Adjuvant Radiotherapy and Breast Cancer in Patients with Li-Fraumeni Syndrome: A Critical Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. P53 and Its Interactions with Radio Sensitivity
2.2. Radio-Induced Tumors and Increased Risk Among Li-Fraumeni (LFS) Patients
2.2.1. General Population
- History of radiotherapy;
- Asymptomatic latency period of several years;
- Occurrence of sarcoma within irradiated field;
- Histological confirmation of the sarcomatous nature of the lesion.
2.2.2. Li-Fraumeni Patients
3. Results
3.1. Retrospective Studies Concerning Breast Cancer Among Li-Fraumeni Patients
3.2. Current Guidelines
- Proband with tumor belonging to the LFS spectrum before age 46, and at least one first degree or second-degree relative with LFS tumor (except breast cancer if proband was breast cancer) before age 56 with multiple tumors;
- Proband with multiple tumors (except multiple breast tumors), two of which belong to the LFS tumor spectrum and the first of which occurred before age 46;
- Breast cancer before age 31;
- Patients with adrenocortical carcinoma, choroid plexus tumor, or rhabdomyosarcoma of embryonal anaplastic subtype, irrespective of family history.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumamoto, T.; Yamazaki, F.; Nakano, Y.; Tamura, C.; Tashiro, S.; Hattori, H.; Nakagawara, A.; Tsunematsu, Y. Correction to: Medical guidelines for Li–Fraumeni syndrome 2019, version 1.1. Int. J. Clin. Oncol. 2021, 27, 262–263. [Google Scholar] [CrossRef]
- Borrero, L.J.H.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef]
- Chompret, A. The Li–Fraumeni syndrome. Biochimie 2002, 84, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Schon, K.; Tischkowitz, M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res. Treat. 2017, 167, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Tendulkar, R.; Smile, T.; Nanavati, A.; Manyam, B.; Balagamwala, E.; Pham, Y.; Takiar, R.; Wobb, J.; Khan, A.; et al. Adjuvant Radiotherapy in Early-Stage Breast Cancer: Evidence-Based Options. Ann. Surg. Oncol. 2016, 23, 3880–3890. [Google Scholar] [CrossRef] [PubMed]
- Salmon, A.; Amikam, D.; Sodha, N.; Davidson, S.; Basel-Vanagaite, L.; Eeles, R.; Abeliovich, D.; Peretz, T. Rapid Development of Post-radiotherapy Sarcoma and Breast Cancer in a Patient with a Novel Germline ‘De-Novo’ TP53 Mutation. Clin. Oncol. 2007, 19, 490–493. [Google Scholar] [CrossRef]
- Gatz, S.A.; Wiesmüller, L. p53 in recombination and repair. Cell Death Differ. 2006, 13, 1003–1016. [Google Scholar] [CrossRef]
- Rozan, S.; Vincent-Salomon, A.; Zafrani, B.; Validire, P.; De Cremoux, P.; Bernoux, A.; Nieruchalski, M.; Fourquet, A.; Clough, K.; Dieras, V.; et al. No significant predictive value of c- erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int. J. Cancer 1998, 79, 27–33. [Google Scholar] [CrossRef]
- Silvestrini, R.; Veneroni, S.; Benini, E.; Daidone, M.G.; Luisi, A.; Leutner, M.; Maucione, A.; Kenda, R.; Zucali, R.; Veronesi, U. Expression of p53, Glutathione S -Transferase-π, and Bcl-2 Proteins and Benefit from Adjuvant Radiotherapy in Breast Cancer. JNCI J. Natl. Cancer Instig. 1997, 89, 639–645. [Google Scholar] [CrossRef]
- McIlwrath, A.J.; A Vasey, P.; Ross, G.M.; Brown, R. Cell cycle arrests and radiosensitivity of human tumor cell lines: Dependence on wild-type p53 for radiosensitivity. Cancer Res. 1994, 54, 3718–3722. [Google Scholar]
- Warenius, H.M.; Jones, M.; Jones, M.D.; Browning, P.G.; Seabra, L.A.; Thompson, C.C. Late G1 accumulation after 2 Gy of γ-irradiation is related to endogenous Raf-1 protein expression and intrinsic radiosensitivity in human cells. Br. J. Cancer 1998, 77, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Bergh, J.; Norberg, T.; Sjögren, S.; Lindgren, A.; Holmberg, L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat. Med. 1995, 1, 1029–1034. [Google Scholar] [CrossRef]
- Boyle, J.M.; Spreadborough, A.; Greaves, M.J.; Birch, J.M.; Varley, J.M.; Scott, D. The relationship between radiation-induced G1 arrest and chromosome aberrations in Li-Fraumeni fibroblasts with or without germline TP53 mutations. Br. J. Cancer 2001, 85, 293–296. [Google Scholar] [CrossRef]
- Anbalagan, S.; Ström, C.; Downs, J.A.; Jeggo, P.A.; McBay, D.; Wilkins, A.; Rothkamm, K.; Harrington, K.J.; Yarnold, J.R.; Somaiah, N. P53 modulates radiotherapy fraction size sensitivity in normal and malignant cells. Sci. Rep. 2021, 11, 7119. [Google Scholar] [CrossRef] [PubMed]
- Dracham, C.B.; Shankar, A.; Madan, R. Radiation induced secondary malignancies: A review article. Radiat. Oncol. J. 2018, 36, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Thariat, J.; Chevalier, F.; Orbach, D.; Ollivier, L.; Marcy, P.-Y.; Corradini, N.; Beddok, A.; Foray, N.; Bougeard, G. Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol. 2021, 22, e562–e574. [Google Scholar] [CrossRef]
- Singh, G.K.; Yadav, V.; Singh, P.; Bhowmik, K.T. Radiation-Induced Malignancies Making Radiotherapy a “Two-Edged Sword”: A Review of Literature. World J. Oncol. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Braunstein, S.; Nakamura, J.L. Radiotherapy-Induced Malignancies: Review of Clinical Features, Pathobiology, and Evolving Approaches for Mitigating Risk. Front. Oncol. 2013, 3, 73. [Google Scholar] [CrossRef]
- Kumar, S. Second Malignant Neoplasms Following Radiotherapy. Int. J. Environ. Res. Public Health 2012, 9, 4744–4759. [Google Scholar] [CrossRef]
- Kirova, Y.M.; Vilcoq, J.R.; Asselain, B.; Sastre-Garau, X.; Fourquet, A. Radiation-induced sarcomas after radiotherapy for breast carcinoma. Cancer 2005, 104, 856–863. [Google Scholar] [CrossRef]
- Cahan, W.G.; Woodard, H.Q.; Higinbotham, N.L.; Stewart, F.W.; Coley, B.L. Sarcoma arising in irradiated bone: Report of eleven cases. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998, 82, 8–34. [Google Scholar] [CrossRef]
- Grantzau, T.; Overgaard, J. Risk of second non-breast cancer after radiotherapy for breast cancer: A systematic review and meta-analysis of 762,468 patients. Radiother. Oncol. 2014, 114, 56–65. [Google Scholar] [CrossRef]
- Mitchel, R.E.J.; Jackson, J.S.; Carlisle, S.M. Upper Dose Thresholds for Radiation-Induced Adaptive Response against Cancer in High-Dose-Exposed, Cancer-Prone, Radiation-SensitiveTrp53Heterozygous Mice. Radiat. Res. 2004, 162, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Kasper, E.; Angot, E.; Colasse, E.; Nicol, L.; Sabourin, J.-C.; Adriouch, S.; Lacoume, Y.; Charbonnier, C.; Raad, S.; Frebourg, T.; et al. Contribution of genotoxic anticancer treatments to the development of multiple primary tumours in the context of germline TP53 mutations. Eur. J. Cancer 2018, 101, 254–262. [Google Scholar] [CrossRef]
- Heyn, R.; Haeberlen, V.; A Newton, W.; Ragab, A.H.; Raney, R.B.; Tefft, M.; Wharam, M.; Ensign, L.G.; Maurer, H.M. Second malignant neoplasms in children treated for rhabdomyosarcoma. Intergroup Rhabdomyosarcoma Study Committee. J. Clin. Oncol. 1993, 11, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Bougeard, G.; Renaux-Petel, M.; Flaman, J.-M.; Charbonnier, C.; Fermey, P.; Belotti, M.; Gauthier-Villars, M.; Stoppa-Lyonnet, D.; Consolino, E.; Brugières, L.; et al. Revisiting Li-Fraumeni Syndrome from TP53 Mutation Carriers. J. Clin. Oncol. 2015, 33, 2345–2352. [Google Scholar] [CrossRef]
- Suri, J.; Rednam, S.; Teh, B.; Butler, E.; Paulino, A. Subsequent Malignancies in Patients with Li-Fraumeni Syndrome Treated With Radiation Therapy. Int. J. Radiat. Oncol. 2013, 87, S71–S72. [Google Scholar] [CrossRef]
- Hendrickson, P.G.; Luo, Y.; Kohlmann, W.; Schiffman, J.; Maese, L.; Bishop, A.J.; Lloyd, S.; Kokeny, K.E.; Hitchcock, Y.J.; Poppe, M.M.; et al. Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: A hereditary cancer registry study. Cancer Med. 2020, 9, 7954–7963. [Google Scholar] [CrossRef]
- Heymann, S.; Delaloge, S.; Rahal, A.; Caron, O.; Frebourg, T.; Barreau, L.; Pachet, C.; Mathieu, M.-C.; Marsiglia, H.; Bourgier, C. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat. Oncol. 2010, 5, 104. [Google Scholar] [CrossRef]
- Petry, V.; Bonadio, R.C.; Cagnacci, A.Q.C.; Senna, L.A.L.; Campos, R.D.N.G.; Cotti, G.C.; Hoff, P.M.; Fragoso, M.C.B.V.; Estevez-Diz, M.d.P. Radiotherapy-induced malignancies in breast cancer patients with TP53 pathogenic germline variants (Li–Fraumeni syndrome). Fam. Cancer 2019, 19, 47–53. [Google Scholar] [CrossRef]
- Le, A.N.; Harton, J.; Desai, H.; Powers, J.; Zelley, K.; Bradbury, A.R.; Nathanson, K.L.; Shah, P.D.; Doucette, A.; Freedman, G.M.; et al. Frequency of radiation-induced malignancies post-adjuvant radiotherapy for breast cancer in patients with Li-Fraumeni syndrome. Breast Cancer Res. Treat. 2020, 181, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Alyami, H.; Yoo, T.-K.; Cheun, J.-H.; Lee, H.-B.; Jung, S.M.; Ryu, J.M.; Bae, S.J.; Jeong, J.; Yoon, C.I.; Ahn, J.; et al. Clinical Features of Breast Cancer in South Korean Patients with Germline TP53 Gene Mutations. J. Breast Cancer 2021, 24, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Petry, V.; Bonadio, R.C.; Moutinho, K.; Leite, L.S.; Testa, L.; Cohn, D.J.B.H.; Cagnacci, A.C.; Kim, V.E.; Estevez-Diz, M.D.P.; Fragoso, M.C.B.V. Frequency of Radiation Therapy-Induced Malignancies in Patients with Li-Fraumeni Syndrome and Early-Stage Breast Cancer and the Influence of Radiation Therapy Technique. Int. J. Radiat. Oncol. 2024, 119, 1086–1091. [Google Scholar] [CrossRef]
- Sandoval, R.L.; Bottosso, M.; Tianyu, L.; Polidorio, N.; Bychkovsky, B.L.; Verret, B.; Gennari, A.; Cahill, S.; Achatz, M.I.; Caron, O.; et al. TP53-associated early breast cancer: New observations from a large cohort. JNCI J. Natl. Cancer Instig. 2024, 116, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Kuba, M.G.; Lester, S.C.; Bowman, T.; Stokes, S.M.; Taneja, K.L.; Garber, J.E.; Dillon, D.A. Histopathologic features of breast cancer in Li–Fraumeni syndrome. Mod. Pathol. 2020, 34, 542–548. [Google Scholar] [CrossRef]
- Bergom, C.; West, C.M.; Higginson, D.S.; Abazeed, M.E.; Arun, B.; Bentzen, S.M.; Bernstein, J.L.; Evans, J.D.; Gerber, N.K.; Kerns, S.L.; et al. The Implications of Genetic Testing on Radiation Therapy Decisions: A Guide for Radiation Oncologists. Int. J. Radiat. Oncol. 2019, 105, 698–712. [Google Scholar] [CrossRef]
- Tung, N.M.; Boughey, J.C.; Pierce, L.J.; Robson, M.E.; Bedrosian, I.; Dietz, J.R.; Dragun, A.; Gelpi, J.B.; Hofstatter, E.W.; Isaacs, C.J.; et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin. Oncol. 2020, 38, 2080–2106. [Google Scholar] [CrossRef]
- Genturis, T.E.R.N.; Frebourg, T.; Lagercrantz, S.B.; Oliveira, C.; Magenheim, R.; Evans, D.G. Guidelines for the Li–Fraumeni and heritable TP53-related cancer syndromes. Eur. J. Hum. Genet. 2020, 28, 1379–1386. [Google Scholar] [CrossRef]
- Guo, Y.; Wan, Q.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Xie, Y. Risk of ipsilateral breast tumor recurrence and contralateral breast cancer in patients with and without TP53 variant in a large series of breast cancer patients. Breast 2022, 65, 55–60. [Google Scholar] [CrossRef]
- Kirova, Y.M.; for the Institut Curie Breast Cancer Study Group; De Rycke, Y.; Gambotti, L.; Pierga, J.-Y.; Asselain, B.; Fourquet, A. Second malignancies after breast cancer: The impact of different treatment modalities. Br. J. Cancer 2008, 98, 870–874. [Google Scholar] [CrossRef]
- Laé, M.; Lebel, A.; Hamel-Viard, F.; Asselain, B.; Trassard, M.; Sastre, X.; Kirova, Y. Can c-myc amplification reliably discriminate postradiation from primary angiosarcoma of the breast? Cancer Radiother. 2015, 19, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Chang, D.T.; Pollom, E.L. Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 2020, 126, 3560–3568. [Google Scholar] [CrossRef] [PubMed]
- König, L.; Hörner-Rieber, J.; Forsthoefel, M.; Haering, P.; Meixner, E.; Eichkorn, T.; Krämer, A.; Mielke, T.; Tonndorf-Martini, E.; Haefner, M.F.; et al. Secondary Malignancy Risk Following Proton vs. X-ray Radiotherapy of Thymic Epithelial Tumors: A Comparative Modeling Study of Thoracic Organ-Specific Cancer Risk. Cancers 2022, 14, 2409. [Google Scholar] [CrossRef] [PubMed]
Study | Number of Patients | Receptor Status | Number of Patients Treated with Radiotherapy (Curative Setting) | Number of Ipsilateral Recurrences (Irradiated vs. Not) | Number of Contralateral Recurrences (Irradiated vs. Not) | Number of RIMs | RIM Histology | Median Follow-Up |
---|---|---|---|---|---|---|---|---|
Heymann et al., 2010 [29] | 8 | HR+: 6 HER2+: 2 | 6 | 3 vs. 0 | 4 vs. 1 | 2 (30%) | 1 angiosarcoma 1 histiocytofibrosarcoma | 6 years (2–13) |
Petry et al., 2019 [30] | 16 | HR+: 8 HER2+: 6 | 12 | 0 vs. 2 | 0 vs. 0 | 2 (16.7%) | 1 fibrosarcoma 1 leiomyosarcoma | 4.375 years |
Le et al., 2020 [31] | 51 | HR+: 23 HER2+: 22 | 18 | 1 vs. NA | 0 vs. NA | 1 (5.6%) | 1 sarcoma (subtype not specified) | 12.5 years (2–20) |
Alyami et al., 2021 [32] | 12 (21 primary breast tumors) | HR+: 8 HER2+: 10 | 5 | 2 (1 patient) vs. 1 | 2 (1 patient) vs. 2 | 0 | None | 7.3 years (0.67–18.5) |
Petry et al., 2024 [33] | 48 | ER+: 38 PR+: 28 HER2+: 17 | 30 | 2 (6.7%) vs. 1 (5.6%) | 3 (10%) vs. 2 (11.1%) | 3 (10%) | NA | 4.75 years |
Sandoval et al., 2024 [34] | 227 | RH+: 140 HER2+: 87 | 79 | NA | NA | 6 (7.6% total, 4.8% risk at 5 years) | 6 sarcomas (subtype not specified) | 5.83 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrebati, A.; Loap, P.; Kirova, Y. Adjuvant Radiotherapy and Breast Cancer in Patients with Li-Fraumeni Syndrome: A Critical Review. Cancers 2025, 17, 1206. https://doi.org/10.3390/cancers17071206
Shrebati A, Loap P, Kirova Y. Adjuvant Radiotherapy and Breast Cancer in Patients with Li-Fraumeni Syndrome: A Critical Review. Cancers. 2025; 17(7):1206. https://doi.org/10.3390/cancers17071206
Chicago/Turabian StyleShrebati, Adnan, Pierre Loap, and Youlia Kirova. 2025. "Adjuvant Radiotherapy and Breast Cancer in Patients with Li-Fraumeni Syndrome: A Critical Review" Cancers 17, no. 7: 1206. https://doi.org/10.3390/cancers17071206
APA StyleShrebati, A., Loap, P., & Kirova, Y. (2025). Adjuvant Radiotherapy and Breast Cancer in Patients with Li-Fraumeni Syndrome: A Critical Review. Cancers, 17(7), 1206. https://doi.org/10.3390/cancers17071206