Usefulness of the Early Increase of Peripheral Blood Lymphocyte Count in Predicting Clinical Outcomes for Patients with Advanced Hepatocellular Carcinoma Treated with Durvalumab Plus Tremelimumab
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Protocol and Evaluation of Therapeutic Response
2.3. Laboratory Tests
2.4. Assessment of Adverse Events
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Therapeutic Efficacy
3.3. Analysis of Prognostic Factors for Objective Response
3.4. Analysis of Prognostic Factors for PFS
3.5. Analysis of Prognostic Factors for OS
3.6. Analysis of Predictive Factors for imAEs Due to Dur/Tre Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFP | alpha-fetoprotein |
ALBI | albumin–bilirubin |
ALD | alcohol-associated liver disease |
Atez/Bev | atezolizumab plus bevacizumab |
AUC | area under the curve |
BCLC | Barcelona Clinic Liver Cancer |
CI | confidence interval |
CR | complete response |
CT | computed tomography |
CTLA-4 | cytotoxic T lymphocyte-associated antigen 4 |
DCP | des-gamma-carboxy prothrombin |
DCR | disease control rate |
Dur/Tre | durvalumab plus tremelimumab |
HCC | hepatocellular carcinoma |
HR | hazard ratio |
ICI | immune checkpoints inhibitor |
imAE | immune-mediated adverse event |
IQR | interquartile |
LMR | lymphocyte-to-monocyte ratio |
LMR2w | LMR at 2 weeks after Dur/Tre induction |
MASLD | metabolic dysfunction-associated steatotic liver disease |
MRI | magnetic resonance imaging |
MTA | molecular targeted agent |
NLR | neutrophil-to-lymphocyte ratio |
NLR2w | NLR at 2 weeks after Dur/Tre induction |
ORR | objective response rate |
OS | overall survival |
PD | progressive disease |
PD-L1 | programmed cell death ligand-1 |
PFS | Progression-free survival |
PLR | platelet-to-lymphocyte ratio |
PLR2w | PLR at 2 weeks after Dur/Tre induction |
PR | partial response |
RECIST | Response Evaluation Criteria in Solid Tumors |
ROC | receiver operating characteristic |
SD | stable disease |
STRIDE | Single Tremelimumab Regular Interval Durvalumab |
VEGF | vascular endothelial growth factor |
WBC | white blood cell |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Krupa, K.; Fudalej, M.; Cencelewicz-Lesikow, A.; Badowska-Kozakiewicz, A.; Czerw, A.; Deptała, A. Current treatment methods in hepatocellular carcinoma. Cancers 2024, 16, 4059. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Abd El Aziz, M.A.; Sacco, R. Efficacy of regorafenib in hepatocellular carcinoma patients: A systematic review and meta-analysis. Cancers 2019, 12, 36. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Facciorusso, A.; Tartaglia, N.; Villani, R.; Serviddio, G.; Ramai, D.; Mohan, B.P.; Chandan, S.; Abd El Aziz, M.A.; Evangelista, J.; Cotsoglou, C.; et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: A systematic review and meta-analysis. Am. J. Transl. Res. 2021, 13, 2379–2387. [Google Scholar]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM. Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Sangro, B.; Chan, S.L.; Kelley, R.K.; Lau, G.; Kudo, M.; Sukeepaisarnjaroen, W.; Yarchoan, M.; De Toni, E.N.; Furuse, J.; Kang, Y.K.; et al. Four-year overall survival update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. Ann. Oncol. 2024, 35, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, J.F.; Wang, Y.; Liu, B.; Molina, J.R. Comparative analysis of predictive biomarkers for PD-1/PD-L1 inhibitors in cancers: Developments and challenges. Cancers 2021, 14, 109. [Google Scholar] [CrossRef]
- Ochi, H.; Kurosaki, M.; Joko, K.; Mashiba, T.; Tamaki, N.; Tsuchiya, K.; Marusawa, H.; Tada, T.; Nakamura, S.; Narita, R.; et al. Usefulness of neutrophil-to-lymphocyte ratio in predicting progression and survival outcomes after atezolizumab-bevacizumab treatment for hepatocellular carcinoma. Hepatol. Res. 2023, 53, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Chen, Y.Y.; Kee, K.M.; Wang, C.C.; Tsai, M.C.; Kuo, Y.H.; Hung, C.H.; Li, W.F.; Lai, H.L.; Chen, Y.H. The prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma receiving atezolizumab plus bevacizumab. Cancers 2022, 14, 343. [Google Scholar] [CrossRef]
- Wu, Y.L.; Fulgenzi, C.A.M.; D’Alessio, A.; Cheon, J.; Nishida, N.; Saeed, A.; Wietharn, B.; Cammarota, A.; Pressiani, T.; Personeni, N.; et al. Neutrophil-to-lymphocyte and platelet-to-Lymphocyte ratios as prognostic biomarkers in unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab. Cancers 2022, 14, 5834. [Google Scholar] [CrossRef]
- Matoya, S.; Suzuki, T.; Matsuura, K.; Suzuki, Y.; Okumura, F.; Nagura, Y.; Sobue, S.; Kuroyanagi, K.; Kusakabe, A.; Koguchi, H.; et al. The neutrophil-to-lymphocyte ratio at the start of the second course during atezolizumab plus bevacizumab therapy predicts therapeutic efficacy in patients with advanced hepatocellular carcinoma: A multicenter analysis. Hepatol. Res. 2023, 53, 511–521. [Google Scholar] [CrossRef]
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.K.; Qin, S.; Tai, D.W.; Lim, H.Y.; Yau, T.; et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study. J. Clin. Oncol. 2021, 39, 2991–3001. [Google Scholar] [CrossRef]
- Hasegawa, K.; Takemura, N.; Yamashita, T.; Watadani, T.; Kaibori, M.; Kubo, S.; Shimada, M.; Nagano, H.; Hatano, E.; Aikata, H.; et al. Clinical practice guidelines for hepatocellular carcinoma: The Japan Society of Hepatology 2021 version (5th JSH-HCC Guidelines). Hepatol. Res. 2023, 53, 383–390. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Llovet, J.M.; Miceli, R.; Bhoori, S.; Schiavo, M.; Mariani, L.; Camerini, T.; Roayaie, S.; Schwartz, M.E.; Grazi, G.L.; et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: A retrospective, exploratory analysis. Lancet Oncol. 2009, 10, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Shimose, S.; Saeki, I.; Tomonari, T.; Ito, T.; Tani, J.; Takeuchi, Y.; Yoshioka, N.; Naito, T.; Takeuchi, M.; Kakizaki, S.; et al. Initial clinical experience with durvalumab plus tremelimumab in patients with unresectable hepatocellular carcinoma in real-world practice. Oncol. Lett. 2024, 28, 397. [Google Scholar] [CrossRef]
- Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; Tsuji, K.; et al. Efficacy of durvalumab plus tremelimumab treatment for unresectable hepatocellular carcinoma in immunotherapy era clinical practice. Hepatol. Res. 2025, 55, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Prioritized requirements for first-line systemic therapy for hepatocellular carcinoma: Broad benefit with less toxicity. Liver Cancer 2023, 12, 1–6. [Google Scholar] [CrossRef]
- Saeki, I.; Shimose, S.; Tomonari, T.; Ito, T.; Tani, J.; Takeuchi, Y.; Yoshioka, N.; Naito, T.; Takeuchi, M.; Kakizaki, S.; et al. Alfa-fetoprotein and des-gamma-carboxy prothrombin can predict the objective response of patients with hepatocellular carcinoma receiving durvalumab plus tremelimumab therapy. PLoS ONE 2024, 19, e0311084. [Google Scholar] [CrossRef]
- Kuzuya, T.; Kawabe, N.; Muto, H.; Wada, Y.; Komura, G.; Nakano, T.; Tanaka, H.; Nakaoka, K.; Ohno, E.; Funasaka, K.; et al. Early changes in alfa-fetoprotein and des-γ-carboxy prothrombin are useful predictors of antitumor response to durvalumab plus tremelimumab therapy for advanced hepatocellular carcinoma. Curr. Oncol. 2024, 31, 4225–4240. [Google Scholar] [CrossRef]
- Hiam-Galvez, K.J.; Allen, B.M.; Spitzer, M.H. Systemic immunity in cancer. Nat. Rev. Cancer 2021, 21, 345–359. [Google Scholar] [CrossRef]
- Zhu, H.F.; Feng, J.K.; Xiang, Y.J.; Wang, K.; Zhou, L.P.; Liu, Z.H.; Cheng, Y.Q.; Shi, J.; Guo, W.X.; Cheng, S.Q. Combination of alfa-fetoprotein and neutrophil-to-lymphocyte ratio to predict treatment response and survival outcomes of patients with unresectable hepatocellular carcinoma treated with immune checkpoint inhibitors. BMC. Cancer 2023, 23, 547. [Google Scholar] [CrossRef]
- Liu, S.; Xu, W.; Shu, H.; Dai, Y.; Du, Y.; Liu, Y.; Huang, L.; Sun, G. Associations of circulating immunomarkers with the efficacy of immunotherapy for primary hepatic carcinoma. Cancer Med. 2023, 12, 21830–21848. [Google Scholar] [CrossRef] [PubMed]
- Kusumanto, Y.H.; Dam, W.A.; Hospers, G.A.; Meijer, C.; Mulder, N.H. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis 2003, 6, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Cheu, J.W.; Wong, C.C. Mechanistic rationales guiding combination hepatocellular carcinoma therapies involving immune checkpoint inhibitors. Hepatology 2021, 74, 2264–2276. [Google Scholar] [CrossRef]
- Chew, V.; Tow, C.; Teo, M.; Wong, H.L.; Chan, J.; Gehring, A.; Loh, M.; Bolze, A.; Quek, R.; Lee, V.K.; et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J. Hepatol. 2010, 52, 370–379. [Google Scholar] [CrossRef]
- Xu, X.; Wang, D.; Chen, W.; Li, N.; Suwinski, R.; Rossi, A.; Rosell, R.; Zhong, J.; Fan, Y. A nomogram model based in peripheral blood lymphocyte subsets to assess the prognosis of non-small cell lung cancer patients treated with immune checkpoint inhibitors. Transl. Lung. Cancer Res. 2021, 10, 4511–4525. [Google Scholar] [CrossRef]
- Suzuki, K.; Yasui, Y.; Tsuchiya, K.; Matsumoto, H.; Yamazaki, Y.; Uchihara, N.; Tanaka, Y.; Miyamoto, H.; Yamada-Shimizu, M.; Keitoku, T.; et al. Impact of immune-related adverse events in patients with hepatocellular carcinoma treated with atezolizumab plus bevacizumab. J. Gastroenterol. Hepatol. 2024, 39, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Nishida, N.; Sakai, K.; Aoki, T.; Chishina, H.; Takita, M.; Ida, H.; Hagiwara, S.; Minami, Y.; Ueshima, K.; et al. Immunological microenvironment predicts the survival of patients with hepatocellular carcinoma treated with anti-PD-1 antibody. Liver Cancer 2021, 10, 380–393. [Google Scholar] [CrossRef]
- Kuwano, A.; Tanaka, K.; Takahira, J.; Suzuki, H.; Ohishi, Y.; Motomura, K. WNT/β-catenin signaling and CD8+ tumor-infiltrating lymphocytes in tremelimumab plus durvalumab for advanced hepatocellular carcinoma. In Vivo 2024, 38, 2774–2781. [Google Scholar] [CrossRef]
- Xie, Q.; Hu, C.; Luo, C. The alterations in peripheral lymphocyte subsets predict the efficacy and prognosis of immune checkpoint inhibitors in hepatocellular carcinoma. J. Cancer 2023, 14, 2946–2955. [Google Scholar] [CrossRef]
Factor | Data (n = 30) |
---|---|
Age, years | 75 (69, 77) |
Gender, male/female, n | 24/6 |
ECOG PS, 0/1, n | 26/4 |
Dur/Tre treatment line, 1st/later, n | 15/15 |
Etiology, hepatitis B/hepatitis C/non-viral, n | 8/6/16 |
Liver cirrhosis, yes/no, n | 19/11 |
Child–Pugh class, A/B, n | 27/3 |
Modified ALBI grade, 1/2a/2b/3, n | 6/8/14/2 |
Max size of tumor, mm | 34 (22, 72) |
Macrovascular invasion, positive/negative, n | 8/22 |
Extrahepatic spread, positive/negative, n | 13/17 |
BCLC stage, A/B/C, n | 1/12/17 |
History of Atez/Bev, yes/no, n | 12/18 |
Laboratory data at Dur/Tre introduction | |
Albumin, g/dL | 3.5 (3.2–3.8) |
Total bilirubin, mg/dL | 0.9 (0.6–1.2) |
AFP, ng/mL | 16.7 (5.2–7929.4) |
DCP, mAU/mL | 636.0 (55.5–3864.7) |
Platelet count, ×104/μL | 15.7 (11.3–19.2) |
WBC count, /μL | 5750 (4275–7050) |
Neutrophil count, /μL | 3763 (2502–5131) |
Monocyte count, /μL | 351 (260–469) |
Lymphocyte count, /μL | 1287 (1052–1582) |
NLR | 3.27 (1.96–4.47) |
LMR | 3.57 (2.80–4.79) |
PLR | 122.9 (91.3–167.6) |
Laboratory data at 2 weeks after Dur/Tre introduction | |
Platelet count, ×104/μL | 14.5 (10.8–21.0) |
WBC count, /μL | 6350 (5000–8925) |
Neutrophil count, /μL | 4187 (2648–5560) |
Monocyte count, /μL | 468 (297–646) |
Lymphocyte count, /μL | 1360 (1052–1786) |
NLR | 3.05 (2.06–4.13) |
LMR | 3.16 (2.13–4.03) |
PLR | 119.9 (72.4–163.8) |
Observational period, months | 11.07 (4.85–15.75) |
Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|
HR | (95% CI) | p Value | HR | (95% CI) | p Value | ||
Age | years | 1.002 | (0.928–1.083) | 0.953 | |||
Gender | male/female | 0.333 | (0.053–2.115) | 0.244 | |||
Etiology | viral/non-viral | 0.880 | (0.183–4.226) | 0.873 | |||
Dur/Tre treatment line | 1st/later | 1.375 | (0.286–6.603) | 0.691 | |||
Data at Dur/Tre introduction | |||||||
WBC count | /μL | 1.000 | (1.000–1.000) | 0.619 | |||
Neutrophil count | /μL | 1.000 | (0.999–1.000) | 0.498 | |||
Monocyte count | /μL | 1.000 | (0.996–1.004) | 0.947 | |||
Lymphocyte count | /μL | 1.000 | (0.999–1.002) | 0.916 | |||
NLR | 0.782 | (0.470–1.299) | 0.342 | ||||
LMR | 1.043 | (0.684–1.589) | 0.846 | ||||
PLR | 0.995 | (0.982–1.008) | 0.421 | ||||
Data at 2 weeks after Dur/Tre introduction | |||||||
WBC count | /μL | 1.000 | (1.000–1.000) | 0.640 | |||
Neutrophil count | /μL | 1.000 | (1.000–1.000) | 0.409 | |||
Monocyte count | /μL | 0.999 | (0.995–1.002) | 0.451 | |||
Lymphocyte count | /μL | 1.001 | (1.000–1.003) | 0.068 | |||
NLR | 0.472 | (0.203–1.096) | 0.081 | ||||
LMR | 1.653 | (0.965–2.831) | 0.067 | ||||
PLR | 0.973 | (0.951–0.995) | 0.017 | 0.981 | (0.957–1.004) | 0.108 | |
ΔNeutrophil | /μL | 1.000 | (0.999–1.000) | 0.593 | |||
ΔMonocyte | /μL | 0.995 | (0.988–1.003) | 0.203 | |||
ΔLymphocyte | /μL | 1.004 | (1.001–1.006) | 0.016 | 1.002 | (0.999–1.005) | 0.130 |
Whole Cohort | High PLR2w | Low PLR2w | p Value | High Δlymphocyte | Low Δlymphocyte | p Value | |
---|---|---|---|---|---|---|---|
n | 30 | 20 | 10 | 10 | 20 | ||
CR | 2 (6.7) | 0 (0.0) | 2 (20.0) | 2 (20.0) | 0 (0.0) | ||
PR | 7 (23.3) | 1 (5.0) | 6 (60.0) | 5 (50.0) | 2 (10.0) | ||
SD | 7 (23.3) | 6 (30.0) | 1 (10.0) | 2 (20.0) | 5 (25.0) | ||
PD | 14 (6.7) | 13 (65.0) | 1 (10.0) | 1 (10.0) | 13 (65.0) | ||
ORR | 26.7% | 5.0% | 80.0% | <0.001 | 70.0% | 10.0% | 0.002 |
DCR | 53.3% | 35.0% | 90.0% | 0.006 | 90.0% | 35.0% | 0.006 |
Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|
HR | (95% CI) | p Value | HR | (95% CI) | p Value | ||
Age | years | 0.993 | (0.949–1.039) | 0.758 | |||
Gender | male/female | 1.212 | (0.407–3.612) | 0.730 | |||
Etiology | viral/non-viral | 0.987 | (0.421–2.317) | 0.977 | |||
Dur/Tre treatment line | 1st/later | 0.832 | (0.359–1.926) | 0.667 | |||
imAEs | positive/negative | 0.239 | (0.086–0.667) | 0.006 | 0.321 | (0.112–0.923) | 0.035 |
Data at Dur/Tre introduction | |||||||
AFP | ≥400/<400 ng/mL | 1.072 | (0.436–2.638) | 0.880 | |||
WBC count | /μL | 1.000 | (1.000–1.000) | 0.496 | |||
Neutrophil count | /μL | 1.000 | (0.999–1.000) | 0.399 | |||
Monocyte count | /μL | 1.000 | (0.998–1.002) | 0.933 | |||
Lymphocyte count | /μL | 1.000 | (0.999–1.001) | 0.963 | |||
NLR | 1.116 | (0.882–1.413) | 0.361 | ||||
LMR | 1.005 | (0.783–1.290) | 0.969 | ||||
PLR | 1.002 | (0.996–1.007) | 0.515 | ||||
Data at 2 weeks after Dur/Tre introduction | |||||||
WBC count | /μL | 1.000 | (1.000–1.000) | 0.380 | |||
Neutrophil count | /μL | 1.000 | (1.000–1.000) | 0.182 | |||
Monocyte count | /μL | 1.000 | (0.999–1.001) | 0.629 | |||
Lymphocyte count | /μL | 0.999 | (0.999–1.000) | 0.113 | |||
NLR | 1.129 | (1.003–1.271) | 0.044 | 1.001 | (0.854–1.172) | 0.994 | |
LMR | 0.800 | (0.606–1.057) | 0.117 | ||||
PLR | 1.008 | (1.001–1.016) | 0.023 | 1.005 | (0.995–1.016) | 0.317 | |
ΔNeutrophil | /μL | 1.000 | (1.000–1.000) | 0.222 | |||
ΔMonocyte | /μL | 1.001 | (0.999–1.003) | 0.281 | |||
ΔLymphocyte | ≥+245/<+245/µL | 0.215 | (0.072–0.647) | 0.006 | 0.308 | (0.095–0.998) | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honma, Y.; Shibata, M.; Ikemi, M.; Yoshitomi, K.; Shinohara, N.; Ogino, N.; Oe, S.; Miyagawa, K.; Abe, S.; Harada, M. Usefulness of the Early Increase of Peripheral Blood Lymphocyte Count in Predicting Clinical Outcomes for Patients with Advanced Hepatocellular Carcinoma Treated with Durvalumab Plus Tremelimumab. Cancers 2025, 17, 1274. https://doi.org/10.3390/cancers17081274
Honma Y, Shibata M, Ikemi M, Yoshitomi K, Shinohara N, Ogino N, Oe S, Miyagawa K, Abe S, Harada M. Usefulness of the Early Increase of Peripheral Blood Lymphocyte Count in Predicting Clinical Outcomes for Patients with Advanced Hepatocellular Carcinoma Treated with Durvalumab Plus Tremelimumab. Cancers. 2025; 17(8):1274. https://doi.org/10.3390/cancers17081274
Chicago/Turabian StyleHonma, Yuichi, Michihiko Shibata, Masatoshi Ikemi, Kengo Yoshitomi, Nobuhiko Shinohara, Noriyoshi Ogino, Shinji Oe, Koichiro Miyagawa, Shintaro Abe, and Masaru Harada. 2025. "Usefulness of the Early Increase of Peripheral Blood Lymphocyte Count in Predicting Clinical Outcomes for Patients with Advanced Hepatocellular Carcinoma Treated with Durvalumab Plus Tremelimumab" Cancers 17, no. 8: 1274. https://doi.org/10.3390/cancers17081274
APA StyleHonma, Y., Shibata, M., Ikemi, M., Yoshitomi, K., Shinohara, N., Ogino, N., Oe, S., Miyagawa, K., Abe, S., & Harada, M. (2025). Usefulness of the Early Increase of Peripheral Blood Lymphocyte Count in Predicting Clinical Outcomes for Patients with Advanced Hepatocellular Carcinoma Treated with Durvalumab Plus Tremelimumab. Cancers, 17(8), 1274. https://doi.org/10.3390/cancers17081274