Single-Dose Radiation Therapy for Localized Prostate Cancer: Where Does the Evidence Lead?
Simple Summary
Abstract
1. Introduction
2. Biological and Clinical–Dosimetric Rationale of Prostate Sdrt
3. Published Studies
3.1. The ONE-SHOT Study by Zilli et al. [37]
Treatment Planning and Radiation Delivery
3.2. The PROSINT Study by Greco et al. [39]
Treatment Planning and Radiation Delivery
3.3. The ABRUPT Study by Arcangeli et al. [41]
Treatment Planning and Delivery
3.4. The SiFEPI Study by Hannoun-Levi et al. [42]
3.5. The Study by Salari et al. [43]
3.6. The Study by Hudson et al. [44]
3.7. The Study by Hoskin et al. [45]
3.8. The Study by Prada et al. [46]
3.9. The Study by Siddiqui et al. [48]
3.10. The Study by Tharmalingam et al. [49]
3.11. The Study by Morton et al. [50]
4. Discussion
4.1. Effective Dose for SDRT
4.2. Intrafraction Movement Control
4.3. Urethra Sparing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bell, K.J.L.; Del Mar, C.; Wright, G.; Dickinson, J.; Glasziou, P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int. J. Cancer 2015, 137, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Center, M.M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O. International Variation in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2012, 61, 1079–1092. [Google Scholar] [CrossRef]
- Cozzi, S.; Botti, A.; Timon, G.; Blandino, G.; Najafi, M.; Manicone, M.; Ruggieri, M.P.; Ciammella, P.; Iotti, C. Prognostic factors, efficacy, and toxicity of involved-node stereotactic body radiation therapy for lymph node oligorecurrent prostate cancer: An investigation of 117 pelvic lymph nodes. Strahlenther. Onkol. 2022, 198, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, S.; Bardoscia, L.; Najafi, M.; Botti, A.; Blandino, G.; Augugliaro, M.; Manicone, M.; Giaccherini, L.; Sardano, A.; Iotti, C.; et al. Adenoid Cystic Carcinoma/Basal Cell Carcinoma of the Prostate: Overview and Update on Rare Prostate Cancer Subtypes. Curr. Oncol. 2022, 29, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Bardoscia, L.; Pasinetti, N.; Triggiani, L.; Cozzi, S.; Sardaro, A. Biological Bases of Immune-Related Adverse Events and Potential Crosslinks with Immunogenic Effects of Radiation. Front. Pharmacol. 2021, 12, 746853. [Google Scholar] [CrossRef]
- Morgan, S.C.; Hoffman, K.; Loblaw, D.A.; Buyyounouski, M.K.; Patton, C.; Barocas, D.; Bentzen, S.; Chang, M.; Efstathiou, J.; Greanyet, P.; et al. Hypofractionated Radiation Therapy for Localized Prostate Cancer: An ASTRO, ASCO, and AUA Evidence-Based Guideline. J. Clin. Oncol. 2018, 36, 3411–3430. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Maliket, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.P.; de Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.F.; Dayes, I.S.; et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients with Low-Risk Prostate Cancer. J. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef]
- Arcangeli, G.; Saracino, B.; Arcangeli, S.; Gomellini, S.; Petrongari, M.G.; Sanguineti, G.; Strigari, L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J. Clin. Oncol. 2017, 35, 1891–1897. [Google Scholar] [CrossRef]
- Buyyounouski, M.K.; Pugh, S.; Chen, R.C.; Mann, M.; Kudchadker, R.; Konski, A.A. Primary Endpoint Analysis of a Randomized Phase III Trial of Hypofractionated vs. Conventional Post-Prostatectomy Radiotherapy: NRG Oncology GU003. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, S2–S3. [Google Scholar] [CrossRef]
- Ferrario, F.; Franzese, C.; Faccenda, V.; Vukcaj, S.; Belmonte, M.; Lucchini, R.; Baldaccini, D.; Badalamenti, M.; Andreoli, S.; Panizza, D.; et al. Toxicity profile and Patient-Reported outcomes following salvage Stereotactic Ablative Radiation Therapy to the prostate Bed: The POPART multicentric prospective study. Clin. Transl. Radiat. Oncol. 2024, 44, 100704. [Google Scholar] [CrossRef] [PubMed]
- Castelluccia, A.; Tramacere, F.; Colciago, R.R.; Borgia, M.; Sallustio, A.; Proto, T.; Portaluri, M.; Arcangeli, S. 10-yr Results of Moderately Hypofractionated Postoperative Radiotherapy for Prostate Cancer Focused on Treatment Related Toxicity. Clin. Genitourin. Cancer 2024, 22, 102102. [Google Scholar] [CrossRef]
- Paoletti, L.; Ceccarelli, C.; Menichelli, C.; Aristei, C.; Borghesi, S.; Tucci, E.; Bastiani, P.; Cozzi, S. Special stereotactic radiotherapy techniques: Procedures and equipment for treatment simulation and dose delivery. Rep. Pract. Oncol. Radiother. 2022, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, S.; Alì, E.; Bardoscia, L.; Najafi, M.; Botti, A.; Blandino, G.; Giaccherini, L.; Ruggieri, M.P.; Augugliaro, M.; Iori, F.; et al. Stereotactic Body Radiation Therapy (SBRT) for Oligorecurrent/Oligoprogressive Mediastinal and Hilar Lymph Node Metastasis: A Systematic Review. Cancers 2022, 14, 2680. [Google Scholar] [CrossRef]
- Iori, F.; Bruni, A.; Cozzi, S.; Ciammella, P.; Di Pressa, F.; Boldrini, L.; Greco, C.; Nardone, V.; Salvestrini, V.; Desideri, I.; et al. Can Radiotherapy Empower the Host Immune System to Counterattack Neoplastic Cells? A Systematic Review on Tumor Microenvironment Radiomodulation. Curr. Oncol. 2022, 29, 4612–4624. [Google Scholar] [CrossRef]
- Iori, F.; Botti, A.; Ciammella, P.; Cozzi, S.; Orlandi, M.; Iori, M.; Iotti, C. How a very large sarcomatoid lung cancer was efficiently managed with lattice radiation therapy: A case report. Ann. Palliat. Med. 2022, 11, 3555–3561. [Google Scholar] [CrossRef]
- Najafi, M.; Jahanbakhshi, A.; Gomar, M.; Iotti, C.; Giaccherini, L.; Rezaie, O.; Cavallieri, F.; Deantonio, L.; Bardoscia, L.; Botti, A.; et al. State of the Art in Combination Immuno/Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis. Curr. Oncol. 2022, 29, 2995–3012. [Google Scholar] [CrossRef]
- Navarria, P.; Minniti, G.; Clerici, E.; Comito, T.; Cozzi, S.; Pinzi, V.; Fariselli, L.; Ciammella, P.; Scoccianti, S.; Borzillo, V.; et al. Brain metastases from primary colorectal cancer: Is radiosurgery an effective treatment approach? Results of a multicenter study of the radiation and clinical oncology Italian association (AIRO). Br. J. Radiol. 2020, 93, 20200951. [Google Scholar] [CrossRef]
- Mangoni, M.; Desideri, I.; Detti, B.; Bonomo, P.; Greto, D.; Paiar, F.; Simontacchi, G.; Meattini, I.; Scoccianti, S.; Masoni, T.; et al. Hypofractionation in Prostate Cancer: Radiobiological Basis and Clinical Appliance. BioMed Res. Int. 2014, 2014, 781340. [Google Scholar] [CrossRef]
- Sritharan, K.; Tree, A. MR-guided radiotherapy for prostate cancer: State of the art and future perspectives. Br. J. Radiol. 2022, 95, 20210800. [Google Scholar] [CrossRef]
- Cozzi, S.; Ruggieri, M.P.; Alì, E.; Ghersi, S.F.; Vigo, F.; Augugliaro, M.; Giaccherini, L.; Iori, F.; Najafi, M.; Bardosciaet, L.; et al. Moderately Hypofractionated Helical Tomotherapy for Prostate Cancer: Ten-year Experience of a Mono-institutional Series of 415 Patients. In Vivo 2023, 37, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Withers, H.R. Biologic basis for altered fractionation schemes. Cancer 1985, 55 (Suppl. S9), 2086–2095. [Google Scholar] [CrossRef]
- Fowler, J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989, 62, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Martinez, A.A.; Edmundson, G.K.; Mitchell, C.; Thames, H.D.; Armour, E.P. Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 6–13. [Google Scholar] [CrossRef]
- Vogelius, I.R.; Bentzen, S.M. Dose Response and Fractionation Sensitivity of Prostate Cancer After External Beam Radiation Therapy: A Meta-analysis of Randomized Trials. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.; Walker, G.; Horwitz, E.M.; Price, R.; Feigenberg, S.; Konski, A.A.; Stoyanova, R.; Movsas, B.; Greenberg, R.E.; Uzzo, R.G.; et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3860–3868. [Google Scholar] [CrossRef]
- Catton, C.N.; Lukka, H.; Gu, C.-S.; Martin, J.M.; Supiot, S.; Chung PW, M.; Bauman, G.S.; Bahary, J.-P.; Ahmed, S.; Cheung, P.; et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef]
- Tree, A.C.; Ostler, P.; van der Voet, H.; Chu, W.; Loblaw, A.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; Staffurth, J.; et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2022, 23, 1308–1320. [Google Scholar] [CrossRef]
- Cozzi, S.; Finocchi Ghersi, S.; Bardoscia, L.; Najafi, M.; Blandino, G.; Alì, E.; Augugliaro, M.; Vigo, F.; Ruggieri, M.P.; Cardano, R.; et al. Linac-based stereotactic salvage reirradiation for intraprostatic prostate cancer recurrence: Toxicity and outcomes. Strahlenther. Onkol. 2023, 199, 554–564. [Google Scholar] [CrossRef]
- Fuller, D.B.; Naitoh, J.; Lee, C.; Hardy, S.; Jin, H. Virtual HDR CyberKnife treatment for localized prostatic carcinoma: Dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Seo, Y.; Shiomi, H.; Yamada, Y.; Ogata, T.; Morimoto, M.; Konishi, K.; Yoshioka, Y.; Ogawa, K. Dosimetry analyses comparing high-dose-rate brachytherapy, administered as monotherapy for localized prostate cancer, with stereotactic body radiation therapy simulated using CyberKnife. J. Radiat. Res. 2014, 55, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Bodo, S.; Campagne, C.; Thin, T.H.; Higginson, D.S.; Vargas, H.A.; Hua, G.; Fuller, J.D.; Ackerstaff, E.; Russell, J.; Zhang, Z.; et al. Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury. J. Clin. Investig. 2019, 129, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.; Zelefsky, M.J.; Lovelock, M.; Fuks, Z.; Hunt, M.; Rosenzweig, K.; Zatcky, J.; Kim, B.; Yamada, Y. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1151–1157. [Google Scholar] [CrossRef]
- Brenner, D.J. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 2008, 18, 234–239. [Google Scholar] [CrossRef]
- Guckenberger, M.; Klement, R.J.; Allgäuer, M.; Appold, S.; Dieckmann, K.; Ernst, I.; Ganswindt, U.; Holy, R.; Nestle, U.; Nevinny-Stickel, M.; et al. Applicability of the linear-quadratic formalism for modeling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer. Radiother. Oncol. 2013, 109, 13–20. [Google Scholar] [CrossRef]
- Zilli, T.; Franzese, C.; Bottero, M.; Giaj-Levra, N.; Förster, R.; Zwahlen, D.; Koutsouvelis, N.; Bertaut, A.; Blanc, J.; D’agostino, G.R.; et al. Single fraction urethra-sparing prostate cancer SBRT: Phase I results of the ONE SHOT trial. Radiother. Oncol. 2019, 139, 83–86. [Google Scholar] [CrossRef]
- Zilli, T.; Franzese, C.; Guckenberger, M.; Giaj-Levra, N.; Mach, N.; Koutsouvelis, N.; Achard, V.; McDonald, A.; Alongi, F.; Scorsetti, M.; et al. ONE SHOT—Single shot radiotherapy for localized prostate cancer: 18-month results of a single arm, multicenter phase I/II trial. Radiother. Oncol. 2024, 194, 110181. [Google Scholar] [CrossRef]
- Greco, C.; Pares, O.; Pimentel, N.; Louro, V.; Santiago, I.; Vieira, S.; Stroom, J.; Mateus, D.; Soares, A.; Marques, J.; et al. Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients with Intermediate-Risk Prostate Cancer: Results From the PROSINT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 700. [Google Scholar] [CrossRef]
- Greco, C.; Pares, O.; Pimentel, N.; Louro, V.; Morales, J.; Nunes, B.; Vasconcelos, A.L.; Antunes, I.; Kociolek, J.; Stroom, J.; et al. Target motion mitigation promotes high-precision treatment planning and delivery of extreme hypofractionated prostate cancer radiotherapy: Results from a phase II study. Radiother. Oncol. 2020, 146, 21–28. [Google Scholar] [CrossRef]
- Arcangeli, S.; Chissotti, C.; Ferrario, F.; Lucchini, R.; Belmonte, M.; Purrello, G.; Ray Colciago, R.; De Ponti, E.; Faccenda, V.; Panizza, D. Ablative Radiation Therapy for Unfavorable Prostate Tumors (ABRUPT): Preliminary Analysis of Toxicity and Quality of Life from a Prospective Study. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 1394–1403. [Google Scholar] [CrossRef]
- Hannoun-Levi, J.-M.; Chand-Fouche, M.-E.; Pace-Loscos, T.; Gautier, M.; Gal, J.; Schiappa, R.; Pujol, N. Single fraction of HDR brachytherapy for prostate cancer: Results of the SiFEPI phase II prospective trial. Clin. Transl. Radiat. Oncol. 2022, 37, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Salari, K.; Hazy, A.J.; Ye, H.; Sebastian, E.; Limbacher, A.; Johnson, M.; Mitchell, B.; Thompson, A.B.; Seymour, Z.A.; Nandalur, S.R.; et al. 21 Gy single fraction prostate HDR brachytherapy: 5-year results of a single institution prospective pilot study. Brachytherapy 2024, 23, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.M.; Loblaw, A.; McGuffin, M.; Chung, H.T.; Tseng, C.-L.; Helou, J.; Cheung, P.; Szumacher, E.; Liu, S.; Zhang, L.; et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate-risk prostate cancer: Efficacy results from a randomized phase II clinical trial of one fraction of 19 Gy or two fractions of 13.5 Gy: A 9-year update. Radiother. Oncol. 2024, 198, 110381. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.; Rojas, A.; Ostler, P.; Hughes, R.; Alonzi, R.; Lowe, G. Single–dose high-dose-rate brachytherapy versus two and three fractions for locally advanced prostate cancer. Radiother. Oncol. 2024, 199, 110426. [Google Scholar] [CrossRef]
- Prada, P.J.; Cardenal, J.; García Blanco, A.; Anchuelo, J.; Ferri, M.; Fernández, G.; Arrojo, E.; Vázquez, A.; Pacheco, M.; Fernández, J. High-dose-rate interstitial brachytherapy as monotherapy in one fraction for the treatment of favorable stage prostate cancer: Toxicity and long-term biochemical results. Radiother. Oncol. 2016, 119, 411–416. [Google Scholar] [CrossRef]
- Prada, P.J.; Ferri, M.; Cardenal, J.; García Blanco, A.; Anchuelo, J.; Díaz de Cerio, I.; Vázquez, A.; Pacheco, M.; Raba, I.; Ruiz, S. High-dose-rate interstitial brachytherapy as monotherapy in one fraction of 20.5 Gy for the treatment of localized prostate cancer: Toxicity and 6-year biochemical results. Brachytherapy 2018, 17, 845–851. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Gustafson, G.S.; Ye, H.; Martinez, A.A.; Mitchell, B.; Sebastian, E.; Limbacher, A.; Krauss, D.J. Five-Year Outcomes of a Single-Institution Prospective Trial of 19-Gy Single-Fraction High-Dose-Rate Brachytherapy for Low- and Intermediate-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 1038–1044. [Google Scholar] [CrossRef]
- Tharmalingam, H.; Tsang, Y.; Ostler, P.; Wylie, J.; Bahl, A.; Lydon, A.; Ahmed, I.; Elwell, C.; Nikapota, A.R.; Hoskin, P.J.; et al. Single dose high-dose rate (HDR) brachytherapy (BT) as monotherapy for localised prostate cancer: Early results of a UK national cohort study. Radiother. Oncol. 2020, 143, 95–100. [Google Scholar] [CrossRef]
- Morton, G.; McGuffin, M.; Chung, H.T.; Tseng, C.-L.; Helou, J.; Ravi, A.; Cheung, P.; Szumacher, E.; Liu, S.; Chu, W.; et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Efficacy results from a randomized phase II clinical trial of one fraction of 19 Gy or two fractions of 13.5 Gy. Radiother. Oncol. 2020, 146, 90–96. [Google Scholar] [CrossRef]
- Simcock, R.; Vengaloor Thomas, T.; Estes, C.; Filippi, A.R.; Katz, M.S.; Pereira, I.J.; Saeed, H. COVID-19: Global radiation oncology’s targeted response for pandemic preparedness. Clin. Transl. Radiat. Oncol. 2020, 22, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, S.; Ruggieri, M.P.; Bardoscia, L.; Najafi, M.; Blandino, G.; Giaccherini, L.; Manicone, M.; Ramundo, D.; Rosca, A.; Solla, D.S.; et al. Good clinical practice and the use of hypofractionation radiation schedules as weapons to reduce the risk of COVID-19 infections in radiation oncology unit: A mono-institutional experience. J. Cancer Res. Ther. 2023, 19, 644–649. [Google Scholar] [CrossRef] [PubMed]
- James, N.D.; Tannock, I.; N’Dow, J.; Feng, F.; Gillessen, S.; Ali, S.A.; Trujillo, B.; Al-Lazikani, B.; Attard, G.; Bray, F.; et al. The Lancet Commission on prostate cancer: Planning for the surge in cases. Lancet 2024, 403, 1683–1722. [Google Scholar] [CrossRef]
- Leeman, J.E.; Chen, Y.-H.; Catalano, P.; Bredfeldt, J.; King, M.; Mouw, K.W.; D’Amico, A.V.; Orio, P.; Nguyen, P.L.; Martin, N. Radiation Dose to the Intraprostatic Urethra Correlates Strongly with Urinary Toxicity After Prostate Stereotactic Body Radiation Therapy: A Combined Analysis of 23 Prospective Clinical Trials. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 75–82. [Google Scholar] [CrossRef]
- Hindson, B.R.; Millar, J.L.; Matheson, B. Urethral strictures following high-dose-rate brachytherapy for prostate cancer: Analysis of risk factors. Brachytherapy 2013, 12, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.; Williams, S.G.; Tai, K.H.; Foroudi, F.; Cleeve, L.; Duchesne, G.M. Urethral stricture following high dose rate brachytherapy for prostate cancer. Radiother. Oncol. 2009, 91, 232–236. [Google Scholar] [CrossRef]
- Mohammed, N.; Kestin, L.; Ghilezan, M.; Krauss, D.; Vicini, F.; Brabbins, D.; Gustafson, G.; Ye, H.; Martinez, A. Comparison of Acute and Late Toxicities for Three Modern High-Dose Radiation Treatment Techniques for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 204–212. [Google Scholar] [CrossRef]
Trial Name | Phase | Patient Population | Treatment Regimen | Key Findings | Follow Up | Safety |
---|---|---|---|---|---|---|
ONE-SHOT [37,38] | Prospective Phase I/II | Low to intermediate-risk PCa | EBRT: 19 Gy SDRT (urethra dose reduced to 17 Gy) | Feasibility and tolerability demonstrated; 0% grade 2 GI toxicity 50% grade 2 urinary toxicity | 18 months | Safe with manageable toxicity |
PROSINT [39] | Prospective Phase II | Intermediate-risk PCa | EBRT: 5 × 9 Gy SBRT vs. 24 Gy SDRT | Similar toxicity profiles between SDRT and SBRT; 27% 1-week acute grade 1 GU symptoms (SBRT) vs. 40% (SDRT) 0% grade ≥ 2 GI toxicity | 48 months | Comparable late GU toxicity; no grade 4 toxicity; PSA levels similar at 3 years |
ABRUPT [41] | Single-arm prospective trial | Intermediate-risk PCa | EBRT: 24 Gy SDRT with urethra-sparing | Feasibility and safety demonstrated; 0% ≥ G3 late side effects | 18 months. | Lower baseline QoL score, higher baseline IPSS score, acute GU toxicity, and acute urinary domain MID predicted GU toxicity of any grade |
SiFEPI [42] | Prospective Phase II | Low-risk to favorable intermediate-risk PCa | HDR-BT: 1 fraction of 20 Gy | 6y-bRFS 62% 6y-lRFS 61% 6y-mRFS 93% 6y-DFS 54% 6y-CSS 100% 6y-OS 89% 33% GU toxicity 12% GI toxicity 21% sexual impairment | 72.8 months | Suboptimal biochemical control but positive late toxicity outcomes |
Study by Salari et al. [43] | Prospective | Low to intermediate-risk PCa | HDR-BT: 1 fraction of 21 Gy | Moderate chronic urinary toxicity; significant local and biochemical failure rates | 5.1 years | Single-fraction 21 Gy HDR associated with high chronic toxicity and failure rates, questioning its standard use |
Study by Hudson et al. [44] | Prospective Phase II | Low to intermediate-risk PCa | HDR-BT: 27 Gy in 2 fractions vs. 19 Gy in 1 fraction | Two-fraction regimen shows better cancer control and lower failure rates; single-fraction has poorer outcomes | 9 years | Two-fraction regimen provided sustained disease control Single-fraction less effective and not recommended |
Study by Hoskin et al. [45] | Prospective Phase II | Intermediate- to high-risk PCa | HDR-BT: 19 Gy or 20 Gy single-dose vs. 13 Gy in 2 fractions vs. 10.5 Gy in 3 fractions | No significant difference in biochemical relapse-free interval; higher GU toxicity in single-dose group | 10 years | Reduced PSA control with Single-dose HDR Multi-fraction regimens better disease control with acceptable safety |
Study by Prada et al. [46] | Retrospective | Localized prostate cancer | HDR-BT: 1 fraction of 19 Gy | 90% OS, 88% tumor-free survival at 6 years, 66% biochemical control at 6 years | 72 months | No intraoperative or perioperative complications; no grade 2 or higher acute or late genitourinary toxicity; low GU morbidity; no GI toxicity |
Study by Prada et al. [47] | Retrospective | low- and intermediate-risk prostate cancer | HDR-BT: 1 fraction of 20.5 Gy | Achieved good biochemical control with low GU morbidity and no GI toxicity | 51 months | No intraoperative or perioperative complications; low GU morbidity; no GI toxicity; the protocol is feasible, well tolerated, and shows biochemical benefits at the dose of 20.5 Gy |
Study by Siddiqui et al. [48] | Prospective trial Phase 2 | low- and intermediate-risk prostate cancer | HDR-BT: 1 fraction of 19 Gy | 5-year estimated DFS was 77.2%. Higher-than-expected rates of biochemical and LF. LF at 5 years was 18.8%. | 3.9 years | Chronic grade 2 GU toxicity: 14.7%.; no grade 3 urinary toxicity; single case of grade 3 diarrhea (rectal toxicity) that resolved with medical management; single patient developed distant metastases; no deaths during follow-up |
Study by Tharmalingam et al. [49] | retrospective | localized prostate cancer (all risk groups) | HDR-BT: 1 fraction of 19 Gy | 3-year bRFS: 100% in low risk, 86% in intermediate risk, 75% in high risk; relapse predominantly occurred in the prostate; Gleason score was an independent predictor of bRFS | 26 months | Acute toxicity was low with no grade 3 or 4 events. Two cases of late urinary stricture and two grade 3 late rectal events were reported. ADT was administered to 37.6% overall, with 90% of high-risk patients receiving it for a median of 6 months |
Study by Morton et al. [50] | Prospective trial Phase 2 | Low or intermediate risk prostate cancer, prostate | HDR-BT: 1 fraction of 19 Gy vs. 2 fractions of 13.5 Gy | 5-year bRFS: 73.5% (single fraction) vs. 95% (two fractions); local failure: 29% (single fraction) vs. 3% (two fractions) | 5 years | Urinary toxicity: Grade 2 (45%), Grade 3 (1%); late rectal toxicity: Grade 2 (1%); single fraction is inferior in cancer control; two fractions are well tolerated with higher efficacy |
Study Name | Treatment Regimen | Dose Constraints |
---|---|---|
ONE-SHOT [37,38] | EBRT: 19 Gy SDRT | Urethra: Dmax < 17Gy |
PROSINT [39] | EBRT: 5 × 9 Gy SBRT vs. 24 Gy SDRT | Urethral wall: D1 cm3 ≤ 19.2 Gy Bladder: D2% < 20.1 Gy Rectal wall: D5% ≤ 21.6 Gy; D50% ≤ 12.0 Gy; D1 cc ≤ 19.2 Gy Penile bulb: D2% < 19.2 Gy; D1 cm ≤ 12.0 Gy Femurs: D2% ≤ 12.0 Gy |
ABRUPT [41] | EBRT: 24 Gy SDRT with urethra-sparing | Urethra PRV: D0.035 cc ≤ 22.8 Gy; D1 cc ≤ 19.2 Gy Bladder PRV: D0.035 cc ≤ 24.0 Gy; D1 cc ≤ 22.8 Gy; D50% ≤ 12.0 Gy Rectum PRV: D0.035 cc ≤ 22.8 Gy; D1 cc ≤ 19.2 Gy; D50% ≤ 12.0 Gy Neurovascular bundles: D0.035 cc ≤ 24.0 Gy; <50% of prescribed dose; ≤12.0 Femoral head: D0.035 cc ≤ 16.0 Gy Penile bulb: D0.035 cc ≤ 24.0 Gy |
SiFEPI [42] | HDR-BT: 1 fraction of 20 Gy | Rectum: V85R ≤ 1%, Urethra: V110U < 1% |
Study by Salari et al. [43] | HDR-BT: 1 fraction of 21 Gy | NA |
Study by Hudson et al. [44] | HDR-BT: 27 Gy in 2 fractions vs. 19 Gy in 1 fraction | Urethra: Dmax < 120%; D10 < 115%; Rectal: Dmax < 90%; V80 < 0.2 cc |
Study by Hoskin et al. [45] | HDR-BT: 19 Gy or 20 Gy single-dose vs. 13 Gy in 2 fractions vs. 10.5 Gy in 3 fractions | 19 Gy in 1 fraction Rectum D2 cc < 15 Gy; V100 < 100% Urethra D10 < 22 Gy; D30 < 20.8 Gy; V150: 0 cc 20 Gy in 1 fraction Rectum D2 cc 15 Gy; V100 < 100% Urethra D10 < 22 Gy; D30 < 20.8 Gy; V150 < 0 cc |
Study by Prada et al. [46,47] | HDR-BT: 1 fraction of 19 Gy | Rectum (Calculated at the anterior edge of the TRUS probe) Dmax ≤ 75% of the prescription dose Urethra: Dmax ≤ 110% |
Study by Siddiqui et al. [48] | HDR-BT: 1 fraction of 19 Gy | Urethra: V110 < 10% Rectum: Dmax < 72.5% |
Study by Tharmalingam et al. [49] | HDR-BT: 1 fraction of 19 Gy | Rectum: D2cc were <15 Gy with a maximum of <19 Gy Urethra: D10 < 22 Gy and D30 < 20.8 Gy with no area receiving >28.5 Gy |
Study by Morton et al. [50] | HDR-BT: 1 fraction of 19 Gy vs. 2 fractions of 13.5 Gy | Urethra: Dmax < 120%, D10 < 115% Rectum: Dmax = 90%, V80 < 0.2 cc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzi, S.; Lazrek, A.; Rubini, G.; Rubini, D.; Sardaro, A.; Houabes, S.; Laude, C.; Gassa, F.; Bardoscia, L.; Roukoz, C. Single-Dose Radiation Therapy for Localized Prostate Cancer: Where Does the Evidence Lead? Cancers 2025, 17, 1176. https://doi.org/10.3390/cancers17071176
Cozzi S, Lazrek A, Rubini G, Rubini D, Sardaro A, Houabes S, Laude C, Gassa F, Bardoscia L, Roukoz C. Single-Dose Radiation Therapy for Localized Prostate Cancer: Where Does the Evidence Lead? Cancers. 2025; 17(7):1176. https://doi.org/10.3390/cancers17071176
Chicago/Turabian StyleCozzi, Salvatore, Amina Lazrek, Giuseppe Rubini, Dino Rubini, Angela Sardaro, Sarah Houabes, Cecile Laude, Frederic Gassa, Lilia Bardoscia, and Camille Roukoz. 2025. "Single-Dose Radiation Therapy for Localized Prostate Cancer: Where Does the Evidence Lead?" Cancers 17, no. 7: 1176. https://doi.org/10.3390/cancers17071176
APA StyleCozzi, S., Lazrek, A., Rubini, G., Rubini, D., Sardaro, A., Houabes, S., Laude, C., Gassa, F., Bardoscia, L., & Roukoz, C. (2025). Single-Dose Radiation Therapy for Localized Prostate Cancer: Where Does the Evidence Lead? Cancers, 17(7), 1176. https://doi.org/10.3390/cancers17071176