Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Metabolomic Profiling
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Ramin, C.; Veiga, L.H.S.; Vo, J.B.; Curtis, R.E.; Bodelon, C.; Aiello Bowles, E.J.; Buist, D.S.M.; Weinmann, S.; Feigelson, H.S.; Gierach, G.L.; et al. Risk of second primary cancer among women in the Kaiser Permanente Breast Cancer Survivors Cohort. Breast Cancer Res. 2023, 25, 50. [Google Scholar] [CrossRef] [PubMed]
- Grabinski, V.F.; Brawley, O.W. Disparities in Breast Cancer. Obs. Gynecol. Clin. N. Am. 2022, 49, 149–165. [Google Scholar] [CrossRef]
- Guo, L.; Kong, D.; Liu, J.; Zhan, L.; Luo, L.; Zheng, W.; Zheng, Q.; Chen, C.; Sun, S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp. Hematol. Oncol. 2023, 12, 3. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, L.; Ding, X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers 2023, 15, 4164. [Google Scholar] [CrossRef]
- Lima, Z.S.; Ghadamzadeh, M.; Arashloo, F.T.; Amjad, G.; Ebadi, M.R.; Younesi, L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: Genetic mutations and implications for current treatment paradigms. J. Hematol. Oncol. 2019, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Győrffy, B.; Pongor, L.; Bottai, G.; Li, X.; Budczies, J.; Szabó, A.; Hatzis, C.; Pusztai, L.; Santarpia, L. An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes. Br. J. Cancer 2018, 118, 1107–1114. [Google Scholar] [CrossRef]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Hlaváč, V.; Václavíková, R.; Brynychová, V.; Ostašov, P.; Koževnikovová, R.; Kopečková, K.; Vrána, D.; Gatěk, J.; Souček, P. Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response. Int. J. Mol. Sci. 2021, 22, 2826. [Google Scholar] [CrossRef]
- Lanning, N.J.; Castle, J.P.; Singh, S.J.; Leon, A.N.; Tovar, E.A.; Sanghera, A.; MacKeigan, J.P.; Filipp, F.V.; Graveel, C.R. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer Metab. 2017, 5, 6. [Google Scholar] [CrossRef]
- Li, C.; Tao, Y.; Chen, Y.; Wu, Y.; He, Y.; Yin, S.; Xu, S.; Yu, Y. Development of a metabolism-related signature for predicting prognosis, immune infiltration and immunotherapy response in breast cancer. Am. J. Cancer Res. 2022, 12, 5440–5461. [Google Scholar]
- Xiao, Y.; Ma, D.; Yang, Y.-S.; Yang, F.; Ding, J.-H.; Gong, Y.; Jiang, L.; Ge, L.-P.; Wu, S.-Y.; Yu, Q.; et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022, 32, 477–490. [Google Scholar] [CrossRef]
- Zheng, X.; Ma, H.; Wang, J.; Huang, M.; Fu, D.; Qin, L.; Yin, Q. Energy metabolism pathways in breast cancer progression: The reprogramming, crosstalk, and potential therapeutic targets. Transl. Oncol. 2022, 26, 101534. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.I.; Valvi, D.; Rothman, N.; Lan, Q.; Miller, G.W.; Jones, D.P. The metabolome: A key measure for exposome research in epidemiology. Curr. Epidemiol. Rep. 2019, 6, 93–103. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
- Subramani, R.; Poudel, S.; Smith, K.D.; Estrada, A.; Lakshmanaswamy, R. Metabolomics of Breast Cancer: A Review. Metabolites 2022, 12, 643. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cebrián, N.; Domingo-Ortí, I.; Poveda, J.L.; Vicent, M.J.; Puchades-Carrasco, L.; Pineda-Lucena, A. Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers 2021, 13, 4544. [Google Scholar] [CrossRef] [PubMed]
- Amiri-Dashatan, N.; Yekta, R.F.; Koushki, M.; Arefi Oskouie, A.; Esfahani, H.; Taheri, S.; Kazemian, E. Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int. J. Biol. Markers 2022, 37, 349–359. [Google Scholar] [CrossRef]
- McCartney, A.; Vignoli, A.; Biganzoli, L.; Love, R.; Tenori, L.; Luchinat, C.; Di Leo, A. Metabolomics in breast cancer: A decade in review. Cancer Treat. Rev. 2018, 67, 88–96. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, H.; Jiang, Y. Metabolomics: A promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther. 2019, 12, 6797–6811. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, C.; Qing, B.; He, Y.; Song, G.; Wang, J.; Yu, S.; Zhang, T.; Wei, Q.; Liu, L.; et al. Development of a urine-based metabolomics approach for multi-cancer screening and tumor origin prediction. Front. Immunol. 2024, 15, 1449103. [Google Scholar] [CrossRef] [PubMed]
- Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; et al. Noninvasive Urinary Metabolomic Profiling Identifies Diagnostic and Prognostic Markers in Lung Cancer. Cancer Res. 2014, 74, 3259–3270. [Google Scholar] [CrossRef]
- Lee, E.; Nelson, O.L.; Puyana, C.; Takita, C.; Wright, J.L.; Zhao, W.; Reis, I.M.; Lin, R.Y.; Hlaing, W.M.; Bakalar, J.L.; et al. Association between C-reactive protein and radiotherapy-related pain in a tri-racial/ethnic population of breast cancer patients: A prospective cohort study. Breast Cancer Res. 2019, 21, 70. [Google Scholar] [CrossRef]
- Wiggins, T.; Kumar, S.; Markar, S.R.; Antonowicz, S.; Hanna, G.B. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: A systematic review. Cancer Epidemiol. Biomark. Prev. 2015, 24, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Nasimi, H.; Madsen, J.S.; Zedan, A.H.; Schmedes, A.V.; Malmendal, A.; Osther, P.J.S.; Alatraktchi, F.A.A. Correlation between stage of prostate cancer and tyrosine and tryptophan in urine samples measured electrochemically. Anal. Biochem. 2022, 649, 114698. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Fitzpatrick, P.F. Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life 2013, 65, 350–357. [Google Scholar] [CrossRef]
- Opitz, C.A.; Somarribas Patterson, L.F.; Mohapatra, S.R.; Dewi, D.L.; Sadik, A.; Platten, M.; Trump, S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br. J. Cancer 2020, 122, 30–44. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev. 2022, 110, 102461. [Google Scholar] [CrossRef]
- Frezza, C. Histidine metabolism boosts cancer therapy. Nature 2018, 559, 484–485. [Google Scholar] [CrossRef]
- Tan, Z.; Li, H.; Huang, Y.; Fu, S.; Wang, H.; Wang, J. Multi-omics landscape analysis reveals the pan-cancer association of arginine biosynthesis genes with tumor immune evasion and therapy resistance. Heliyon 2024, 10, e26804. [Google Scholar] [CrossRef]
- Chu, Y.-D.; Lai, M.-W.; Yeh, C.-T. Unlocking the Potential of Arginine Deprivation Therapy: Recent Breakthroughs and Promising Future for Cancer Treatment. Int. J. Mol. Sci. 2023, 24, 10668. [Google Scholar] [CrossRef] [PubMed]
- Assi, G.; Faour, W.H. Arginine deprivation as a treatment approach targeting cancer cell metabolism and survival: A review of the literature. Eur. J. Pharmacol. 2023, 953, 175830. [Google Scholar] [CrossRef]
- Vaughan, R.A.; Gannon, N.P.; Garcia-Smith, R.; Licon-Munoz, Y.; Barberena, M.A.; Bisoffi, M.; Trujillo, K.A. β-alanine suppresses malignant breast epithelial cell aggressiveness through alterations in metabolism and cellular acidity in vitro. Mol. Cancer 2014, 13, 14. [Google Scholar] [CrossRef]
- Hu, J.J.; Takita, C.; Lee, E.; Wright, J. Abstract 3486: Metabolomics in estrogen receptor or triple-negative breast cancer. Cancer Res. 2018, 78, 3486. [Google Scholar] [CrossRef]
- Kay, E.J.; Zanivan, S.; Rufini, A. Proline metabolism shapes the tumor microenvironment: From collagen deposition to immune evasion. Curr. Opin. Biotechnol. 2023, 84, 103011. [Google Scholar] [CrossRef]
- Kuo, M.T.; Chen, H.H.W.; Feun, L.G.; Savaraj, N. Targeting the Proline-Glutamine-Asparagine-Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals 2021, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Grobben, Y.; den Ouden, J.E.; Aguado, C.; van Altena, A.M.; Kraneveld, A.D.; Zaman, G.J.R. Amino Acid-Metabolizing Enzymes in Advanced High-Grade Serous Ovarian Cancer Patients: Value of Ascites as Biomarker Source and Role for IL4I1 and IDO1. Cancers 2023, 15, 893. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Jung, M.K.; Okekunle, A.P.; Lee, J.E.; Sung, M.K.; Lim, Y.J. Role of Branched-chain Amino Acid Metabolism in Tumor Development and Progression. J. Cancer Prev. 2021, 26, 237–243. [Google Scholar] [CrossRef]
- Xu, E.; Ji, B.; Jin, K.; Chen, Y. Branched-chain amino acids catabolism and cancer progression: Focus on therapeutic interventions. Front. Oncol. 2023, 13, 1220638. [Google Scholar] [CrossRef]
- Chen, J.; Cui, L.; Lu, S.; Xu, S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 2024, 15, 42. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun. 2017, 486, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Staudigl, C.; Concin, N.; Grimm, C.; Pfeiler, G.; Nehoda, R.; Singer, C.F.; Polterauer, S. Prognostic Relevance of Pretherapeutic Gamma-Glutamyltransferase in Patients with Primary Metastatic Breast Cancer. PLoS ONE 2015, 10, e0125317. [Google Scholar] [CrossRef] [PubMed]
- Hewala, T.I.; Abo Elsoud, M.R. The clinical significance of serum oxidative stress biomarkers in breast cancer females. Med. Res. J. 2019, 4, 1–7. [Google Scholar] [CrossRef]
- Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.C.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid. Med. Cell Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Dyachenko, E.I. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr. Issues Mol. Biol. 2024, 46, 4646–4687. [Google Scholar] [CrossRef]
- Lei, P.; Wang, W.; Sheldon, M.; Sun, Y.; Yao, F.; Ma, L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers 2023, 15, 3390. [Google Scholar] [CrossRef]
- Adhikari, S.; Guha, D.; Mohan, C.; Mukherjee, S.; Tyler, J.K.; Das, C. Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Subcell. Biochem. 2022, 100, 3–65. [Google Scholar] [CrossRef]
- Shin, E.; Koo, J.S. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 728759. [Google Scholar] [CrossRef]
- Qiu, J.; Zheng, Q.; Meng, X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front. Oncol. 2021, 11, 628359. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Sang, H.; Zhou, Y.; Shang, C.; Wang, Y.; Zhu, H. Effects of hyperglycemia on the progression of tumor diseases. J. Exp. Clin. Cancer Res. 2019, 38, 327. [Google Scholar] [CrossRef] [PubMed]
- Lemberg, K.M.; Gori, S.S.; Tsukamoto, T.; Rais, R.; Slusher, B.S. Clinical development of metabolic inhibitors for oncology. J. Clin. Investig. 2022, 132, e148550. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Qiu, Y.; Stamatatos, O.; Janowitz, T.; Lukey, M.J. Enhancing the Efficacy of Glutamine Metabolism Inhibitors in Cancer Therapy. Trends Cancer 2021, 7, 790–804. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Wang, S.; Zaal, E.A.; Wang, C.; Wu, H.; Bosma, A.; Jochems, F.; Isima, N.; Jin, G.; Lieftink, C.; et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. eLife 2020, 9, e56749. [Google Scholar] [CrossRef]
- Jin, J.; Byun, J.-K.; Choi, Y.-K.; Park, K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef]
Variables | N | % | PF | % | PD | % | p-Value |
---|---|---|---|---|---|---|---|
Total | 120 | 100% | 60 | 100% | 60 | 100% | |
Age at Diagnosis | 0.70 | ||||||
<50 | 42 | 35% | 20 | 33% | 22 | 37% | |
≥50 | 78 | 65% | 40 | 67% | 38 | 63% | |
Mean (SD) | 54.9 (10.9) | 55.2 (10.5) | 54.6 (11.4) | 0.78 | |||
Race | 0.52 | ||||||
AA | 14 | 12% | 9 | 15% | 5 | 8% | |
HW | 75 | 63% | 36 | 60% | 39 | 65% | |
NHW/Other | 31 | 26% | 15 | 25% | 16 | 27% | |
BMI | 0.72 | ||||||
Normal | 31 | 26% | 14 | 23% | 17 | 28% | |
Overweight | 43 | 36% | 21 | 35% | 22 | 37% | |
Obese | 46 | 38% | 25 | 42% | 21 | 35% | |
Clinical Tumor Stage | 1.0 | ||||||
0–II | 50 | 42% | 25 | 42% | 25 | 42% | |
III–IV | 70 | 58% | 35 | 58% | 35 | 58% | |
Triple negative | 1.0 | ||||||
No | 90 | 75% | 45 | 75% | 45 | 75% | |
Yes | 30 | 25% | 15 | 25% | 15 | 25% | |
ER | 0.43 | ||||||
Negative | 36 | 30% | 20 | 33% | 16 | 27% | |
Positive | 84 | 70% | 40 | 67% | 44 | 73% | |
PR | 0.71 | ||||||
Negative | 56 | 47% | 29 | 48% | 27 | 45% | |
Positive | 64 | 53% | 31 | 52% | 33 | 55% | |
HER2 | 0.84 | ||||||
Missing | 5 | 4% | 3 | 5% | 2 | 3% | |
Negative | 94 | 78% | 47 | 78% | 47 | 78% | |
Positive | 21 | 18% | 10 | 17% | 11 | 18% | |
Event status | NA | ||||||
No event | NA | NA | 60 | 100% | NA | NA | |
Recurrence | NA | NA | NA | NA | 10 | 17% | |
Metastasis | NA | NA | NA | NA | 39 | 65% | |
Death | NA | NA | NA | NA | 34 | 28% | |
Follow-up Time (years) | NA | ||||||
Median (Range) | 5.2 (0.0–9.8) | 6.3 (2.2–9.8) | 2.4 (0.0–8.7) |
Biochemical Name | All Patients with PD | p a | Death (n = 36) | Recurrence (n = 10) | Metastasis (n = 40) | Second Primary (n = 7) |
---|---|---|---|---|---|---|
7-Hydroxyindole Sulfate | 1.73 | 0.0022 | 1.74 ** | 1.32 * | 1.58 ** | 1.72 |
Gamma-glutamylisoleucine | 1.21 | 0.0045 | 1.19 * | 1.00 | 1.15 * | 1.14 |
Sulfate | 1.17 | 0.0054 | 1.13 * | 1.00 | 1.12 * | 1.06 |
Myo-inositol | 1.50 | 0.0082 | 1.57 * | 1.47 | 1.21 | 0.76 |
Gamma-glutamylvaline | 1.17 | 0.0095 | 1.15 * | 0.99 | 1.16 * | 1.09 |
N6-Carboxymethyllysine | 1.29 | 0.0098 | 1.24 | 0.93 | 1.21 | 1.27 |
Sedoheptulose | 1.30 | 0.0115 | 1.09 | 1.01 | 1.41 * | 0.81 |
Gamma-glutamylthreonine | 1.25 | 0.0127 | 1.25 | 1.09 | 1.21 | 1.42 * |
N-alpha-acetylornithine | 1.39 | 0.0142 | 1.50 ** | 0.95 | 1.25 | 1.14 |
Dopamine 4-sulfate | 1.75 | 0.0146 | 1.24 | 1.95 | 2.17 ** | 1.35 |
3,4-dihydroxybutyrate | 1.39 | 0.0155 | 1.13 | 1.05 | 1.46 | 1.18 |
Saccharin | 6.92 | 0.0155 | 2.79 | 1.19 | 9.37 ** | 3.52 |
Homocitrulline | 1.31 | 0.0156 | 1.06 | 1.18 | 1.33 | 1.27 |
2,3-Dimethylsuccinate | 0.70 | 0.0166 | 0.59 ** | 0.99 | 0.71 * | 0.92 |
Glycine conjugate of C6H10O2 | 1.44 | 0.0171 | 1.62 * | 1.64 | 1.28 | 1.84 |
N1-Methyl-2-pyridone-5-carboxamide | 1.22 | 0.0189 | 1.13 | 0.92 | 1.21 | 1.41 * |
Fructosyllysine | 1.22 | 0.0194 | 1.30 * | 1.09 | 1.10 | 0.87 |
Glucose | 3.22 | 0.0197 | 4.83 * | 0.71 * | 3.04 | 0.78 |
Gamma-glutamylphenylalanine | 1.27 | 0.0202 | 1.33 | 1.03 | 1.25 | 1.10 |
Adenosine 5′-monophosphate (AMP) | 2.06 | 0.0204 | 2.55 * | 2.44 | 2.36 | 0.78 |
N-acetylhomocitrulline | 1.53 | 0.0216 | 1.25 | 1.05 | 1.63 | 1.09 |
Alpha-hydroxyisocaproate | 1.92 | 0.0217 | 1.79 * | 4.12 | 1.42 | 0.84 |
Carboxymethylarginine | 1.33 | 0.0237 | 1.21 | 0.80 | 1.35 | 1.21 |
N-acetylcitrulline | 1.30 | 0.0239 | 1.29 * | 1.11 | 1.29 * | 0.96 |
N-acetylmethionine sulfoxide | 1.25 | 0.0240 | 1.21 * | 0.94 | 1.24 | 1.10 |
Daidzein | 4.86 | 0.0254 | 6.84 | 1.88 | 7.49 * | 20.57 |
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) | 1.62 | 0.0257 | 2.00 * | 3.09 | 1.68 | 0.78 |
Cysteine s-sulfate | 1.23 | 0.0272 | 1.27 * | 1.03 | 1.28 ** | 1.26 |
N,N-dimethylalanine | 1.54 | 0.0278 | 1.46 | 1.04 | 1.59 * | 1.12 |
Gamma-glutamylglycine | 1.37 | 0.0282 | 1.47 | 1.23 | 1.30 | 1.21 |
Significant Pathways | Total | Expected | Hits | Raw p a | −log(p) | Holm-Adjusted p | FDR p | Impact b |
---|---|---|---|---|---|---|---|---|
Histidine metabolism | 16 | 1.25 | 9 | 5.83 × 10−7 | 6.23 × 100 | 4.67 × 10−5 | 4.67 × 10−5 | 0.60 |
Arginine biosynthesis | 14 | 1.09 | 8 | 2.24 × 10−6 | 5.65 × 100 | 1.77 × 10−4 | 8.95 × 10−5 | 0.48 |
Phenylalanine, tyrosine and tryptophan biosynthesis | 4 | 0.31 | 4 | 3.55 × 10−5 | 4.45 × 100 | 2.74 × 10−3 | 7.11 × 10−4 | 1.00 |
Beta-Alanine metabolism | 21 | 1.64 | 8 | 9.47 × 10−5 | 4.02 × 100 | 7.20 × 10−3 | 1.52 × 10−3 | 0.62 |
Arginine and proline metabolism | 36 | 2.81 | 10 | 2.60 × 10−4 | 3.59 × 100 | 1.95 × 10−2 | 3.46 × 10−3 | 0.70 |
Pantothenate and CoA biosynthesis | 20 | 1.56 | 7 | 4.92 × 10−4 | 3.31 × 100 | 3.64 × 10−2 | 5.62 × 10−3 | 0.12 |
Phenylalanine metabolism | 8 | 0.62 | 4 | 1.94 × 10−3 | 2.71 × 100 | 1.42 × 10−1 | 1.94 × 10−2 | 0.86 |
Tryptophan metabolism | 41 | 3.20 | 9 | 3.31 × 10−3 | 2.48 × 100 | 2.38 × 10−1 | 2.84 × 10−2 | 0.41 |
Galactose metabolism | 27 | 2.11 | 7 | 3.54 × 10−3 | 2.45 × 100 | 2.52 × 10−1 | 2.84 × 10−2 | 0.25 |
Nicotinate and nicotinamide metabolism | 15 | 1.17 | 5 | 4.25 × 10−3 | 2.37 × 100 | 2.98 × 10−1 | 3.09 × 10−2 | 0.19 |
Citrate cycle (TCA cycle) | 20 | 1.56 | 5 | 1.60 × 10−2 | 1.80 × 100 | 1.00 × 100 | 1.07 × 10−1 | 0.22 |
Alanine, aspartate and glutamate metabolism | 28 | 2.19 | 6 | 1.81 × 10−2 | 1.74 × 100 | 1.00 × 100 | 1.11 × 10−1 | 0.30 |
Lysine Degradation | 30 | 2.34 | 6 | 2.51 × 10−2 | 1.60 × 100 | 1.00 × 100 | 1.31 × 10−1 | 0.12 |
Vitamin B6 metabolism | 9 | 0.70 | 3 | 2.76 × 10−2 | 1.56 × 100 | 1.00 × 100 | 1.31 × 10−1 | 0.57 |
Ascorbate and aldarate metabolism | 9 | 0.70 | 3 | 2.76 × 10−2 | 1.56 × 100 | 1.00 × 100 | 1.31 × 10−1 | 0.76 |
Pyrimidine metabolism | 39 | 3.05 | 7 | 2.79 × 10−2 | 1.55 × 100 | 1.00 × 100 | 1.31 × 10−1 | 0.22 |
Valine, leucine and isoleucine biosynthesis | 40 | 3.12 | 7 | 3.17 × 10−2 | 1.50 × 100 | 1.00 × 100 | 1.41 × 10−1 | 0.06 |
Caffeine metabolism | 10 | 0.78 | 3 | 3.72 × 10−2 | 1.43 × 100 | 1.00 × 100 | 1.56 × 10−1 | 0.69 |
Tyrosine metabolism | 42 | 3.28 | 7 | 4.03 × 10−2 | 1.39 × 100 | 1.00 × 100 | 1.61 × 10−1 | 0.40 |
Pathways (IV) | Matched Metabolites | Node Importance a | Cancer Prognosis | Biological Mechanisms | Therapeutic Targets |
---|---|---|---|---|---|
Phenylalanine, tyrosine, and tryptophan biosynthesis (IV = 1) | Phenylpyruvate L-Phenylalanine L-Tyrosine 3-(4-Hydroxyphenyl) pyruvate | 0.00000 0.50000 0.50000 0.00000 | Potential utility as biomarker for gastroesophageal and prostate cancer [24,25]. | Phenylalanine and Tyrosine modulate neurotransmitter synthesis [26]. Tryptophan via the kynurenine pathway is critical for immune response [27]. | IDO inhibitors have been explored for cancer therapies with varied results [28]. |
Histidine metabolism (IV = 0.598) | L-Histidine Carnosine Histamine N(pi)-Methyl-L-histidine N-Formimino-L-glutamate beta-Alanyl-N(pi)-methyl-L histidine Imidazole-4-acetate Methylimidazoleacetic acid L-Aspartate | 0.22131 0.09016 0.18852 0.00000 0.04918 0.04918 0.00000 0.00000 0.00000 | Histidine degradation can increase effectiveness of chemotherapy drugs. | Histidine metabolism may deplete Tetrahydrofolate (THF) reducing cancer cell DNA synthesis [29]. | Histidine dietary supplementation for treatment of cancer. |
Arginine biosynthesis (IV = 0.482) | L-Arginine N-Acetylornithine N-(L-Arginino) succinate L-Aspartate L-Citrulline L-Ornithine 2-Oxoglutarate Fumarate | 0.07614 0.00000 0.11675 0.00000 0.22843 0.06091 0.00000 0.00000 | Prognostic marker and predictor of survival in various cancers [30]. | Arginine is involved in the biosynthesis of nitric oxide, agmatine, and polyamines and is associated with cell growth, invasion, and metastasis [31]. | Arginine deprivation for anticancer therapies [32]. |
beta-Alanine metabolism (IV = 0.672) | beta-Alanine L-Aspartate Ureidopropionate 5,6-Dihydrouracil Carnosine beta-Alanyl-N(pi)-methyl-L-histidine L-Histidine Spermidine | 0.39925 0.05597 0.10448 0.05597 0.05597 0.00000 0.00000 0.00000 | β-alanine may elicit anti-tumor effects in breast cancer [33]. | β-alanine reduces tumor cell migration and proliferation and increases breast cancer cell sensitivity to Doxorubicin [34]. | β-alanine may have potential as a co-therapeutic agent for breast cancer. |
Arginine and proline metabolism (IV = 0.653) | L-Arginine Putrescine Spermidine N-Acetylputrescine L-erythro-4-Hydroxyglutamate Hydroxyproline L-Proline L-Ornithine 4-Acetamidobutanoate | 0.12442 0.18721 0.06628 0.04651 0.02674 0.02093 0.01744 0.16395 0.00000 | Impacts cancer cell proliferation and survival. | Proline metabolism regulates reactive oxygen species and cytokine secretion [35]. Arginine modulates nitric oxide production. | Amino acid starvation therapies: PYCR1 and ProDH/Pox, and ASS1 as potential targets [36]. |
Phenylalanine metabolism (IV = 0.857) | L-Phenylalanine Phenethylamine Phenylpyruvate L-Tyrosine | 0.35714 0.23810 0.26190 0.00000 | Elevated phenylalanine may correlate with disease stage in ovarian cancer [37]. | Phenylalanine hydroxylase converts phenylalanine to tyrosine influencing neurotransmitter synthesis. | Phenylalanine and tyrosine concentrations may have potential utility as biomarker targets. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMahon, A.N.; Reis, I.M.; Takita, C.; Wright, J.L.; Hu, J.J. Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer. Cancers 2025, 17, 891. https://doi.org/10.3390/cancers17050891
McMahon AN, Reis IM, Takita C, Wright JL, Hu JJ. Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer. Cancers. 2025; 17(5):891. https://doi.org/10.3390/cancers17050891
Chicago/Turabian StyleMcMahon, Alexandra N., Isildinha M. Reis, Cristiane Takita, Jean L. Wright, and Jennifer J. Hu. 2025. "Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer" Cancers 17, no. 5: 891. https://doi.org/10.3390/cancers17050891
APA StyleMcMahon, A. N., Reis, I. M., Takita, C., Wright, J. L., & Hu, J. J. (2025). Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer. Cancers, 17(5), 891. https://doi.org/10.3390/cancers17050891