidoriki, I.; Despotidis, M.; Karanikki, E.; Triantafyllou, T.; Theodorou, D.; Toutouzas, K.G.; et al. The Role of Visfatin in Gastric and Esophageal Cancer: From Biomarker to Therapeutic Target. Cancers 2025, 17, 1377. https://doi.org/10.3390/cancers17081377
Mylonakis A, Kozadinos A, Frountzas M, Kapetanakis EI, Lidoriki I, Despotidis M, Karanikki E, Triantafyllou T, Theodorou D, Toutouzas KG, et al. The Role of Visfatin in Gastric and Esophageal Cancer: From Biomarker to Therapeutic Target. Cancers. 2025; 17(8):1377. https://doi.org/10.3390/cancers17081377
Chicago/Turabian StyleMylonakis, Adam, Alexandros Kozadinos, Maximos Frountzas, Emmanouil I. Kapetanakis, Irene Lidoriki, Markos Despotidis, Eva Karanikki, Tania Triantafyllou, Dimitrios Theodorou, Konstantinos G. Toutouzas, and et al. 2025. "The Role of Visfatin in Gastric and Esophageal Cancer: From Biomarker to Therapeutic Target" Cancers 17, no. 8: 1377. https://doi.org/10.3390/cancers17081377
APA StyleMylonakis, A., Kozadinos, A., Frountzas, M., Kapetanakis, E. I., Lidoriki, I., Despotidis, M., Karanikki, E., Triantafyllou, T., Theodorou, D., Toutouzas, K. G., & Schizas, D. (2025). The Role of Visfatin in Gastric and Esophageal Cancer: From Biomarker to Therapeutic Target. Cancers, 17(8), 1377. https://doi.org/10.3390/cancers17081377