Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science
Simple Summary
Abstract
1. Introduction
2. HPV-Associated Cancers
3. Tumor Microenvironment and Mechanisms of Immune Checkpoint Inhibitors
4. Current Monotherapy and Combination Therapies Involving Immune Checkpoint Inhibitors
4.1. Cervical Cancer
4.2. Anal Cancer
4.3. Vaginal Cancer
4.4. Penile Cancer
4.5. Vulvar Cancer
5. Efficacy of Immune Checkpoint Blockade Therapies in HPV-Associated Cancers
5.1. Cervical, Vaginal, and Vulvar Cancers
5.2. Anal Cancer
5.3. Penile Cancer
6. Prognostic and Predictive Biomarkers for ICIs in HPV-Associated Cancers
7. Challenges in the Use of Immune Checkpoint Blockers in HPV-Associated Lower Genital Tract Cancers
7.1. Variable Response Rates
7.2. Resistance Mechanisms
7.3. Adverse Effects
7.4. Challenges in Combination Strategies
7.5. Cost and Accessibility
7.6. Regulatory and Clinical Trial Challenges
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liao, C.-I.; Francoeur, A.A.; Kapp, D.S.; Caesar, M.A.P.; Huh, W.K.; Chan, J.K. Trends in Human Papillomavirus-Associated Cancers, Demographic Characteristics, and Vaccinations in the US, 2001-2017. JAMA Netw. Open 2022, 5, e222530. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Frenel, J.-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; Van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef] [PubMed]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E.; et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef]
- Tamura, K.; Hasegawa, K.; Katsumata, N.; Matsumoto, K.; Mukai, H.; Takahashi, S.; Nomura, H.; Minami, H. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019, 110, 2894–2904. [Google Scholar] [CrossRef]
- Naumann, R.W.; Hollebecque, A.; Meyer, T.; Devlin, M.-J.; Oaknin, A.; Kerger, J.; López-Picazo, J.M.; Machiels, J.-P.; Delord, J.-P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results from the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef]
- Rischin, D.; Gil-Martin, M.; González-Martin, A.; Braña, I.; Hou, J.Y.; Cho, D.; Falchook, G.S.; Formenti, S.; Jabbour, S.; Moore, K.; et al. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. Gynecol. Oncol. 2020, 159, 322–328. [Google Scholar] [CrossRef]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.-S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Oaknin, A.; Monk, B.J.; Selle, F.; Rojas, C.; Gladieff, L.; Berton, D.; Leary, A.; Moore, K.N.; Estevez-Diz, M.D.P.; et al. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer. Gynecol. Oncol. 2021, 163, 274–280. [Google Scholar] [CrossRef]
- Tinker, A.V.; Hirte, H.W.; Provencher, D.; Butler, M.; Ritter, H.; Tu, D.; Azim, H.A.; Paralejas, P.; Grenier, N.; Hahn, S.-A.; et al. Dose-Ranging and Cohort-Expansion Study of Monalizumab (IPH2201) in Patients with Advanced Gynecologic Malignancies: A Trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin. Cancer Res. 2019, 25, 6052–6060. [Google Scholar] [CrossRef]
- Strauss, J.; Gatti-Mays, M.E.; Cho, B.C.; Hill, A.; Salas, S.; McClay, E.; Redman, J.M.; Sater, H.A.; Donahue, R.N.; Jochems, C.; et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer 2020, 8, e001395. [Google Scholar] [CrossRef] [PubMed]
- Birrer, M.; Li, G.; Yunokawa, M.; Lee, J.-Y.; Kim, B.G.; Oppermann, C.P.; Zhou, Q.; Nishio, S.; Okamoto, A.; Wu, X.; et al. Bintrafusp Alfa for Recurrent or Metastatic Cervical Cancer After Platinum Failure: A Nonrandomized Controlled Trial. JAMA Oncol. 2024, 10, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.W.; Hur, S.-Y.; Woo, J.W.; Kim, Y.-M.; Lim, M.C.; Park, S.Y.; Seo, S.S.; No, J.H.; Kim, B.-G.; Lee, J.-K.; et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: Interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; LoRusso, P.; Burris, H.; Gordon, M.; Bang, Y.-J.; Hellmann, M.D.; Cervantes, A.; Ochoa de Olza, M.; Marabelle, A.; Hodi, F.S.; et al. Phase I Study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered with PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors. Clin. Cancer Res. 2019, 25, 3220–3228. [Google Scholar] [CrossRef]
- Oaknin, A.; Moore, K.; Meyer, T.; López-Picazo González, J.; Devriese, L.A.; Amin, A.; Lao, C.D.; Boni, V.; Sharfman, W.H.; Park, J.C.; et al. Nivolumab with or without ipilimumab in patients with recurrent or metastatic cervical cancer (CheckMate 358): A phase 1-2, open-label, multicohort trial. Lancet Oncol. 2024, 25, 588–602. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Neffa, M.; Monk, B.J.; Melkadze, T.; Huang, M.; Kryzhanivska, A.; Bulat, I.; Meniawy, T.M.; Bagameri, A.; Wang, E.W.; et al. Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. J. Clin. Oncol. 2022, 40, 762–771. [Google Scholar] [CrossRef]
- Yin, H.; Guo, W.; Sun, X.; Li, R.; Feng, C.; Tan, Y. TILs and Anti-PD1 Therapy: An Alternative Combination Therapy for PDL1 Negative Metastatic Cervical Cancer. J. Immunol. Res. 2020, 2020, 8345235. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Wu, L.; Boonyapipat, S.; Kim, H.S.; Lee, J.-W.; Wang, L.; Wang, T.; Wang, D.; Yao, D.; Liu, H.; et al. 744MO AdvanTIG-202: Phase II randomized, multicenter, open-label study of tislelizumab (TIS) with or without ociperlimab (OCI) in patients (pts) with previously treated recurrent/metastatic (R/M) cervical cancer (CC). Ann. Oncol. 2023, 34, S509–S510. [Google Scholar] [CrossRef]
- Lou, H.; Cai, H.; Huang, X.; Li, G.; Wang, L.; Liu, F.; Qin, W.; Liu, T.; Liu, W.; Wang, Z.M.; et al. Cadonilimab Combined with Chemotherapy with or without Bevacizumab as First-Line Treatment in Recurrent or Metastatic Cervical Cancer (COMPASSION-13): A Phase 2 Study. Clin. Cancer Res. 2024, 30, 1501–1508. [Google Scholar] [CrossRef]
- Friedman, C.F.; Snyder Charen, A.; Zhou, Q.; Carducci, M.A.; Buckley De Meritens, A.; Corr, B.R.; Fu, S.; Hollmann, T.J.; Iasonos, A.; Konner, J.A.; et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J. Immunother. Cancer 2020, 8, e001126. [Google Scholar] [CrossRef]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Cvek, J.; Randall, L.; Pereira de Santana Gomes, A.J.; et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): Overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 404, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.J.; Toita, T.; Wu, X.; Vázquez Limón, J.C.; Tarnawski, R.; Mandai, M.; Shapira-Frommer, R.; Mahantshetty, U.; Del Pilar Estevez-Diz, M.; Zhou, Q.; et al. Durvalumab versus placebo with chemoradiotherapy for locally advanced cervical cancer (CALLA): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1334–1348. [Google Scholar] [CrossRef]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- De Jaeghere, E.A.; Tuyaerts, S.; Van Nuffel, A.M.T.; Belmans, A.; Bogaerts, K.; Baiden-Amissah, R.; Lippens, L.; Vuylsteke, P.; Henry, S.; Trinh, X.B.; et al. Pembrolizumab, radiotherapy, and an immunomodulatory five-drug cocktail in pretreated patients with persistent, recurrent, or metastatic cervical or endometrial carcinoma: Results of the phase II PRIMMO study. Cancer Immunol. Immunother. 2023, 72, 475–491. [Google Scholar] [CrossRef]
- Rodrigues, M.; Vanoni, G.; Loap, P.; Dubot, C.; Timperi, E.; Minsat, M.; Bazire, L.; Durdux, C.; Fourchotte, V.; Laas, E.; et al. Nivolumab plus chemoradiotherapy in locally-advanced cervical cancer: The NICOL phase 1 trial. Nat. Commun. 2023, 14, 3698. [Google Scholar] [CrossRef]
- Yabuno, A.; Nakamura, K.; Satoh, T.; Fujiwara, H.; Kurosaki, A.; Yamashita, S.; Misumi, T.; Noda, S.; Hasegawa, K. GOTIC-018: Phase I, open-label, multicenter study to assess the safety of pre- and co-administration of ONO-4538 (nivolumab) with concurrent chemoradiation (CCRT) in patients (pts) with locally advanced cervical carcinoma (LACvCa). J. Clin. Oncol. 2022, 40, 5529. [Google Scholar] [CrossRef]
- Lan, C.; Shen, J.; Wang, Y.; Li, J.; Liu, Z.; He, M.; Cao, X.; Ling, J.; Huang, J.; Zheng, M.; et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J. Clin. Oncol. 2020, 38, 4095–4106. [Google Scholar] [CrossRef]
- Lheureux, S.; Butler, M.O.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.S.; Fleming, G.F.; Tinker, A.; Hirte, H.W.; Tsoref, D.; et al. A phase I/II study of ipilimumab in women with metastatic or recurrent cervical carcinoma: A study of the Princess Margaret and Chicago N01 Consortia. J. Clin. Oncol. 2015, 33, 3061. [Google Scholar] [CrossRef]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef]
- Morris, V.K.; Salem, M.E.; Nimeiri, H.; Iqbal, S.; Singh, P.; Ciombor, K.; Polite, B.; Deming, D.; Chan, E.; Wade, J.L.; et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 446–453. [Google Scholar] [CrossRef]
- Lonardi, S.; Prete, A.A.; Morano, F.; Messina, M.; Formica, V.; Corsi, D.C.; Orciuolo, C.; Frassineti, G.L.; Zampino, M.G.; Casagrande, M.; et al. Randomized phase II trial of avelumab alone or in combination with cetuximab for patients with previously treated, locally advanced, or metastatic squamous cell anal carcinoma: The CARACAS study. J. Immunother. Cancer 2021, 9, e002996. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Cassier, P.A.; Fakih, M.; Kao, S.; Nielsen, D.; Italiano, A.; Guren, T.K.; van Dongen, M.G.J.; Spencer, K.; Bariani, G.M.; et al. Pembrolizumab for previously treated advanced anal squamous cell carcinoma: Results from the non-randomised, multicohort, multicentre, phase 2 KEYNOTE-158 study. Lancet Gastroenterol. Hepatol. 2022, 7, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Anandappa, G.; Capdevila, J.; Dahan, L.; Evesque, L.; Kim, S.; Saunders, M.P.; Gilbert, D.C.; Jensen, L.H.; Samalin, E.; et al. A phase II study of retifanlimab (INCMGA00012) in patients with squamous carcinoma of the anal canal who have progressed following platinum-based chemotherapy (POD1UM-202). ESMO Open 2022, 7, 100529. [Google Scholar] [CrossRef]
- Morris, V.; Liu, S.; Johnson, B.; Prasad, S.; Mahvash, A.; Bhosale, P.; Rubin, M.L.; Rothschild, N.; Futreal, A.; Wistuba, I.I.; et al. 403MO Atezolizumab in combination with bevacizumab for patients with unresectable/metastatic anal cancer. Ann. Oncol. 2020, 31, S412. [Google Scholar] [CrossRef]
- Challapalli, A.; Bahl, A.; Venugopal, B.; Afshar, M.; Alifrangis, C.; Thomson, A.; Tran, A.; Hudson, A.; Kent, C.; Barber, J.; et al. EPIC-B: Phase II trial of cemiplimab as first-line treatment in advanced penile carcinoma. J. Clin. Oncol. 2025, 43, 9. [Google Scholar] [CrossRef]
- Maluf, F.C.; Trindade, K.; Preto, D.D.A.; Monteiro, F.S.M.; Luz, M.; Beato, P.M.; Bastos, D.A.; Soares, J.P.H.; Lopes dos Santos, V.M.; Werneck De Carvalho, L.E.; et al. A phase II trial of pembrolizumab plus platinum-based chemotherapy as first-line systemic therapy in advanced penile cancer: HERCULES (LACOG 0218) trial. J. Clin. Oncol. 2024, 42, 5009. [Google Scholar] [CrossRef]
- McGregor, B.A.; Campbell, M.T.; Xie, W.; Farah, S.; Bilen, M.A.; Schmidt, A.L.; Sonpavde, G.P.; Kilbridge, K.L.; Choudhury, A.D.; Mortazavi, A.; et al. Results of a multicenter, phase 2 study of nivolumab and ipilimumab for patients with advanced rare genitourinary malignancies. Cancer 2021, 127, 840–849. [Google Scholar] [CrossRef]
- de Vries, H.M.; De Feijter, J.; Bekers, E.; Lopez-Yurda, M.; Pos, F.J.; Horenblas, S.; Jordanova, E.S.; Brouwer, O.R.; Schaake, E.E.; Van Der Heijden, M.S. Clinical results of PERICLES: A phase II trial investigating atezolizumab +/- radiotherapy for advanced squamous cell carcinoma of the penis. J. Clin. Oncol. 2022, 40, 3. [Google Scholar] [CrossRef]
- Apolo, A.B.; Girardi, D.M.; Niglio, S.A.; Nadal, R.; Kydd, A.R.; Simon, N.; Ley, L.; Cordes, L.M.; Chandran, E.; Steinberg, S.M.; et al. Final Results From a Phase I Trial and Expansion Cohorts of Cabozantinib and Nivolumab Alone or With Ipilimumab for Advanced/Metastatic Genitourinary Tumors. J. Clin. Oncol. 2024, 42, 3033–3046. [Google Scholar] [CrossRef]
- Liao, C.-I.; Caesar, M.A.P.; Chan, C.; Richardson, M.; Kapp, D.S.; Francoeur, A.A.; Chan, J. HPV associated cancers in the United States over the last 15 years: Has screening or vaccination made any difference? J. Clin. Oncol. 2021, 39, 107. [Google Scholar] [CrossRef]
- Markowitz, L.E.; Unger, E.R. Human Papillomavirus Vaccination. N. Engl. J. Med. 2023, 388, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front. Microbiol. 2020, 10, 3116. [Google Scholar] [CrossRef]
- Senkomago, V.; Henley, S.J.; Thomas, C.C.; Mix, J.M.; Markowitz, L.E.; Saraiya, M. Human Papillomavirus–Attributable Cancers—United States, 2012–2016. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Saraiya, M.; Unger, E.R.; Thompson, T.D.; Lynch, C.F.; Hernandez, B.Y.; Lyu, C.W.; Steinau, M.; Watson, M.; Wilkinson, E.J.; Hopenhayn, C.; et al. US Assessment of HPV Types in Cancers: Implications for Current and 9-Valent HPV Vaccines. JNCI J. Natl. Cancer Inst. 2015, 107, djv086. [Google Scholar] [CrossRef]
- Drolet, M.; Bénard, É.; Pérez, N.; Brisson, M.; HPV Vaccination Impact Study Group. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. Lancet 2019, 394, 497–509. [Google Scholar] [CrossRef]
- Konstantopoulos, G.; Leventakou, D.; Saltiel, D.-R.; Zervoudi, E.; Logotheti, E.; Pettas, S.; Karagianni, K.; Daiou, A.; Hatzistergos, K.E.; Dafou, D.; et al. HPV16 E6 Oncogene Contributes to Cancer Immune Evasion by Regulating PD-L1 Expression through a miR-143/HIF-1a Pathway. Viruses 2024, 16, 113. [Google Scholar] [CrossRef]
- Chen, X.; He, H.; Xiao, Y.; Hasim, A.; Yuan, J.; Ye, M.; Li, X.; Hao, Y.; Guo, X. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front. Oncol. 2021, 11, 629350. [Google Scholar] [CrossRef]
- Zhu, X.; Jamshed, S.; Zou, J.; Azar, A.; Meng, X.; Bathini, V.; Dresser, K.; Strock, C.; Yalamarti, B.; Yang, M.; et al. Molecular and immunophenotypic characterization of anal squamous cell carcinoma reveals distinct clinicopathologic groups associated with HPV and TP53 mutation status. Mod. Pathol. 2021, 34, 1017–1030. [Google Scholar] [CrossRef]
- Balermpas, P.; Martin, D.; Wieland, U.; Rave-Fränk, M.; Strebhardt, K.; Rödel, C.; Fokas, E.; Rödel, F. Human papilloma virus load and PD-1/PD-L1, CD8+ and FOXP3 in anal cancer patients treated with chemoradiotherapy: Rationale for immunotherapy. Oncoimmunology 2017, 6, e1288331. [Google Scholar] [CrossRef]
- Lyford-Pike, S.; Peng, S.; Young, G.D.; Taube, J.M.; Westra, W.H.; Akpeng, B.; Bruno, T.C.; Richmon, J.D.; Wang, H.; Bishop, J.A.; et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013, 73, 1733–1741. [Google Scholar] [CrossRef]
- Lechner, A.; Schlößer, H.; Rothschild, S.I.; Thelen, M.; Reuter, S.; Zentis, P.; Shimabukuro-Vornhagen, A.; Theurich, S.; Wennhold, K.; Garcia-Marquez, M.; et al. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget 2017, 8, 44418–44433. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Ulrich, P.; Wilson, E.; Parikh, F.; Narang, P.; Yang, S.; Read, A.K.; Kim-Schulze, S.; Park, J.G.; Posner, M.; et al. Human Papilloma Virus Specific Immunogenicity and Dysfunction of CD8+ T Cells in Head and Neck Cancer. Cancer Res. 2018, 78, 6159–6170. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Wang, Y.; Jiang, Q.; Ren, T.; Guo, C.; Hua, K.; Qiu, J. Interactions of Indoleamine 2,3-dioxygenase-expressing LAMP3+ dendritic cells with CD4+ regulatory T cells and CD8+ exhausted T cells: Synergistically remodeling of the immunosuppressive microenvironment in cervical cancer and therapeutic implications. Cancer Commun. 2023, 43, 1207–1228. [Google Scholar] [CrossRef]
- Mariuzza, R.A.; Shahid, S.; Karade, S.S. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J. Biol. Chem. 2024, 300, 107241. [Google Scholar] [CrossRef]
- Wakamatsu, E.; Machiyama, H.; Toyota, H.; Takeuchi, A.; Hashimoto, R.; Kozono, H.; Yokosuka, T. Indirect suppression of CD4 T cell activation through LAG-3-mediated trans-endocytosis of MHC class II. Cell Rep. 2024, 43, 114655. [Google Scholar] [CrossRef]
- von Witzleben, A.; Grages, A.; Thomas, J.; Ezić, J.; Brunner, C.; Schuler, P.J.; Kraus, J.M.; Kestler, H.A.; Vahl, J.M.; Doescher, J.; et al. Immune checkpoint expression on tumor-infiltrating lymphocytes (TIL) is dependent on HPV status in oropharyngeal carcinoma (OPSCC)—A single-cell RNA sequencing analysis. Oral Oncol. 2024, 159, 107107. [Google Scholar] [CrossRef]
- Andrews, L.P.; Cillo, A.R.; Karapetyan, L.; Kirkwood, J.M.; Workman, C.J.; Vignali, D.A.A. Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Clin. Cancer Res. 2022, 28, 5030–5039. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, D.; Zhu, Y.; Pang, N.; Ding, J. The role of Tim-3/Galectin-9 pathway in T-cell function and prognosis of patients with human papilloma virus-associated cervical carcinoma. FASEB J. 2021, 35, e21401. [Google Scholar] [CrossRef]
- Dong, J.; Cheng, L.; Zhao, M.; Pan, X.; Feng, Z.; Wang, D. Tim-3-expressing macrophages are functionally suppressed and expanded in oral squamous cell carcinoma due to virus-induced Gal-9 expression. Tumour Biol. 2017, 39, 1010428317701651. [Google Scholar] [CrossRef]
- Liu, L.; Wang, A.; Liu, X.; Han, S.; Sun, Y.; Zhang, J.; Guo, L.; Zhang, Y. Blocking TIGIT/CD155 signalling reverses CD8+ T cell exhaustion and enhances the antitumor activity in cervical cancer. J. Transl. Med. 2022, 20, 280. [Google Scholar] [CrossRef]
- Wu, L.; Mao, L.; Liu, J.-F.; Chen, L.; Yu, G.-T.; Yang, L.-L.; Wu, H.; Bu, L.-L.; Kulkarni, A.B.; Zhang, W.-F.; et al. Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Cancer Immunol. Res. 2019, 7, 1700–1713. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, D.K.; Erickson-Wittmann, B.A.; Jhingran, A.; Mayr, N.A.; Puthawala, A.A.; Moore, D.; Rao, G.G.; Small, W.; Varia, M.A.; Wolfson, A.H.; et al. ACR Appropriateness Criteria® on Advanced Cervical Cancer Expert Panel on Radiation Oncology-Gynecology. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.J.; Tewari, K.S.; Koh, W.-J. Multimodality Therapy for Locally Advanced Cervical Carcinoma: State of the Art and Future Directions. J. Clin. Oncol. 2007, 25, 2952–2965. [Google Scholar] [CrossRef]
- Morris, M.; Eifel, P.J.; Lu, J.; Grigsby, P.W.; Levenback, C.; Stevens, R.E.; Rotman, M.; Gershenson, D.M.; Mutch, D.G. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N. Engl. J. Med. 1999, 340, 1137–1143. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Azad, N.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Anal Carcinoma, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2023, 21, 653–677. [Google Scholar] [CrossRef]
- Abu-Rustum, N.R.; Yashar, C.M.; Arend, R.; Barber, E.; Bradley, K.; Brooks, R.; Campos, S.M.; Chino, J.; Chon, H.S.; Crispens, M.A.; et al. Vulvar Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2024, 22, 117–135. [Google Scholar] [CrossRef] [PubMed]
- El Zarif, T.; Nassar, A.H.; Pond, G.R.; Zhuang, T.Z.; Master, V.; Nazha, B.; Niglio, S.; Simon, N.; Hahn, A.W.; Pettaway, C.A.; et al. Safety and efficacy of immune checkpoint inhibitors in advanced penile cancer: Report from the Global Society of Rare Genitourinary Tumors. JNCI J. Natl. Cancer Inst. 2023, 115, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Cervical Cancer (Version 3.2025). 2025. [Online]. Available online: https://www.nccn.org (accessed on 14 March 2025).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Anal Carcinoma (Version 2.2025). 2025. [Online]. Available online: https://www.nccn.org (accessed on 14 March 2025).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Vaginal Cancer (Version 4.2025). 2025. [Online]. Available online: https://www.nccn.org (accessed on 14 March 2025).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Penile Cancer (Version 2.2025). 2025. [Online]. Available online: https://www.nccn.org (accessed on 14 March 2025).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Vulvar Cancer (Version 1.2025). 2025. [Online]. Available online: https://www.nccn.org (accessed on 14 March 2025).
- Grau, J.F.; Farinas-Madrid, L.; Oaknin, A. A randomized phase III trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage IVB), persistent, or recurrent carcinoma of the cervix: The BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer 2020, 30, 139–143. [Google Scholar] [CrossRef]
- Martin, D.; Balermpas, P.; Gollrad, J.; Weiß, C.; Valentini, C.; Stuschke, M.; Schäfer, H.; Henkenberens, C.; Debus, J.; Krug, D.; et al. RADIANCE—Radiochemotherapy with or without Durvalumab in the treatment of anal squamous cell carcinoma: A randomized multicenter phase II trial. Clin. Transl. Radiat. Oncol. 2020, 23, 43–49. [Google Scholar] [CrossRef]
- Dhawan, N.; Afzal, M.Z.; Amin, M. Immunotherapy in Anal Cancer. Curr. Oncol. 2023, 30, 4538–4550. [Google Scholar] [CrossRef]
- Nazha, B.; Zhuang, T.; Wu, S.; Brown, J.T.; Magee, D.; Carthon, B.C.; Kucuk, O.; Nabhan, C.; Barata, P.C.; Heath, E.I.; et al. Comprehensive genomic profiling of penile squamous cell carcinoma and the impact of human papillomavirus status on immune-checkpoint inhibitor-related biomarkers. Cancer 2023, 129, 3884–3893. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, H.; Zeng, Q.; Guo, X.-J.; Wang, H.; Liu, H.-H.; Dong, Z.-Y. HPV-positive status associated with inflamed immune microenvironment and improved response to anti-PD-1 therapy in head and neck squamous cell carcinoma. Sci. Rep. 2019, 9, 13404. [Google Scholar] [CrossRef]
- Wei, L.; Li, Z.; Guo, S.; Ma, H.; Shi, Y.; An, X.; Huang, K.; Xiong, L.; Xue, T.; Zhang, Z.; et al. Human papillomavirus infection affects treatment outcomes and the immune microenvironment in patients with advanced penile squamous cell carcinoma receiving programmed cell death protein 1 inhibitor-based combination therapy. Cancer 2024, 130, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Badoual, C.; Hans, S.; Merillon, N.; Van Ryswick, C.; Ravel, P.; Benhamouda, N.; Levionnois, E.; Nizard, M.; Si-Mohamed, A.; Besnier, N.; et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013, 73, 128–138. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ismaila, N.; Bauman, J.E.; Dabney, R.; Gan, G.; Jordan, R.; Kaufman, M.; Kirtane, K.; McBride, S.M.; Old, M.O.; et al. Immunotherapy and Biomarker Testing in Recurrent and Metastatic Head and Neck Cancers: ASCO Guideline. J. Clin. Oncol. 2023, 41, 1132–1146. [Google Scholar] [CrossRef]
- Succaria, F.; Kvistborg, P.; Stein, J.E.; Engle, E.L.; McMiller, T.L.; Rooper, L.M.; Thompson, E.; Berger, A.E.; van den Brekel, M.; Zuur, C.L.; et al. Characterization of the tumor immune microenvironment in human papillomavirus-positive and -negative head and neck squamous cell carcinomas. Cancer Immunol. Immunother. 2021, 70, 1227–1237. [Google Scholar] [CrossRef]
- Wang, J.; Lou, H.; Cai, H.-B.; Huang, X.; Li, G.; Wang, L.; Liu, T.; Liu, W.; Li, B.; Xia, Y. A study of AK104 (an anti-PD1 and anti-CTLA4 bispecific antibody) combined with standard therapy for the first-line treatment of persistent, recurrent, or metastatic cervical cancer (R/M CC). J. Clin. Oncol. 2022, 40, 106. [Google Scholar] [CrossRef]
- Morris, V.K.; Jazaeri, A.; Westin, S.N.; Pettaway, C.; George, S.; Huey, R.W.; Grinsfelder, M.; Shafer, A.; Johnson, B.; Vining, D.; et al. Phase II Trial of MEDI0457 and Durvalumab for Patients With Recurrent/Metastatic Human Papillomavirus-Associated Cancers. Oncologist 2023, 28, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Shklovskaya, E.; Rizos, H. Spatial and Temporal Changes in PD-L1 Expression in Cancer: The Role of Genetic Drivers, Tumor Microenvironment and Resistance to Therapy. Int. J. Mol. Sci. 2020, 21, 7139. [Google Scholar] [CrossRef] [PubMed]
- Rotman, J.; den Otter, L.A.S.; Bleeker, M.C.G.; Samuels, S.S.; Heeren, A.M.; Roemer, M.G.M.; Kenter, G.G.; Zijlmans, H.J.M.A.A.; van Trommel, N.E.; de Gruijl, T.D.; et al. PD-L1 and PD-L2 Expression in Cervical Cancer: Regulation and Biomarker Potential. Front. Immunol. 2020, 11, 596825. [Google Scholar] [CrossRef]
- Zerdes, I.; Matikas, A.; Bergh, J.; Rassidakis, G.Z.; Foukakis, T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: Biology and clinical correlations. Oncogene 2018, 37, 4639–4661. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.-H.; Chan, L.-C.; Li, C.-W.; Hsu, J.L.; Hung, M.-C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, G.; De Chiara, A.; Di Bonito, M.; Tatangelo, F.; Losito, N.S.; Anniciello, A.; De Cecio, R.; D’Alterio, C.; Scala, S.; Cantile, M.; et al. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types. Int. J. Mol. Sci. 2016, 17, 790. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhao, L.; Yang, R.; Xu, T. Advances in molecular mechanism of HPV16 E5 oncoprotein carcinogenesis. Arch. Biochem. Biophys. 2023, 745, 109716. [Google Scholar] [CrossRef]
- Lo Cigno, I.; Calati, F.; Borgogna, C.; Zevini, A.; Albertini, S.; Martuscelli, L.; De Andrea, M.; Hiscott, J.; Landolfo, S.; Gariglio, M. Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes. J. Virol. 2020, 94, e01812–e01819. [Google Scholar] [CrossRef]
- Reiser, J.; Hurst, J.; Voges, M.; Krauss, P.; Münch, P.; Iftner, T.; Stubenrauch, F. High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J. Virol. 2011, 85, 11372–11380. [Google Scholar] [CrossRef]
- Dibbern, M.E.; Bullock, T.N.; Jenkins, T.M.; Duska, L.R.; Stoler, M.H.; Mills, A.M. Loss of MHC Class I Expression in HPV-associated Cervical and Vulvar Neoplasia: A Potential Mechanism of Resistance to Checkpoint Inhibition. Am. J. Surg. Pathol. 2020, 44, 1184–1191. [Google Scholar] [CrossRef]
- Mortezaee, K.; Majidpoor, J. Alternative immune checkpoints in immunoregulatory profile of cancer stem cells. Heliyon 2023, 9, e23171. [Google Scholar] [CrossRef]
- Shamseddine, A.A.; Burman, B.; Lee, N.Y.; Zamarin, D.; Riaz, N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov. 2021, 11, 1896–1912. [Google Scholar] [CrossRef]
- Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; Gandhi, L.; Redig, A.J.; Rodig, S.J.; Asahina, H.; et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016, 7, 10501. [Google Scholar] [CrossRef]
- Galliverti, G.; Wullschleger, S.; Tichet, M.; Murugan, D.; Zangger, N.; Horton, W.; Korman, A.J.; Coussens, L.M.; Swartz, M.A.; Hanahan, D. Myeloid Cells Orchestrate Systemic Immunosuppression, Impairing the Efficacy of Immunotherapy against HPV+ Cancers. Cancer Immunol. Res. 2020, 8, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef] [PubMed]
- Dougan, M.; Wang, Y.; Rubio-Tapia, A.; Lim, J.K. AGA Clinical Practice Update on Diagnosis and Management of Immune Checkpoint Inhibitor Colitis and Hepatitis: Expert Review. Gastroenterology 2021, 160, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.K.; Bass, A.R. Autoimmune complications of immunotherapy: Pathophysiology and management. BMJ 2020, 369, m736. [Google Scholar] [CrossRef] [PubMed]
- Poto, R.; Troiani, T.; Criscuolo, G.; Marone, G.; Ciardiello, F.; Tocchetti, C.G.; Varricchi, G. Holistic Approach to Immune Checkpoint Inhibitor-Related Adverse Events. Front. Immunol. 2022, 13, 804597. [Google Scholar] [CrossRef] [PubMed]
- Leipe, J.; Mariette, X. Management of rheumatic complications of ICI therapy: A rheumatology viewpoint. Rheumatology 2019, 58, vii49–vii58. [Google Scholar] [CrossRef] [PubMed]
- von Itzstein, M.S.; Gerber, D.E.; Bermas, B.L.; Meara, A. Acknowledging and addressing real-world challenges to treating immune-related adverse events. J. Immunother. Cancer 2024, 12, e009540. [Google Scholar] [CrossRef]
- Aggarwal, C.; Saba, N.F.; Algazi, A.; Sukari, A.; Seiwert, T.Y.; Haigentz, M.; Porosnicu, M.; Bonomi, M.; Boyer, J.; Esser, M.T.; et al. Safety and Efficacy of MEDI0457 plus Durvalumab in Patients with Human Papillomavirus-Associated Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2023, 29, 560–570. [Google Scholar] [CrossRef]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
- Mei, T.; Wang, T.; Deng, Q.; Gong, Y. The safety of combining immune checkpoint inhibitors and platinum-based chemotherapy for the treatment of solid tumors: A systematic review and network meta-analysis. Front. Immunol. 2023, 14, 1062679. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Huang, M.; Li, R. Efficacy and safety of adding immune checkpoint inhibitors to first-line standard therapy for recurrent or advanced cervical cancer: A meta-analysis of phase 3 clinical trials. Front. Immunol. 2024, 15, 1507977. [Google Scholar] [CrossRef] [PubMed]
- Dovedi, S.J.; Cheadle, E.J.; Popple, A.L.; Poon, E.; Morrow, M.; Stewart, R.; Yusko, E.C.; Sanders, C.M.; Vignali, M.; Emerson, R.O.; et al. Fractionated Radiation Therapy Stimulates Antitumor Immunity Mediated by Both Resident and Infiltrating Polyclonal T-cell Populations when Combined with PD-1 Blockade. Clin. Cancer Res. 2017, 23, 5514–5526. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, L.; Iheagwara, U.K.; Olson, A.C.; Chmura, S.J.; Skinner, H.K.; Luke, J.J. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J. Natl. Cancer Inst. 2023, 115, 1278–1293. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.; Pitroda, S.P.; Weichselbaum, R.R. Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol. 2024, 25, e352–e362. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, M.E.; Rodriguez, I.; Garasa, S.; Barbes, B.; Solorzano, J.L.; Perez-Gracia, J.L.; Labiano, S.; Sanmamed, M.F.; Azpilikueta, A.; Bolaños, E.; et al. Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming. Cancer Res. 2016, 76, 5994–6005. [Google Scholar] [CrossRef]
- Floudas, C.S.; Goswami, M.; Donahue, R.N.; Pastor, D.M.; Redman, J.M.; Brownell, I.; Turkbey, E.B.; Cordes, L.M.; Steinberg, S.M.; Manu, M.; et al. Novel Combination Immunotherapy and Clinical Activity in Patients with HPV-Associated Cancers: A Nonrandomized Clinical Trial. JAMA Oncol. 2025, e246998. [Google Scholar] [CrossRef]
- Massarelli, E.; William, W.; Johnson, F.; Kies, M.; Ferrarotto, R.; Guo, M.; Feng, L.; Lee, J.J.; Tran, H.; Kim, Y.U.; et al. Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human Papillomavirus 16-Related Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 67–73. [Google Scholar] [CrossRef]
- Shibata, T.; Lieblong, B.J.; Sasagawa, T.; Nakagawa, M. The promise of combining cancer vaccine and checkpoint blockade for treating HPV-related cancer. Cancer Treat. Rev. 2019, 78, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Stark, M.C.; Joubert, A.M.; Visagie, M.H. Molecular Farming of Pembrolizumab and Nivolumab. Int. J. Mol. Sci. 2023, 24, 10045. [Google Scholar] [CrossRef]
- Tfayli, A.H.; El-Halabi, L.N.; Khuri, F.R. Global disparities in cancer care: Bridging the gap in affordability and access to medications between high and low-income countries. Cancer 2025, 131, e35590. [Google Scholar] [CrossRef]
- Arango-Bravo, E.A.; Cetina-Pérez, L.D.C.; Galicia-Carmona, T.; Castro-Eguiluz, D.; Gallardo-Rincón, D.; Cruz-Bautista, I.; Duenas-Gonzalez, A. The health system and access to treatment in patients with cervical cancer in Mexico. Front. Oncol. 2022, 12, 1028291. [Google Scholar] [CrossRef] [PubMed]
- Cazap, E.; Magrath, I.; Kingham, T.P.; Elzawawy, A. Structural Barriers to Diagnosis and Treatment of Cancer in Low- and Middle-Income Countries: The Urgent Need for Scaling Up. J. Clin. Oncol. 2016, 34, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.S.; Acharya, S.C.; Poudyal, S.; Sharma, S.; Silwal, S.R.; Sapkota, S.; Gautam, M.; Haque, M.M.; Uddin, A.F.M.K.; Gunasekara, S.; et al. Cancer care and outreach in the South Asian Association for Regional Cooperation (SAARC) region: Overcoming barriers and addressing challenges. Lancet Oncol. 2024, 25, e650–e662. [Google Scholar] [CrossRef] [PubMed]
- Oyer, R.A.; Hurley, P.; Boehmer, L.; Bruinooge, S.S.; Levit, K.; Barrett, N.; Benson, A.; Bernick, L.A.; Byatt, L.; Charlot, M.; et al. Increasing Racial and Ethnic Diversity in Cancer Clinical Trials: An American Society of Clinical Oncology and Association of Community Cancer Centers Joint Research Statement. J. Clin. Oncol. 2022, 40, 2163–2171. [Google Scholar] [CrossRef]
- Polite, B.N.; Adams-Campbell, L.L.; Brawley, O.W.; Bickell, N.; Carethers, J.M.; Flowers, C.R.; Foti, M.; Gomez, S.L.; Griggs, J.J.; Lathan, C.S.; et al. Charting the Future of Cancer Health Disparities Research: A Position Statement From the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute. J. Clin. Oncol. 2017, 35, 3075–3082. [Google Scholar] [CrossRef]
- Chua, A.V.; Delmerico, J.; Sheng, H.; Huang, X.-W.; Liang, E.; Yan, L.; Gandhi, S.; Puzanov, I.; Jain, P.; Sakoda, L.C.; et al. Under-Representation and Under-Reporting of Minoritized Racial and Ethnic Groups in Clinical Trials on Immune Checkpoint Inhibitors. JCO Oncol. Pract. 2024, 21, 408–417. [Google Scholar] [CrossRef]
- Riaz, I.B.; Islam, M.; Khan, A.M.; Naqvi, S.A.A.; Siddiqi, R.; Khakwani, K.Z.R.; Asghar, N.; Ikram, W.; Hussain, S.A.; Singh, P.; et al. Disparities in Representation of Women, Older Adults, and Racial/Ethnic Minorities in Immune Checkpoint Inhibitor Trials. Am. J. Med. 2022, 135, 984–992.e6. [Google Scholar] [CrossRef]
- Nouvini, R.; Parker, P.A.; Malling, C.D.; Godwin, K.; Costas-Muñiz, R. Interventions to increase racial and ethnic minority accrual into cancer clinical trials: A systematic review. Cancer 2022, 128, 3860–3869. [Google Scholar] [CrossRef]
- Odedina, F.T.; Wieland, M.L.; Barbel-Johnson, K.; Crook, J.M. Community Engagement Strategies for Underrepresented Racial and Ethnic Populations. Mayo Clin. Proc. 2024, 99, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Reopell, L.; Nolan, T.S.; Gray, D.M.; Williams, A.; Brewer, L.C.; Bryant, A.L.; Wilson, G.; Williams, E.; Jones, C.; McKoy, A.; et al. Community engagement and clinical trial diversity: Navigating barriers and co-designing solutions-A report from the “Health Equity through Diversity” seminar series. PLoS ONE 2023, 18, e0281940. [Google Scholar] [CrossRef]
- Monk, B.J.; Enomoto, T.; Kast, W.M.; McCormack, M.; Tan, D.S.P.; Wu, X.; González-Martín, A. Integration of immunotherapy into treatment of cervical cancer: Recent data and ongoing trials. Cancer Treat. Rev. 2022, 106, 102385. [Google Scholar] [CrossRef] [PubMed]
- Manitz, J.; D’Angelo, S.P.; Apolo, A.B.; Eggleton, S.P.; Bajars, M.; Bohnsack, O.; Gulley, J.L. Comparison of tumor assessments using RECIST 1.1 and irRECIST, and association with overall survival. J. Immunother. Cancer 2022, 10, e003302. [Google Scholar] [CrossRef] [PubMed]
- Mulkey, F.; Theoret, M.R.; Keegan, P.; Pazdur, R.; Sridhara, R. Comparison of iRECIST versus RECIST V.1.1 in patients treated with an anti-PD-1 or PD-L1 antibody: Pooled FDA analysis. J. Immunother. Cancer 2020, 8, e000146. [Google Scholar] [CrossRef]
- Nelles, C.; Gräf, M.; Bernard, P.; Persigehl, T.; Große Hokamp, N.; Zopfs, D.; Maintz, D.; Kreuzberg, N.; Wolf, J.; Bröckelmann, P.J.; et al. Real-world response assessment of immune checkpoint inhibition: Comparing iRECIST and RECIST 1.1 in melanoma and non-small cell lung cancer patients. Eur. Radiol. 2024, 35, 2084–2093. [Google Scholar] [CrossRef]
- Fukuokaya, W.; Kimura, T.; Yanagisawa, T.; Kimura, S.; Tsuzuki, S.; Koike, Y.; Iwamoto, Y.; Enei, Y.; Tanaka, M.; Urabe, F.; et al. Comparison of the Immunotherapy Response Evaluation Criteria in Solid Tumours (iRECIST) with RECIST for capturing treatment response of patients with metastatic urothelial carcinoma treated with pembrolizumab. BJU Int. 2021, 127, 90–95. [Google Scholar] [CrossRef]
- Howitt, B.E.; Sun, H.H.; Roemer, M.G.M.; Kelley, A.; Chapuy, B.; Aviki, E.; Pak, C.; Connelly, C.; Gjini, E.; Shi, Y.; et al. Genetic Basis for PD-L1 Expression in Squamous Cell Carcinomas of the Cervix and Vulva. JAMA Oncol. 2016, 2, 518–522. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, H.; Li, M.; Strickland, A.L.; Zheng, W.; Zhang, X. The Prognostic Values of HPV Genotypes and Tumor PD-L1 Expression in Patients with HPV-associated Endocervical Adenocarcinoma. Am. J. Surg. Pathol. 2022, 46, 300–308. [Google Scholar] [CrossRef]
Study | Clinical Trial Number | Type of Cancer | Condition | Phase | Intervention | Sample Size | Outcome |
---|---|---|---|---|---|---|---|
KEYNOTE-158 [2] | NCT02628067 | Cervical Cancer | Advanced Cervical Cancer | II | Pembrolizumab 200 mg/3 weeks | 98 | ORR = 12.2% (95% CI:6.5–20.4) |
Keynote-028 [3] | NCT02054806 | Cervical Cancer | Advanced PD-L1-positive cervical cancer | Ib | Pembrolizumab 10 mg/kg/2 weeks | 24 | ORR = 17% (95% CI:5–37) |
NRG-GY002 [4] | NCT02257528 | Cervical Cancer | Persistent, recurrent, or metastatic cervical cancer | II | Nivolumab 3 mg/kg/2 weeks | 26 | ORR = 4% (90% CI: 0.4–22.9) |
[5] | - | Cervical Cancer | Advanced or recurrent cervical cancer | II | Nivolumab 240 mg/2 weeks | 20 | ORR = 25% (80% CI: 13–41) |
Checkmate-358 [6] | NCT02488759 | Cervical Cancer | Recurrent or metastatic cervical, vaginal, or vulvar carcinoma | I/II | Nivolumab 240 mg/2 weeks | 19 | ORR = 26.3% (95% CI: 9.1–51.2) |
[7] | - | Cervical Cancer | Recurrent or metastatic cervical cancer | I | Cemiplimab 3 mg/kg/2 weeks or cemiplimab +hFRT | 10 | ORR = 10% (95% CI: 0.3–44.5) |
EMPOWER [8] | NCT03257267 | Cervical Cancer | Recurrent cervical cancer | III | Cemiplimab 350 mg/3 weeks or chemotherapy | 608 | ORR = 16.4% (95% CI, 12.5–21.1) |
[9] | - | Cervical Cancer | Recurrent or metastatic cervical cancer | II | Balstilimab 3 mg/kg/week | 140 | ORR = 15% (95% CI: 10.0–21.8) |
IND221 [10] | - | Cervical Cancer | Advanced, recurrent, or metastatic gynecologic cancers | I | Monalizumab 10 mg/kg/2 weeks | 9 | ORR = 0% |
[11] | NCT02517398 NCT03427411 | Cervical Cancer | Human papillomavirus-associated malignancies | I/II | Bintrafusp alfa/2 weeks | 10 | ORR = 30.5% (95% CI, 19.2–43.9 |
[12] | NCT04246489 | Cervical Cancer | Platinum-experienced cervical cancer | II | Bintrafusp alfa 1200 mg/IV/2 weeks | 146 | ORR = 21.9% (95% CI, 15.5–29.5) |
[13] | NCT03444376 | Cervical Cancer | Advanced cervical cancer | II | 2 mg GX-188E/IM + pembrolizumab 200 mg/3 weeks | 36 | ORR = 42% (95% CI: 23–63) PD-L1 (+) group: ORR = 50% (95% CI:27–73) |
[14] | NCT02471846 | Cervical Cancer | Advanced solid tumors | II | Navoximod/12 h + atezolizumab 1200 mg/IV/3 weeks | 157 | Dose Escalation (n = 66) ORR = 9%; Dose Expansion (n = 92): ORR = 11% |
Checkmate-358 [15] | NCT02488759 | Cervical Cancer | Recurrent or metastatic cervical cancer | I/II | Nivolumab 3 mg/kg/2 weeks + ipilimumab 1 mg/kg/6 weeks OR nivolumab 1 mg/kg/3 weeks + ipilimumab 3 mg/kg/3 weeks | 176 | ORR = 26% (95% CI: 9–51) with nivolumab, 31% (95% CI: 18–47) with NIVO3+IPI1, 40% (95% CI: 26–56) with randomized NIVO1+IPI3, and 38% (95% CI: 29–48) with pooled NIVO1+IPI3 |
C550 [16] | NCT03495882 | Cervical Cancer | Advanced cervical cancer | II | Balstilimab 3 mg/kg/2 weeks + zalifrelimab 1 mg/kg/6 weeks | 155 | ORR = 25.6% (95% CI: 18.8 to 33.9) |
[17] | - | Cervical Cancer | Persistent, recurrent, or metastatic cervical cancer | I | TILs + nivolumab 3 mg/kg | 80 | ORR= 25% |
AdvanTIG-202 [18] | NCT04693234 | Cervical Cancer | Recurrent or metastatic cervical cancer | II | TIS 200mg/IV/3 weeks + OCI 900mg/IV/3 weeks OR TIS 200mg/IV/3 weeks | 178 | Cohort1: PD-L1(-): ORR = 22.5% (95% CI: 15.8–30.3) PD-L1(+): ORR = 26.2% (95% CI: 17.2–36.9) Cohort2: ORR = 32.5% |
COMPASSION-13 [19] | NCT04868708 | Cervical Cancer | Persistent, recurrent, or metastatic cervical cancer | II | Cohort A-15: (cadonilimab 15 mg/kg/3 weeks + chemotherapy), cohort A-10: (cadonilimb 10 mg/kg/3 weeks + chemotherapy), Cohort B-10: (cadonilimab 10 mg/kg/3 weeks + chemotherapy and bevacizumab) | 45 | A-15: ORR = 73.3%; A-10: ORR = 68.8%; B-10: ORR = 92.3% |
[20] | NCT02921269 | Cervical Cancer | Advanced cervical cancer | II | Bevacizumab 15 mg/kg/IV/3 weeks + atezolizumab 1200 mg/IV/3 weeks | 10 | ORR = 0% |
[21] | NCT04221945 | Cervical Cancer | Newly diagnosed, high-risk, and locally advanced cervical cancer | III | Chemotherapy + pembrolizumab 200 mg/3 weeks | 1060 | 36-month OS = 82.6% in the pembrolizumab–chemoradiotherapy group and 74.8% in the placebo–chemoradiotherapy group |
CALLA study [22] | NCT03830866 | Cervical Cancer | Locally advanced cervical cancer | III | Chemotherapy + durvalumab 1500 mg/IV/4 weeks | 770 | 12-month PFS = 76% (71·3–80·0) with durvalumab and 73·3% (68·4–77·5) with placebo |
Keynote-826 [23] | NCT03635567 | Cervical Cancer | Persistent, recurrent, or metastatic cervical cancer | III | Chemotherapy + pembrolizumab (200 mg) or placebo every 3 weeks | 548 | PFS = pembrolizumab group: 10.4; placebo group: 8.2 |
PRIMMO study [24] | NCT03192059 | Cervical Cancer | Persistent, recurrent, or metastatic cervical or endometrial carcinoma | II | Pembrolizumab/3 weeks + radiation + immunomodulatory cocktail (Vitamin D, aspirin, cyclophosphamide, and lansoprazole) | 18 | ORR = 11.1% (90% CI: 2.0–31.0) |
[7] | - | Cervical Cancer | Recurrent or metastatic cervical cancer | I | Cemiplimab 3 mg/kg/IV/2 weeks OR cemiplimab 3 mg/kg/IV/2 weeks + hfRT | 10 | ORR = 10% |
NICOL [25] | NCT03298893 | Cervical Cancer | Locally advanced cervical cancer | I | Nivolumab + chemoradiotherapy | 16 | One-year PFS = 81.2% [95% CI: 64.2–100]. |
GOTIC-018 [26] | - | Cervical Cancer | Locally advanced cervical cancer | I | Nivolumab 240 mg/2 weeks + chemoradiotherapy | 30 | Cohort A: CR = 73.3%; PR = 26.7%; Cohort B: CR = 66.7%; PR = 33.3% |
CLAP [27] | NCT03816553 | Cervical Cancer | Advanced cervical cancer | II | Camrelizumab 200 mg/2 weeks + apatinib 250 mg | 45 | ORR = 55.6% (95% CI: 40.0–70.4); PD-L1(+) = 69% |
KEYNOTE-158 [28] | NCT02628067 | Vulvar Cancer | Advanced (metastatic and unresectable) vulvar SCC | II | Pembrolizumab 200 mg/3 weeks | 101 | ORR = 11% (95% CI: 6–19) |
Keynote-028 [29] | NCT02054806 | Vulvar Cancer | Advanced (unresectable and metastatic) vulvar SCC | Ib | Pembrolizumab 10 mg/kg/2 weeks | 18 | ORR = 6% (95% CI: 0–27) |
Checkmate-358 [6] | NCT02488759 | Vulvar/Vaginal Cancer | Recurrent or metastatic cervical, vaginal, or vulvar carcinoma | I/II | Nivolumab 240 mg/2 weeks | 5 | ORR = 20% (95% CI: 0.5–71.6) |
NCI9673 [30] | NCT02314169 | Anal Cancer | Treatment-refractory metastatic SCCA | II | Nivolumab every 2 weeks (3 mg/kg) | 37 | ORR = 24% (95% CI: 15–33) |
CARACAS (arm 1) [31] | NCT03944252 | Anal Cancer | Anal squamous cell carcinoma | II | Avelumab alone | 30 | ORR = 10% (95% CI: 2.5–26.5) |
CARACAS (arm 2) [31] | NCT03944252 | Anal Cancer | Anal squamous cell carcinoma | II | Avelumab combined with cetuximab | 30 | ORR = 17% (95% CI: 5.6–34.7) |
KEYNOTE-028 [29] | NCT02054806 | Anal Cancer | Anal squamous cell carcinoma | Ib | Pembrolizumab 10 mg/kg/2 weeks | 25 | ORR = 17% (95% CI: 5–37) |
KEYNOTE-158 [32] | NCT02628067 | Anal Cancer | Previously treated advanced anal squamous cell carcinoma | II | Pembrolizumab 200 mg/3 weeks | 112 | ORR = 11% (95% CI: 6–18) |
POD1UM-202 [33] | NCT03597295 | Anal Cancer | Anal squamous cell carcinoma | II | Retifanlimab 500 mg IV/4 weeks | 94 | ORR = 13.8% (95% CI: 7.6–22.5) |
[34] | NCT03074513 | Anal Cancer | Unresectable/metastatic anal cancer | II | Atezolizumab (1200 mg) and bevacizumab (15 mg/kg) IV/3 weeks | 19 | ORR = 11% |
EPIC [35] | NCT95561634 | Penile Cancer | Advanced penile cancer | II | Cemiplimab 350mg IV D1/3 weeks | 18 | ORR = 16.6% (95% CI: 5.8–39.2) |
HERCULES (LACOG 0218) [36] | NCT04224740 | Penile Cancer | Advanced penile cancer | II | 5-FU 1000mg/m2/day IV + cisplatin 70mg/m2 (or carboplatin AUC 5) IV + pembrolizumab 200 mg IV/3 weeks | 33 | ORR = 39.4% (95% CI: 22.9–57.9) |
[37] | NCT03333616 | Penile Cancer | Rare genitourinary cancers, including penile cancer | II | Nivolumab 3 mg/kg and ipilimumab 1 mg/kg IV/3 weeks | 5 | ORR = 6% (80% CI: 1–20) |
PERICLES [38] | NCT03686332 | Penile Cancer | Stage IVa penile cancer | II | Atezolizumab 1200 mg/3 weeks + RT (arm 1)/atezolizumab 1200 mg/3 weeks—RT (arm 2) | 30 | ORR = 16.7% (95% CI: 6–35) |
[39] | NCT02496208 | Penile Cancer | Advanced/metastatic genitourinary tumors | I | Cabozantinib and nivolumab (CaboNivo) alone or with ipilimumab (CaboNivoIpi) | 9 | ORR = 4% (95% CI: 13.7–78.8) |
Cervical Cancer [68] | Anal Cancer [69] | Vaginal Cancer [70] |
---|---|---|
Locally advanced cancer (chemoradiation) | ||
| ||
| ||
Recurrent/metastatic cancer | ||
First-line therapy | ||
|
|
|
Second-line and subsequent therapy | ||
|
|
|
Other recommendations | Other recommended regimens | |
|
| |
Useful in certain circumstances | Useful in certain circumstances | |
|
| |
Penile cancer [71] | Vulvar cancer [72] | |
First-line systemic therapy for metastatic/recurrent disease (other recommended regimens) | First-line therapy for advanced or recurrent/metastatic disease | |
|
| |
|
| |
Subsequent-line systemic therapy for metastatic/recurrent disease | Second-line or subsequent therapy | |
|
| |
Pembrolizumab is indicated for patients with unresectable or metastatic tumors, including those with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors that have progressed after prior treatment, and for those with high tumor mutational burden (TMB-H, TMB ≥10 mut/Mb) who have exhausted previous treatment options. | ||
Useful in certain circumstances | Useful in certain circumstances (biomarker-directed therapy) | |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, M.; Sweis, N.; Kapoor, H.; Gantt, G. Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science. Cancers 2025, 17, 1260. https://doi.org/10.3390/cancers17081260
Zafar M, Sweis N, Kapoor H, Gantt G. Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science. Cancers. 2025; 17(8):1260. https://doi.org/10.3390/cancers17081260
Chicago/Turabian StyleZafar, Marhama, Narjes Sweis, Hitesh Kapoor, and Gerald Gantt. 2025. "Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science" Cancers 17, no. 8: 1260. https://doi.org/10.3390/cancers17081260
APA StyleZafar, M., Sweis, N., Kapoor, H., & Gantt, G. (2025). Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science. Cancers, 17(8), 1260. https://doi.org/10.3390/cancers17081260