Prostate-Specific Antigen Decline Rate in the First Month Is a Timely Predictive Factor for Biochemical Recurrence After Robot-Assisted Radical Prostatectomy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Risk Group Classification and Study Population
2.4. PSA Follow-Up Schedule
2.5. Ethics Statement
2.6. Statistical Analysis
3. Results
3.1. Preoperative and Postoperative Covariates
3.2. Univariate Logistic Regression Analysis
3.3. Multivariate Logistic Regression Analysis
3.4. ROC Curve and AUC for PSADR1M Predicting BCR
3.5. Kaplan–Meier Survival Curves for Biochemical Recurrence Free Survival (BRFS) Stratified by PSADR1M
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Hu, K.; Wang, Y.; Wu, Y.; Bao, E.; Wang, J.; Tan, C.; Tang, T. Robot-assisted versus open radical prostatectomy: A systematic review and meta-analysis of prospective studies. J. Robot. Surg. 2023, 17, 2617–2631. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.H.; Cammann, H.; Meyer, H.A.; Jung, K.; Lu, H.B.; Leva, N.; Magheli, A.; Stephan, C.; Busch, J. Risk prediction models for biochemical recurrence after radical prostatectomy using prostate-specific antigen and Gleason score. Asian J. Androl. 2014, 16, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Hikita, K.; Honda, M.; Shimizu, R.; Teraoka, S.; Kimura, Y.; Yumioka, T.; Tsounapi, P.; Iwamoto, H.; Morizane, S.; Takenaka, A. Influence of the time interval between biopsy and surgery on the biochemical recurrence after robot-assisted radical prostatectomy in Japanese patients. Asian J. Surg. 2022, 45, 2179–2184. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kathuria, S.; Jain, S.; Rasool, S.; Tyagi, V.; Gupta, M.; Pahwa, M.; Pandey, H.; Sharma, A. Evaluation of Biochemical Recurrence and Correlation with Various Parameters After Robotic-Assisted Radical Prostatectomy: A Single Center Experience. Indian J. Surg. Oncol. 2022, 13, 661–667. [Google Scholar] [CrossRef]
- Thalgott, M.; Kron, M.; Brath, J.M.; Ankerst, D.P.; Thompson, I.M.; Gschwend, J.E.; Herkommer, K. Men with family history of prostate cancer have a higher risk of disease recurrence after radical prostatectomy. World J. Urol. 2018, 36, 177–185. [Google Scholar] [CrossRef]
- Pepe, P.; Pennisi, M. Gleason score stratification according to age at diagnosis in 1028 men. Contemp. Oncol. 2015, 19, 471–473. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Pepe, P.; Pennisi, M. Targeted Biopsy in Men High Risk for Prostate Cancer: 68Ga-PSMA PET/CT Versus mpMRI. Clin. Genitourin. Cancer 2023, 21, 639–642. [Google Scholar] [CrossRef]
- Geara, F.B.; Bulbul, M.; Khauli, R.B.; Andraos, T.Y.; Abboud, M.; Al Mousa, A.; Sarhan, N.; Salem, A.; Ghatasheh, H.; Alnsour, A.; et al. Nadir PSA is a strong predictor of treatment outcome in intermediate and high risk localized prostate cancer patients treated by definitive external beam radiotherapy and androgen deprivation. Radiat. Oncol. 2017, 12, 149. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chiang, P.H.; Chuang, Y.C.; Lee, W.C.; Cheng, Y.T.; Wang, H.J. Predictors of prostate-specific antigen biochemical recurrence in patients undergoing primary whole-gland prostate cryoablation. Ann. Surg. Oncol. 2015, 22, 1612–1617. [Google Scholar] [CrossRef]
- Skove, S.L.; Howard, L.E.; Aronson, W.J.; Terris, M.K.; Kane, C.J.; Amling, C.L.; Cooperberg, M.R.; Moreira, D.M.; Freedland, S.J. Timing of Prostate-specific Antigen Nadir After Radical Prostatectomy and Risk of Biochemical Recurrence. Urology 2017, 108, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, Z.; Khader, J.; Bulbul, M.; Khauli, R.B.; Andraos, T.Y.; Shamseddine, A.; Mukherji, D.; Geara, F.B. Adjusting the duration of androgen deprivation therapy (ADT) based on nadir PSA for high risk localized prostate cancer patients treated with definitive external beam radiation therapy and ADT. BMC Urol. 2022, 22, 204. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Stensland, K.D.; Caram, M.E.V.; Herr, D.J.; Burns, J.A.; Sparks, J.B.; Elliott, D.A.; Shin, C.; Morgan, T.M.; Zaslavsky, A.; Hollenbeck, B.K.; et al. National Long-term Survival Estimates After Radical Prostatectomy for Prostate Cancer. Urology 2024, 184, 135–141. [Google Scholar] [CrossRef]
- Diaz, M.; Peabody, J.O.; Kapoor, V.; Sammon, J.; Rogers, C.G.; Stricker, H.; Lane, Z.; Gupta, N.; Bhandari, M.; Menon, M. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur. Urol. 2015, 67, 1168–1176. [Google Scholar] [CrossRef]
- Vives Dilme, R.; Rivas, J.G.; Fernandez Hernandez, L.; De la Parra Sanchez, I.; Sanchez Del Hoyo, R.; Galante Romo, M.I.; Redondo Gonzalez, E.; Senovilla Perez, J.L.; Fernandez Montarroso, L.; Moreno Sierra, J. Oncological outcomes in robot-assisted radical prostatectomy: The value of PSA density as a preoperative predictive factor. Ther. Adv. Urol. 2024, 16, 17562872241229250. [Google Scholar] [CrossRef]
- Kano, H.; Kadono, Y.; Kadomoto, S.; Iwamoto, H.; Yaegashi, H.; Iijima, M.; Kawaguchi, S.; Nohara, T.; Shigehara, K.; Izumi, K.; et al. Similar Recurrence Rate Between Gleason Score of Six at Positive Margin and Negative Margin After Radical Prostatectomy. Anticancer Res. 2021, 41, 509–516. [Google Scholar] [CrossRef]
- Hatayama, T.; Goto, K.; Fujiyama, K.; Goriki, A.; Kaneko, M.; Mita, K. Risk classification system using the detailed positive surgical margin status for predicting biochemical recurrence after robot-assisted radical prostatectomy. Asia Pac. J. Clin. Oncol. 2024; early view. [Google Scholar] [CrossRef]
- Mitsunari, K.; Fukushima, H.; Kurata, H.; Harada, J.; Nakamura, Y.; Matsuo, T.; Ohba, K.; Mochizuki, Y.; Imamura, R. Predictive Factors for Early Biochemical Recurrence Following Robot-assisted Radical Prostatectomy. Anticancer Res. 2024, 44, 3149–3154. [Google Scholar] [CrossRef]
- Yang, C.W.; Wang, H.H.; Hassouna, M.F.; Chand, M.; Huang, W.J.S.; Chung, H.J. Prediction of a positive surgical margin and biochemical recurrence after robot-assisted radical prostatectomy. Sci. Rep. 2021, 11, 14329. [Google Scholar] [CrossRef]
- Chung, J.H.; Jeong, J.Y.; Lee, J.Y.; Song, W.; Kang, M.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Lee, H.M.; et al. Biochemical recurrence after radical prostatectomy according to nadir prostate specific antigen value. PLoS ONE 2021, 16, e0249709. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.A.; Akay, S.U.; Sengoz, M. Prostate-specific antigen nadir within 1 year of radiotherapy combined with hormone therapy predicts cancer-specific mortality and biochemical recurrence-free survival in prostate cancer patients. BMC Urol. 2022, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Ploussard, G.; Staerman, F.; Pierrevelcin, J.; Saad, R.; Beauval, J.B.; Roupret, M.; Audenet, F.; Peyromaure, M.; Delongchamps, N.B.; Vincendeau, S.; et al. Predictive factors of oncologic outcomes in patients who do not achieve undetectable prostate specific antigen after radical prostatectomy. J. Urol. 2013, 190, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Wiegel, T.; Bartkowiak, D.; Bottke, D.; Thamm, R.; Hinke, A.; Stöckle, M.; Rübe, C.; Semjonow, A.; Wirth, M.; Störkel, S.; et al. Prostate-specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 288–294. [Google Scholar] [CrossRef]
- Preisser, F.; Chun, F.K.H.; Pompe, R.S.; Heinze, A.; Salomon, G.; Graefen, M.; Huland, H.; Tilki, D. Persistent Prostate-Specific Antigen After Radical Prostatectomy and Its Impact on Oncologic Outcomes. Eur. Urol. 2019, 76, 106–114. [Google Scholar] [CrossRef]
- Spratt, D.E.; Dai, D.L.Y.; Den, R.B.; Troncoso, P.; Yousefi, K.; Ross, A.E.; Schaeffer, E.M.; Haddad, Z.; Davicioni, E.; Mehra, R.; et al. Performance of a Prostate Cancer Genomic Classifier in Predicting Metastasis in Men with Prostate-specific Antigen Persistence Postprostatectomy. Eur. Urol. 2018, 74, 107–114. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, X.Z.; Qin, J.; Wen, Z.; Jiang, Y.; Huang, J.; Wang, C.J.; Chen, C.X.; Wang, L.; Li, K.P.; et al. Erectile function, urinary continence and oncologic outcomes of neurovascular bundle sparing robot-assisted radical prostatectomy for high-risk prostate cancer: A systematic review and meta-analysis. Front. Oncol. 2023, 13, 1161544. [Google Scholar] [CrossRef]
- Nunes-Silva, I.; Hidaka, A.K.; Glina, F.P.A.; Hayashi, R.M.; Glina, S. Can salvage Retzius-sparing robotic-assisted radical prostatectomy improve continence outcomes? A systematic review and meta-analysis study. World J. Urol. 2023, 41, 2311–2317. [Google Scholar] [CrossRef]
- Venclovas, Z.; Jievaltas, M.; Milonas, D. Significance of Time Until PSA Recurrence After Radical Prostatectomy Without Neo- or Adjuvant Treatment to Clinical Progression and Cancer-Related Death in High-Risk Prostate Cancer Patients. Front. Oncol. 2019, 9, 1286. [Google Scholar] [CrossRef]
- Bejrananda, T.; Pliensiri, P. Prediction of biochemical recurrence after laparoscopic radical prostatectomy. BMC Urol. 2023, 23, 183. [Google Scholar] [CrossRef]
- Blas, L.; Shiota, M.; Takamatsu, D.; Kinoshita, F.; Matsumoto, T.; Lee, K.; Monji, K.; Kashiwagi, E.; Inokuchi, J.; Eto, M. Novel nomogram to predict biochemical recurrence-free survival after radical prostatectomy. World J. Urol. 2023, 41, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Kirisawa, T.; Shiota, M.; Kimura, T.; Edamura, K.; Miyake, M.; Morizane, S.; Yoshino, T.; Matsukawa, A.; Matsumoto, R.; Kasahara, T.; et al. Comparison of therapeutic features and oncologic outcome in patients with pN1 prostate cancer among robot-assisted, laparoscopic, or open radical prostatectomy. Int. J. Clin. Oncol. 2023, 28, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, G.; Wang, J.; Bi, J. Different lymph node dissection ranges during radical prostatectomy for patients with prostate cancer: A systematic review and network meta-analysis. World J. Surg. Oncol. 2023, 21, 80. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Maas, M.; Nassiri, N.; Ortega, D.; Gill, K.; Dell’Oglio, P.; Thalmann, G.N.; Heidenreich, A.; Eastham, J.A.; Evans, C.P.; et al. Impact of Pelvic Lymph Node Dissection and Its Extent on Perioperative Morbidity in Patients Undergoing Radical Prostatectomy for Prostate Cancer: A Comprehensive Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2021, 4, 134–149. [Google Scholar] [CrossRef]
- Marra, G.; Lesma, F.; Montefusco, G.; Filippini, C.; Olivier, J.; Affentranger, A.; Grogg, J.B.; Hermanns, T.; Afferi, L.; Fankhauser, C.D.; et al. Observation with or Without Subsequent Salvage Therapy for Pathologically Node-positive Prostate Cancer with Negative Conventional Imaging: Results From a Large Multicenter Cohort. Eur. Urol. Open Sci. 2024, 68, 32–39. [Google Scholar] [CrossRef]
- Beauval, J.B.; Roumiguie, M.; Filleron, T.; Benoit, T.; de la Taille, A.; Malavaud, B.; Salomon, L.; Soulie, M.; Ploussard, G. Biochemical recurrence-free survival and pathological outcomes after radical prostatectomy for high-risk prostate cancer. BMC Urol. 2016, 16, 26. [Google Scholar] [CrossRef]
- Ahlberg, M.S.; Garmo, H.; Adami, H.O.; Andren, O.; Johansson, J.E.; Steineck, G.; Holmberg, L.; Bill-Axelson, A. Time without PSA recurrence after radical prostatectomy as a predictor of future biochemical recurrence, metastatic disease and prostate cancer death: A prospective Scandinavian cohort study. BMJ Open 2022, 12, e057242. [Google Scholar] [CrossRef]
Preoperative Covariates | Whole Cohort (n = 777) | Low/Intermediate-Risk (143/292) (n = 435) | High-Risk (n = 342) | p-Value |
---|---|---|---|---|
Age (years, median, IQR) | 68.0 (63.0, 72.0) | 67 (62.0, 71.0) | 68.0 (63.0, 73.0) | 0.022 |
iPSA (ng/mL, median, IQR) | 6.6 (5.1, 9.0) | 6.1 (5.0, 8.3) | 7.0 (5.3, 10.0) | 0.001 |
bGG (n, %) | 0.001 | |||
1 (3 + 3 = 6) | 240 (30.9) | 186 (42.7) | 54 (15.8) | |
2 (3 + 4 = 7) | 237 (30.5) | 149 (34.3) | 88 (25.7) | |
3 (4 + 3 = 7) | 160 (20.6) | 100 (23.0) | 60 (17.5) | |
4 (5 + 3, 4 + 4, 3 + 5 = 8) | 120 (15.4) | 0 | 120 (35.1) | |
5 (5 + 4, 4 + 5 = 9, 5 + 5 = 10) | 20 (2.6) | 0 | 20 (5.9) | |
Clinical T stage | 0.001 | |||
T1c | 141 (18.2) | 130 (30.0) | 11 (3.2) | |
T2a | 287 (36.9) | 238 (54.6) | 49 (14.3) | |
T2b | 84 (10.8) | 67 (15.4) | 17 (5.0) | |
T2c | 229 (29.5) | 0 | 229 (67.0) | |
T3a | 31 (4.0) | 0 | 31 (9.1) | |
T3b | 5 (0.6) | 0 | 5 (1.4) |
Postoperative Covariates | Whole Cohort (n = 777) | Low/Intermediate-Risk (143/292) (n = 435) | High-Risk (n = 342) | p-Value |
---|---|---|---|---|
pT stage (number, %) | ||||
pT1 | 2 (0.3) | 1 (0.2) | 1 (0.3) | 0.001 |
pT2a | 71 (9.1) | 42 (9.7) | 29 (8.5) | |
pT2b | 16 (2.1) | 11 (2.5) | 5 (1.5) | |
pT2c | 481 (61.9) | 290 (66.7) | 191 (55.8) | |
pT3a | 149 (19.2) | 71 (16.3) | 79 (23.1) | |
pT3b | 58 (7.4) | 20 (4.6) | 37 (10.8) | |
PNI (number, %) | 352 (45.3) | 184 (42.3) | 168 (49.1) | 0.058 |
pGG (number, %) | <0.001 | |||
GG 1 | 145 (18.7) | 105 (24.1) | 40 (11.7) | |
GG 2 | 353 (45.4) | 213 (49.0) | 140 (40.9) | |
GG 3 | 191 (24.6) | 100 (23.0) | 91 (26.6) | |
GG 4 | 61 (7.8) | 12 (2.8) | 49 (14.3) | |
GG 5 | 27 (3.5) | 5 (1.1) | 22 (6.4) | |
PSM (number, %) | 223 (28.7) | 120 (27.6) | 103 (30.1) | 0.439 |
SVI (number, %) | 58 (7.5) | 20 (4.6) | 38 (11.1) | 0.001 |
NS (number, %) | <0.001 | |||
NNS | 385 (49.6) | 162 (37.2) | 223 (65.2) | |
UNS | 193 (24.8) | 123 (28.3) | 70 (20.5) | |
BNS | 199 (25.6) | 150 (34.5) | 49 (14.3) | |
Type of LND (number, %) | <0.001 | |||
Non LND | 315 (40.5) | 251 (57.7) | 84 (24.6) | |
sLND | 459 (59.1) | 184 (42.3) | 255 (74.6) | |
eLND | 3 (0.3) | 0 | 3 (0.8) | |
PSADR1M (%, median, IQR) | 0.38 (0.20,0.72) | 0.38 (0.21, 0.70) | 0.38 (0.19, 0.77) | 0.916 |
Follow-up time (month, median, IQR) | 48.0 (30.0,84.0) | 60.0 (32.0, 91.0) | 38.0 (24.0, 72.0) | <0.001 |
BCR rate (number, %) | 158 (20.3) | 69 (15.9) | 89 (26.0) | <0.001 |
Time from RARP to BCR (month, median, IQR) | 15 (3, 34) | 24 (9, 45) | 9 (0, 30) | <0.001 |
Covariates | Uni-Variate Analysis | Multi-Variate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p-Value | |
Age | 1.008 | (0.982, 1.035) | 0.548 | |||
iPSA | 1.034 | (1.001, 1.067) | 0.040 | 0.993 | (0.957, 1.030) | 0.709 |
cT1+cT2 | Ref | Ref | ||||
cT3 | 4.553 | (2.288, 9.058) | <0.001 | 1.784 | (0.703, 4.529) | 0.223 |
D’Amico Low/intermediate-risk | Ref | Ref | ||||
D’Amico High-risk | 1.866 | (1.311, 2.656) | 0.001 | 1.062 | (0.667, 1.690) | 0.800 |
pT1+pT2 | Ref | Ref | ||||
pT3 | 4.916 | (3.393, 7.123) | <0.001 | 2.617 | (1.566, 4.373) | <0.001 |
pGG 1+2 | Ref | Ref | ||||
pGG 3 | 2.647 | (1.763, 3.974) | <0.001 | 2.692 | (1.664, 4.355) | <0.001 |
pGG 4+5 | 4.749 | (2.891, 7.800) | <0.001 | 2.270 | (1.159, 4.445) | 0.017 |
NSM | Ref | Ref | ||||
PSM | 2.595 | (1.805, 3.730) | <0.001 | 2.269 | (1.450, 3.549) | <0.001 |
Non-SVI | Ref | Ref | ||||
SVI | 10.349 | (5.708, 18.532) | <0.001 | 2.881 | (1.354, 6.131) | 0.006 |
Non-PNI | Ref | Ref | ||||
PNI | 1.169 | (1.189, 2.404) | 0.003 | 0.866 | (0.549, 1.368) | 0.538 |
PSADR1M, % | 1.274 | (1.133, 1.415) | <0.001 | 2.410 | (1.847, 3.145) | <0.001 |
PSADR1M < 0.62% | Ref | |||||
PSADR1M ≥ 0.62% | 5.688 | (3.917, 8.261) | <0.001 |
Covariates | Uni-Variate Analysis | Multi-Variate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
pGG1+2 | Ref | |||||
pGG3 | 1.804 | (1.018, 3.196) | 0.043 | 1.939 | (1.009, 3.724) | 0.047 |
pGG4+5 | 1.968 | (0.613, 6.314) | 0.255 | 1.456 | (0.372, 5.706) | 0.590 |
pT1+pT2 | Ref | |||||
pT3 | 3.555 | (2.050, 6.165) | <0.001 | 2.333 | (1.153, 4.722) | 0.018 |
NSM | Ref | |||||
PSM | 2.034 | (1.191, 3.474) | 0.009 | 1.769 | (0.954, 3.281) | 0.070 |
Non-SVI | Ref | |||||
SVI | 11.906 | (4.554, 31.126) | <0.001 | 6.250 | (1.959,19.939) | 0.002 |
PSADR1M (%) | 2.607 | (1.813, 3.749) | <0.001 | 2.584 | (1.768, 3.777) | <0.001 |
PSADR1M < 0.32% | Ref | |||||
PSADR1M ≥ 0.32% | 4.573 | (2.325, 8.996) | <0.001 |
Covariates | Uni-Variate Analysis | Multi-Variate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
pT1+pT2 | Ref | |||||
pT3 | 5.857 | (3.476, 9.870) | <0.001 | 2.580 | (1.276, 5.219) | 0.008 |
pGG1+2 | Ref | |||||
pGG 3 | 3.884 | (2.107, 7.160) | <0.001 | 4.048 | (1.929, 8.495) | <0.001 |
pGG 4+5 | 5.928 | (3.127, 11.237) | <0.001 | 3.737 | (1.636, 8.540) | 0.002 |
NSM | Ref | |||||
PSM | 3.215 | (1.935, 5.341) | <0.001 | 3.120 | (1.610, 6.048) | <0.001 |
Non-SVI | Ref | |||||
SVI | 8.288 | (3.962, 17.339) | <0.001 | 1.619 | (0.618, 4.245) | 0.327 |
PSADR1M(%) | 2.645 | (1.854, 3.773) | <0.001 | 2.397 | (1.655, 3.471) | <0.001 |
PSADR1M < 0.68% | Ref | |||||
PSADR1M ≥ 0.68% | 10.394 | (5.977, 18.075) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, P.; Ide, H.; Lu, Y.; Nagata, M.; Kimura, T.; China, T.; Hiramatsu, I.; Kobayashi, T.; Ikehata, Y.; Zhou, J.; et al. Prostate-Specific Antigen Decline Rate in the First Month Is a Timely Predictive Factor for Biochemical Recurrence After Robot-Assisted Radical Prostatectomy. Cancers 2025, 17, 961. https://doi.org/10.3390/cancers17060961
Gong P, Ide H, Lu Y, Nagata M, Kimura T, China T, Hiramatsu I, Kobayashi T, Ikehata Y, Zhou J, et al. Prostate-Specific Antigen Decline Rate in the First Month Is a Timely Predictive Factor for Biochemical Recurrence After Robot-Assisted Radical Prostatectomy. Cancers. 2025; 17(6):961. https://doi.org/10.3390/cancers17060961
Chicago/Turabian StyleGong, Pengfeng, Hisamitsu Ide, Yan Lu, Masayoshi Nagata, Tomoki Kimura, Toshiyuki China, Ippei Hiramatsu, Takuro Kobayashi, Yoshihiro Ikehata, Jun Zhou, and et al. 2025. "Prostate-Specific Antigen Decline Rate in the First Month Is a Timely Predictive Factor for Biochemical Recurrence After Robot-Assisted Radical Prostatectomy" Cancers 17, no. 6: 961. https://doi.org/10.3390/cancers17060961
APA StyleGong, P., Ide, H., Lu, Y., Nagata, M., Kimura, T., China, T., Hiramatsu, I., Kobayashi, T., Ikehata, Y., Zhou, J., & Horie, S. (2025). Prostate-Specific Antigen Decline Rate in the First Month Is a Timely Predictive Factor for Biochemical Recurrence After Robot-Assisted Radical Prostatectomy. Cancers, 17(6), 961. https://doi.org/10.3390/cancers17060961