Associations of Breast Cancer Treatments with One-Year Changes in Health-Related Fitness †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Setting and Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACSM | American College of Sports Medicine |
| AMBER | Alberta Moving Beyond Breast Cancer |
| ANCOVA | Analysis of Covariance |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| EPiCC | Exercise Across the Postdiagnosis Cancer Continuum |
| HREBA.CC | Health Research Ethics Board of Alberta—Cancer Committee |
| HRF | Health-related Fitness |
| RDI | Relative Dose Intensity |
| SCRH | Surgery, Chemotherapy, Radiotherapy and Hormone Therapy |
| SH | Surgery and Hormone Therapy |
| SRH | Surgery, Radiotherapy, and Hormone Therapy |
References
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer; Version 4; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2024. [Google Scholar]
- Godinho-Mota, J.C.M.; Mota, J.F.; Gonçalves, L.V.; Soares, L.R.; Schincaglia, R.M.; Prado, C.M.; Martins, K.A.; Freitas-Junior, R. Chemotherapy negatively impacts body composition, physical function and metabolic profile in patients with breast cancer. Clin. Nutr. 2021, 40, 3421–3428. [Google Scholar] [CrossRef]
- Johansen, S.H.; Wisløff, T.; Edvardsen, E.; Kollerud, S.T.; Jensen, J.S.S.; Agwu, G.; Matsoukas, K.; Scott, J.M.; Nilsen, T.S. Effects of Systemic Anticancer Treatment on Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. JACC CardioOncol. 2025, 7, 96–106. [Google Scholar] [CrossRef]
- Lang, J.J.; Prince, S.A.; Merucci, K.; Cadenas-Sanchez, C.; Chaput, J.P.; Fraser, B.J.; Manyanga, T.; McGrath, R.; Ortega, F.B.; Singh, B.; et al. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: An overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. Br. J. Sports Med. 2024, 58, 556–566. [Google Scholar] [CrossRef]
- Bettariga, F.; Galvao, D.; Taaffe, D.; Bishop, C.; Lopez, P.; Maestroni, L.; Quinto, G.; Crainich, U.; Verdini, E.; Bandini, E.; et al. Association of muscle strength and cardiorespiratory fitness with all-cause and cancer-specific mortality in patients diagnosed with cancer: A systematic review with meta-analysis. Br. J. Sports Med. 2025, 59, 722–732. [Google Scholar] [CrossRef]
- Courneya, K.S.; An, K.Y.; Arthuso, F.Z.; Bell, G.J.; Morielli, A.R.; McNeil, J.; Wang, Q.; Allen, S.J.; Ntoukas, S.M.; McNeely, M.L.; et al. Associations between health-related fitness and quality of life in newly diagnosed breast cancer patients. Breast Cancer Res. Treat. 2023, 199, 533–544. [Google Scholar] [CrossRef] [PubMed]
- An, K.Y.; Arthuso, F.Z.; Filion, M.; Allen, S.J.; Ntoukas, S.M.; Bell, G.J.; McNeil, J.; Wang, Q.; McNeely, M.L.; Vallance, J.K.; et al. Associations between health-related fitness and patient-reported symptoms in newly diagnosed breast cancer patients. J. Sport. Health Sci. 2024, 13, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Camoriano, J.K.; Loprinzi, C.L.; Ingle, J.N.; Therneau, T.M.; Krook, J.E.; Veeder, M.H. Weight change in women treated with adjuvant therapy or observed following mastectomy for node-positive breast cancer. J. Clin. Oncol. 1990, 8, 1327–1334. [Google Scholar] [CrossRef]
- Groen, W.G.; Naaktgeboren, W.R.; van Harten, W.H.; van Vulpen, J.K.; Kool, N.; Sonke, G.S.; van der Wall, E.; Velthuis, M.J.; Aaronson, N.K.; May, A.M.; et al. Physical Fitness and Chemotherapy Tolerance in Patients with Early-Stage Breast Cancer. Med. Sci. Sports Exerc. 2022, 54, 537–542. [Google Scholar] [CrossRef]
- An, K.Y.; Arthuso, F.Z.; Kang, D.W.; Morielli, A.R.; Ntoukas, S.M.; Friedenreich, C.M.; McKenzie, D.C.; Gelmon, K.; Mackey, J.R.; Courneya, K.S. Exercise and health-related fitness predictors of chemotherapy completion in breast cancer patients: Pooled analysis of two multicenter trials. Breast Cancer Res. Treat. 2021, 188, 399–407. [Google Scholar] [CrossRef]
- van den Berg, M.M.; Winkels, R.M.; de Kruif, J.T.; van Laarhoven, H.W.; Visser, M.; de Vries, J.H.; de Vries, Y.C.; Kampman, E. Weight change during chemotherapy in breast cancer patients: A meta-analysis. BMC Cancer 2017, 17, 259. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Cha, C.D.; Hong, H.; Choi, Y.Y.; Chung, M.S. Adverse effects of tamoxifen treatment on bone mineral density in premenopausal patients with breast cancer: A systematic review and meta-analysis. Breast Cancer 2024, 31, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Demark-Wahnefried, W.; Peterson, B.L.; Winer, E.P.; Marks, L.; Aziz, N.; Marcom, P.K.; Blackwell, K.; Rimer, B.K. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J. Clin. Oncol. 2001, 19, 2381–2389. [Google Scholar] [CrossRef]
- Klassen, O.; Schmidt, M.E.; Ulrich, C.M.; Schneeweiss, A.; Potthoff, K.; Steindorf, K.; Wiskemann, J. Muscle strength in breast cancer patients receiving different treatment regimes. J. Cachexia Sarcopenia Muscle 2017, 8, 305–316. [Google Scholar] [CrossRef]
- Bodelon, C.; Masters, M.; Bloodworth, D.E.; Briggs, P.J.; Rees-Punia, E.; McCullough, L.E.; Patel, A.V.; Teras, L.R. Physical Health Decline After Chemotherapy or Endocrine Therapy in Breast Cancer Survivors. JAMA Netw. Open 2025, 8, e2462365. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Barlow, C.E.; Koelwyn, G.J.; Hornsby, W.E.; Hernandez, J.; Defina, L.F.; Radford, N.B.; Thomas, S.M.; Herndon, J.E.; Peppercorn, J.; et al. The influence of adjuvant therapy on cardiorespiratory fitness in early-stage breast cancer seven years after diagnosis: The Cooper Center Longitudinal Study. Breast Cancer Res. Treat. 2013, 138, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, T.J.; Reddy, A.; Althouse, S.K.; Nelson, E.M.; Miller, K.D.; Sledge, J.S. Impact of primary breast cancer therapy on energetic capacity and body composition. Breast Cancer Res. Treat. 2018, 172, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Courneya, K.S.; Vardy, J.L.; O’Callaghan, C.J.; Gill, S.; Friedenreich, C.M.; Wong, R.K.S.; Dhillon, H.M.; Coyle, V.; Chua, N.S.; Jonker, D.J.; et al. Structured Exercise after Adjuvant Chemotherapy for Colon Cancer. N. Engl. J. Med. 2025, 393, 13–25. [Google Scholar] [CrossRef]
- Zhong, P.; Li, X.; Li, J. Mechanisms, assessment, and exercise interventions for skeletal muscle dysfunction post-chemotherapy in breast cancer: From inflammation factors to clinical practice. Front. Oncol. 2025, 15, 1551561. [Google Scholar] [CrossRef]
- Courneya, K.S.; Vallance, J.K.; Culos-Reed, S.N.; McNeely, M.L.; Bell, G.J.; Mackey, J.R.; Yasui, Y.; Yuan, Y.; Matthews, C.E.; Lau, D.C.; et al. The Alberta moving beyond breast cancer (AMBER) cohort study: A prospective study of physical activity and health-related fitness in breast cancer survivors. BMC Cancer 2012, 12, 525. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Vallance, J.K.; McNeely, M.L.; Culos-Reed, S.N.; Matthews, C.E.; Bell, G.J.; Mackey, J.R.; Kopciuk, K.A.; Dickau, L.; Wang, Q.; et al. The Alberta moving beyond breast cancer (AMBER) cohort study: Baseline description of the full cohort. Cancer Causes Control 2022, 33, 441–453. [Google Scholar] [CrossRef]
- Csizmadi, I.; Kahle, L.; Ullman, R.; Dawe, U.; Zimmerman, T.P.; Friedenreich, C.M.; Bryant, H.; Subar, A.F. Adaptation and evaluation of the National Cancer Institute’s Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutr. 2007, 10, 88–96. [Google Scholar] [CrossRef]
- McInnis, K.J.; Balady, G.J. Comparison of submaximal exercise responses using the Bruce vs modified Bruce protocols. Med. Sci. Sports Exerc. 1994, 26, 103–107. [Google Scholar] [CrossRef]
- Pedersen, B.; Delmar, C.; Lörincz, T.; Falkmer, U.; Grønkjær, M. Investigating Changes in Weight and Body Composition Among Women in Adjuvant Treatment for Breast Cancer: A Scoping Review. Cancer Nurs. 2019, 42, 91–105. [Google Scholar] [CrossRef]
- Sheean, P.M.; Hoskins, K.; Stolley, M. Body composition changes in females treated for breast cancer: A review of the evidence. Breast Cancer Res. Treat. 2012, 135, 663–680. [Google Scholar] [CrossRef] [PubMed]
- Goldvaser, H.; Barnes, T.A.; Šeruga, B.; Cescon, D.W.; Ocaña, A.; Ribnikar, D.; Amir, E. Toxicity of Extended Adjuvant Therapy With Aromatase Inhibitors in Early Breast Cancer: A Systematic Review and Meta-analysis. J. Natl. Cancer Inst. 2018, 110, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Vieira, R.; Abar, L.; Aune, D.; Balducci, K.; Cariolou, M.; Greenwood, D.C.; Markozannes, G.; Nanu, N.; Becerra-Tomás, N.; et al. Postdiagnosis body fatness, weight change and breast cancer prognosis: Global Cancer Update Program (CUP global) systematic literature review and meta-analysis. Int. J. Cancer 2023, 152, 572–599. [Google Scholar] [CrossRef]
- Fraser, S.F.; Gardner, J.R.; Dalla Via, J.; Daly, R.M. The Effect of Exercise Training on Lean Body Mass in Breast Cancer Patients: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2022, 54, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.W.; Haykowsky, M.J.; Swartz, J.J.; Douglas, P.S.; Mackey, J.R. Early breast cancer therapy and cardiovascular injury. J. Am. Coll. Cardiol. 2007, 50, 1435–1441. [Google Scholar] [CrossRef]
- Biganzoli, L.; Battisti, N.M.L.; Wildiers, H.; McCartney, A.; Colloca, G.; Kunkler, I.H.; Cardoso, M.J.; Cheung, K.L.; de Glas, N.A.; Trimboli, R.M.; et al. Updated recommendations regarding the management of older patients with breast cancer: A joint paper from the European Society of Breast Cancer Specialists (EUSOMA) and the International Society of Geriatric Oncology (SIOG). Lancet Oncol. 2021, 22, e327–e340. [Google Scholar] [CrossRef]
- Barnett, A.G.; van der Pols, J.C.; Dobson, A.J. Regression to the mean: What it is and how to deal with it. Int. J. Epidemiol. 2005, 34, 215–220. [Google Scholar] [CrossRef]
- Mallard, J.; Hucteau, E.; Hureau, T.J.; Pagano, A.F. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front. Cell Dev. Biol. 2021, 9, 719643. [Google Scholar] [CrossRef]
- Mallard, J.; Hucteau, E.; Charles, A.L.; Bender, L.; Baeza, C.; Pélissie, M.; Trensz, P.; Pflumio, C.; Kalish-Weindling, M.; Gény, B.; et al. Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. J. Cachexia Sarcopenia Muscle 2022, 13, 1896–1907. [Google Scholar] [CrossRef]
- Mallard, J.; Hucteau, E.; Bender, L.; Moinard-Butot, F.; Rochelle, E.; Boutonnet, L.; Grandperrin, A.; Schott, R.; Pflumio, C.; Trensz, P.; et al. A single chemotherapy administration induces muscle atrophy, mitochondrial alterations and apoptosis in breast cancer patients. J. Cachexia Sarcopenia Muscle 2024, 15, 292–305. [Google Scholar] [CrossRef]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Demaria, M. Cancer treatments accelerate ageing. Nat. Rev. Cancer 2025, 25, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Mahmood, S.S.; Khalique, O.K.; Zhan, H. Trastuzumab-Induced Cardiotoxicity: When And How Much Should We Worry? JCO Oncol. Pract. 2024, 20, 1055–1063. [Google Scholar] [CrossRef]
- Koelwyn, G.J.; Lewis, N.C.; Ellard, S.L.; Jones, L.W.; Gelinas, J.C.; Rolf, J.D.; Melzer, B.; Thomas, S.M.; Douglas, P.S.; Khouri, M.G.; et al. Ventricular-Arterial Coupling in Breast Cancer Patients After Treatment With Anthracycline-Containing Adjuvant Chemotherapy. Oncologist 2016, 21, 141–149. [Google Scholar] [CrossRef]
- Kirkham, A.A.; Pituskin, E.; Mackey, J.R.; Grenier, J.G.; Ian Paterson, D.; Haykowsky, M.J.; Thompson, R.B. Longitudinal Changes in Skeletal Muscle Metabolism, Oxygen Uptake, and Myosteatosis During Cardiotoxic Treatment for Early-Stage Breast Cancer. Oncologist 2022, 27, e748–e754. [Google Scholar] [CrossRef]
- Lintermans, A.; Van Asten, K.; Wildiers, H.; Laenen, A.; Paridaens, R.; Weltens, C.; Verhaeghe, J.; Vanderschueren, D.; Smeets, A.; Van Limbergen, E.; et al. A prospective assessment of musculoskeletal toxicity and loss of grip strength in breast cancer patients receiving adjuvant aromatase inhibitors and tamoxifen, and relation with BMI. Breast Cancer Res. Treat. 2014, 146, 109–116. [Google Scholar] [CrossRef]
- Boonstra, A.; van Zadelhoff, J.; Timmer-Bonte, A.; Ottevanger, P.B.; Beurskens, C.H.; van Laarhoven, H.W. Arthralgia during aromatase inhibitor treatment in early breast cancer patients: Prevalence, impact, and recognition by healthcare providers. Cancer Nurs. 2013, 36, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Beckwée, D.; Leysen, L.; Meuwis, K.; Adriaenssens, N. Prevalence of aromatase inhibitor-induced arthralgia in breast cancer: A systematic review and meta-analysis. Support. Care Cancer 2017, 25, 1673–1686. [Google Scholar] [CrossRef] [PubMed]
- Courneya, K.S.; McNeely, M.L.; Booth, C.M.; Friedenreich, C.M. An integrated framework for the study of exercise across the postdiagnosis cancer continuum. Front. Oncol. 2024, 14, 1432899. [Google Scholar] [CrossRef] [PubMed]
- Arthuso, F.Z.; An, K.-Y.; Wang, Q.; Kokts-Porietis, R.L.; Morielli, A.R.; McNeely, M.L.; Vallance, J.K.; Culos-Reed, S.N.; Bell, G.J.; Dickau, L.; et al. Associations between early breast cancer treatments and one-year changes in health-related fitness: Results from the AMBER cohort study. In Proceedings of the The Canadian Cancer Research Conference 2025, Calgary, AB, Canada, 2–4 November 2025. [Google Scholar]



| Variables | Overall (n = 1350) | No Chemotherapy (n = 553) | Chemotherapy (n = 797) | p Value |
|---|---|---|---|---|
| Age, years | 55.6 ± 10.7 | 59.3 ± 10.2 | 52.9 ± 10.3 | <0.001 |
| Race, White | 1168 (86.5) | 495 (89.5) | 673 (84.4) | 0.007 |
| Married/common-law | 1026 (76.0) | 416 (75.2) | 610 (76.5) | 0.58 |
| College/high school or below | 717 (53.1) | 306 (55.3) | 411 (51.6) | 0.17 |
| Income ≥ $100,000 | 706 (52.3) | 261 (47.2) | 445 (55.8) | 0.002 |
| Ever smoker | 578 (42.8) | 239 (43.2) | 339 (42.5) | 0.80 |
| Alcohol consumed (g/day) | 8.0 ± 18.4 | 8.6 ± 21.7 | 7.5 ± 15.7 | 0.28 |
| Kilocalorie intake (kcal/day) | 1727.7 ± 754.3 | 1666.4 ± 744.4 | 1770.2 ± 758.6 | 0.013 |
| Menopausal status | ||||
| Premenopausal | 357 (26.4) | 98 (17.7) | 259 (32.5) | <0.001 |
| Postmenopausal | 993 (73.6) | 455 (82.3) | 538 (67.5) | |
| Weight, kg | 73.6 ± 15.6 | 73.3 ± 15.2 | 73.8 ± 15.9 | 0.50 |
| Body mass index, kg/m2 | 27.5 ± 5.6 | 27.6 ± 5.4 | 27.4 ± 5.6 | 0.65 |
| Tumor stage | ||||
| Stage I | 602 (44.6) | 389 (70.3) | 213 (26.7) | <0.001 |
| Stage II | 626 (46.4) | 159 (28.8) | 467 (58.6) | |
| Stage III | 122 (9.0) | 5 (0.9) | 117 (14.7) | |
| Tumor grade | ||||
| Grade 1 | 165 (12.2) | 132 (23.9) | 33 (4.1) | <0.001 |
| Grade 2 | 582 (43.1) | 322 (58.2) | 260 (32.6) | |
| Grade 3 | 603 (44.7) | 99 (17.9) | 504 (63.2) | |
| Tumor subtype | ||||
| Hormone receptor + HER2 + | 170 (12.6) | 4 (0.7) | 166 (20.8) | <0.001 |
| Hormone receptor + HER2 − | 1039 (77.0) | 540 (97.6) | 499 (62.6) | |
| Hormone receptor − HER2 − | 98 (7.3) | 7 (1.3) | 91 (11.4) | |
| Hormone receptor − HER2 + | 43 (3.2) | 2 (0.4) | 41 (5.1) | |
| Breast cancer surgery | ||||
| Lumpectomy | 794 (58.8) | 377 (68.2) | 417 (52.3) | <0.001 |
| Mastectomy | 556 (41.2) | 176 (31.8) | 380 (47.7) | |
| Chemotherapy | 797 (59.0) | - | 797 (59.0) | - |
| Radiotherapy | 1009 (74.7) | 378 (68.4) | 631 (79.2) | <0.001 |
| Hormonal therapy | 1111 (82.3) | 461 (83.4) | 650 (81.6) | 0.39 |
| Targeted therapy | 217 (16.1) | 0.0 (0.0) | 217 (27.2) | <0.001 |
| Neoadjuvant chemotherapy | 104 (7.7) | 0.0 (0.0) | 104 (13.0) | <0.001 |
| Baseline to One-Year | ||||||
|---|---|---|---|---|---|---|
| Variable | Baseline | One-Year | Within-Group Change | p Value | Between-Group Difference a | p Value |
| Mean ± SD | Mean ± SD | Mean Change (95%CI) | Mean Difference (95%CI) | |||
| Relative VO2peak (mL/kg/min) | ||||||
| Chemotherapy | 26.6 ± 5.8 | 26.3 ± 5.7 | −0.4 (−0.7 to −0.1) | 0.020 | −0.1 (−0.8 to 0.5) | 0.64 |
| No chemotherapy | 25.7 ± 5.9 | 25.7 ± 5.6 | 0.0 (−0.4 to 0.4) | 0.98 | ||
| Absolute VO2peak (L/min) | ||||||
| Chemotherapy | 1.91 ± 0.38 | 1.89 ± 0.38 | −0.02 (−0.04 to 0.00) | 0.037 | −0.04 (−0.09 to 0.00) | 0.06 |
| No chemotherapy | 1.84 ± 0.39 | 1.85 ± 0.40 | 0.01 (−0.02 to 0.04) | 0.40 | ||
| Upper body strength (kg) | ||||||
| Chemotherapy | 36.6 ± 10.4 | 37.1 ± 10.2 | 0.5 (−0.1 to 1.1) | 0.13 | −1.7 (−3.0 to −0.5) | 0.007 |
| No chemotherapy | 34.7 ± 9.5 | 36.8 ± 10.4 | 2.1 (1.3 to 2.8) | <0.001 | ||
| Relative upper body strength (kg/kg) | ||||||
| Chemotherapy | 0.51 ± 0.14 | 0.51 ± 0.15 | 0.01 (0.00 to 0.01) | 0.15 | −0.01 (−0.03 to 0.01) | 0.18 |
| No chemotherapy | 0.48 ± 0.13 | 0.51 ± 0.14 | 0.03 (0.01 to 0.04) | <0.001 | ||
| Lower body strength (kg) | ||||||
| Chemotherapy | 99.8 ± 33.0 | 101.7 ± 32.7 | 1.9 (−0.1 to 3.9) | 0.06 | −2.9 (−6.7 to 0.9) | 0.14 |
| No chemotherapy | 91.3 ± 28.6 | 96.6 ± 30.0 | 5.3 (2.9 to 7.6) | <0.001 | ||
| Relative lower body strength (kg/kg) | ||||||
| Chemotherapy | 1.38 ± 0.44 | 1.40 ± 0.44 | 0.03 (−0.00 to 0.05) | 0.07 | 0.00 (−0.06 to 0.05) | 0.90 |
| No chemotherapy | 1.27 ± 0.38 | 1.33 ± 0.41 | 0.07 (0.04 to 0.10) | <0.001 | ||
| Upper body endurance (kg) | ||||||
| Chemotherapy | 499 ± 224 | 489 ± 219 | −11 (−25 to 4) | 0.16 | −16 (−44 to 11) | 0.25 |
| No chemotherapy | 462 ± 202 | 478 ± 199 | 16 (−1 to 34) | 0.07 | ||
| Relative upper body endurance (kg/kg) | ||||||
| Chemotherapy | 6.95 ± 3.31 | 6.81 ± 3.29 | −0.15 (−0.36 to 0.07) | 0.17 | −0.09 (−0.49 to 0.32) | 0.68 |
| No chemotherapy | 6.46 ± 2.94 | 6.64 ± 2.89 | 0.18 (−0.07 to 0.43) | 0.15 | ||
| Lower body endurance (kg) | ||||||
| Chemotherapy | 1355 ± 849 | 1257 ± 731 | −98 (−158 to −38) | 0.001 | −118 (−217 to −19) | 0.019 |
| No chemotherapy | 1142 ± 734 | 1192 ± 670 | 50 (−15 to 115) | 0.13 | ||
| Relative lower body endurance (kg/kg) | ||||||
| Chemotherapy | 18.52 ± 11.16 | 17.15 ± 9.77 | −1.37 (−2.20 to −0.54) | 0.001 | −0.98 (−2.32 to 0.36) | 0.15 |
| No chemotherapy | 15.83 ± 10.18 | 16.31 ± 8.89 | 0.48 (−0.41 to 1.37) | 0.29 | ||
| Baseline to One-Year | ||||||
|---|---|---|---|---|---|---|
| Variable | Baseline | One-Year | Within-Group Change | p Value | Between-Group Difference a | p Value |
| Mean ± SD | Mean ± SD | Mean change (95%CI) | Mean Difference (95%CI) | |||
| Body weight (kg) | ||||||
| Chemotherapy | 73.8 ± 15.9 | 73.9 ± 15.7 | 0.1 (−0.3 to 0.5) | 0.76 | −1.3 (−2.2 to −0.4) | 0.005 |
| No chemotherapy | 73.3 ± 15.2 | 73.8 ± 15.1 | 0.5 (0.0 to 1.0) | 0.05 | ||
| Body mass index (kg/m2) | ||||||
| Chemotherapy | 27.4 ± 5.6 | 27.5 ± 5.6 | 0.1 (0.0 to 0.3) | 0.18 | −0.4 (−0.8 to −0.1) | 0.021 |
| No chemotherapy | 27.6 ± 5.4 | 27.7 ± 5.5 | 0.1 (−0.1 to 0.3) | 0.34 | ||
| Total lean mass (kg) | ||||||
| Chemotherapy | 37.9 ± 5.4 | 37.6 ± 5.3 | −0.3 (−0.5 to −0.1) | 0.001 | −0.7 (−1.1 to −0.3) | <0.001 |
| No chemotherapy | 37.4 ± 5.3 | 37.7 ± 5.4 | 0.3 (0.1 to 0.6) | 0.004 | ||
| Total fat mass (kg) | ||||||
| Chemotherapy | 31.5 ± 11.5 | 32.1 ± 11.4 | 0.6 (0.2 to 1.0) | 0.005 | −0.4 (−1.3 to 0.4) | 0.30 |
| No chemotherapy | 31.7 ± 11.0 | 32.3 ± 11.2 | 0.6 (0.2 to 1.1) | 0.007 | ||
| Lean mass percentage (%) | ||||||
| Chemotherapy | 54.0 ± 6.8 | 53.5 ± 6.5 | −0.7 (−1.0 to −0.4) | <0.001 | −0.3 (−0.9 to 0.3) | 0.30 |
| No chemotherapy | 53.4 ± 6.7 | 53.2 ± 6.8 | −0.2 (−0.5 to 0.2) | 0.30 | ||
| Body fat percentage (%) | ||||||
| Chemotherapy | 42.8 ± 7.1 | 43.5 ± 6.9 | 0.7 (0.4 to 1.0) | <0.001 | 0.3 (−0.4 to 0.9) | 0.39 |
| No chemotherapy | 43.3 ± 7.2 | 43.6 ± 7.3 | 0.3 (−0.1 to 0.6) | 0.13 | ||
| Lean-to-fat ratio | ||||||
| Chemotherapy | 1.34 ± 0.46 | 1.29 ± 0.41 | −0.05 (−0.07 to −0.03) | <0.001 | −0.02 (−0.06 to 0.02) | 0.44 |
| No chemotherapy | 1.30 ± 0.43 | 1.29 ± 0.43 | −0.01 (−0.03 to 0.01) | 0.29 | ||
| Bone mineral density (g/cm2) | ||||||
| Chemotherapy | 1.13 ± 0.12 | 1.12 ± 0.12 | −0.01 (−0.02 to −0.01) | <0.001 | −0.01 (−0.02 to 0.00) | 0.002 |
| No chemotherapy | 1.11 ± 0.12 | 1.11 ± 0.12 | 0.00 (0.00 to 0.01) | 0.55 | ||
| Bone mineral content (kg) | ||||||
| Chemotherapy | 2.28 ± 0.36 | 2.23 ± 0.35 | −0.05 (−0.06 to −0.04) | <0.001 | −0.04 (−0.06 to −0.02) | <0.001 |
| No chemotherapy | 2.21 ± 0.37 | 2.21 ± 0.37 | 0.00 (−0.01 to 0.01) | 0.88 | ||
| Baseline to One-Year | ||||||
|---|---|---|---|---|---|---|
| Variable | Baseline | One-Year | Within-Group Change | p Value | Between-Group Difference a | p Value |
| Mean ± SD | Mean ± SD | Mean Change (95%CI) | Mean Difference (95%CI) | |||
| Relative VO2peak (mL/kg/min) | ||||||
| Top half | 31.3 ± 4.3 | 29.5 ± 5.3 | −1.8 (−2.2 to −1.3) | <0.001 | −3.2 (−3.8 to −2.6) | <0.001 |
| Bottom half | 22.1 ± 2.5 | 23.1 ± 4.0 | 1.0 (0.7 to 1.4) | <0.001 | ||
| Absolute VO2peak (L/min) | ||||||
| Top half | 2.21 ± 0.27 | 2.13 ± 0.32 | −0.09 (−0.12 to −0.06) | <0.001 | −0.16 (−0.20 to −0.12) | <0.001 |
| Bottom half | 1.61 ± 0.18 | 1.65 ± 0.28 | 0.04 (0.02 to 0.07) | <0.001 | ||
| Upper body strength (kg) | ||||||
| Top half | 44.9 ± 7.8 | 42.5 ± 9.4 | −2.4 (−3.3 to −1.5) | <0.001 | −5.8 (−7.0 to −4.5) | <0.001 |
| Bottom half | 28.9 ± 5.3 | 32.1 ± 8.2 | 3.2 (2.4 to 4.0) | <0.001 | ||
| Relative upper body strength (kg/kg) | ||||||
| Top half | 0.61 ± 0.11 | 0.58 ± 0.14 | −0.03 (−0.04 to −0.02) | <0.001 | −0.08 (−0.09 to −0.06) | <0.001 |
| Bottom half | 0.39 ± 0.07 | 0.44 ± 0.11 | 0.05 (0.03 to 0.06) | <0.001 | ||
| Lower body strength (kg) | ||||||
| Top half | 122.2 ± 27.3 | 116.1 ± 31.2 | −6.1 (−8.9 to −3.4) | <0.001 | −19.4 (−23.2 to −15.6) | <0.001 |
| Bottom half | 73.3 ± 14.1 | 84.8 ± 25.6 | 11.5 (8.9 to 14.1) | <0.001 | ||
| Relative lower body strength (kg/kg) | ||||||
| Top half | 1.71 ± 0.34 | 1.60 ± 0.41 | −0.11 (−0.15 to −0.07) | <0.001 | −0.29 (−0.34 to −0.24) | <0.001 |
| Bottom half | 1.03 ± 0.20 | 1.20 ± 0.38 | 0.17 (0.13 to 0.20) | <0.001 | ||
| Upper body endurance (kg) | ||||||
| Top half | 661 ± 199 | 578 ± 230 | −83 (−105 to −61) | <0.001 | −150 (−178 to −122) | <0.001 |
| Bottom half | 335 ± 81 | 398 ± 165 | 63 (47 to 80) | <0.001 | ||
| Relative upper body endurance (kg/kg) | ||||||
| Top half | 9.25 ± 3.11 | 8.05 ± 3.58 | −1.20 (−1.52 to −0.88) | <0.001 | −2.19 (−2.60 to 1.78) | <0.001 |
| Bottom half | 4.57 ± 1.09 | 5.52 ± 2.34 | 0.95 (0.72 to 1.17) | <0.001 | ||
| Lower body endurance (kg) | ||||||
| Top half | 1911 ± 834 | 1497 ± 809 | −414 (−509 to −319) | <0.001 | −651 (−764 to −537) | <0.001 |
| Bottom half | 760 ± 253 | 1000 ± 529 | 240 (187 to 293) | <0.001 | ||
| Relative lower body endurance (kg/kg) | ||||||
| Top half | 25.81 ± 10.90 | 19.84 ± 10.64 | −5.97 (−7.24 to −4.70) | <0.001 | −9.52 (−11.10 to −7.95) | <0.001 |
| Bottom half | 10.67 ± 3.43 | 14.25 ± 7.77 | 3.58 (2.77 to 4.38) | <0.001 | ||
| Baseline to One-Year | ||||||
|---|---|---|---|---|---|---|
| Variable | Baseline | One-Year | Within-Group Change | p Value | Between-Group Difference a | p Value |
| Mean ± SD | Mean ± SD | Mean Change (95%CI) | Mean Difference (95%CI) | |||
| Body weight (kg) | ||||||
| Top half | 61.7 ± 6.1 | 62.8 ± 7.1 | 1.1 (0.7 to 1.5) | <0.001 | 1.9 (1.1 to 2.7) | <0.001 |
| Bottom half | 86.0 ± 13.3 | 85.0 ± 14.0 | −1.0 (−1.7 to −0.3) | 0.005 | ||
| Body mass index (kg/m2) | ||||||
| Top half | 23.1 ± 2.1 | 23.6 ± 2.7 | 0.5 (0.3 to 0.7) | <0.001 | 0.8 (0.5 to 1.1) | <0.001 |
| Bottom half | 31.7 ± 4.7 | 31.4 ± 5.0 | −0.3 (−0.5 to −0.1) | 0.006 | ||
| Total lean mass (kg) | ||||||
| Top half | 42.1 ± 4.1 | 41.3 ± 4.6 | −0.8 (−1.1 to −0.5) | <0.001 | −1.0 (−1.4 to −0.7) | <0.001 |
| Bottom half | 33.8 ± 2.6 | 34.0 ± 3.0 | 0.2 (0.0 to 0.4) | 0.015 | ||
| Total fat mass (kg) | ||||||
| Top half | 22.7 ± 4.7 | 24.5 ± 5.9 | 1.8 (1.4 to 2.3) | <0.001 | 2.1 (1.3 to 2.9) | <0.001 |
| Bottom half | 40.3 ± 9.2 | 39.6 ± 10.5 | −0.7 (−1.3 to 0.0) | 0.034 | ||
| Lean mass percentage (%) | ||||||
| Top half | 59.4 ± 4.7 | 57.6 ± 5.2 | −1.8 (−2.3 to −1.3) | <0.001 | −1.9 (−2.5 to 1.3) | <0.001 |
| Bottom half | 48.5 ± 3.3 | 49.0 ± 4.6 | 0.5 (0.1 to 0.8) | 0.019 | ||
| Body fat percentage (%) | ||||||
| Top half | 37.1 ± 4.8 | 38.9 ± 5.4 | 1.8 (1.3 to 2.2) | <0.001 | 1.7 (1.1 to 2.4) | <0.001 |
| Bottom half | 48.5 ± 3.4 | 48.1 ± 5.0 | −0.4 (−0.8 to 0.0) | 0.044 | ||
| Lean-to-fat ratio | ||||||
| Top half | 1.67 ± 0.44 | 1.53 ± 0.40 | −0.13 (−0.17 to −0.09) | <0.001 | −0.10 (−0.14 to −0.06) | <0.001 |
| Bottom half | 1.01 ± 0.14 | 1.04 ± 0.23 | 0.03 (0.01 to 0.05) | 0.002 | ||
| Bone mineral density (g/cm2) | ||||||
| Top half | 1.22 ± 0.07 | 1.20 ± 0.08 | −0.02 (−0.03 to −0.02) | <0.001 | −0.02 (−0.03 to −0.01) | <0.001 |
| Bottom half | 1.04 ± 0.07 | 1.04 ± 0.07 | 0.00 (−0.01 to 0.00) | 0.023 | ||
| Bone mineral content (kg) | ||||||
| Top half | 2.56 ± 0.24 | 2.50 ± 0.26 | −0.06 (−0.08 to −0.05) | <0.001 | −0.04 (−0.06 to −0.01) | 0.001 |
| Bottom half | 1.99 ± 0.18 | 1.96 ± 0.19 | −0.03 (−0.04 to −0.02) | <0.001 | ||
| Between-Group Differences in Health-Related Fitness Components | ||||
|---|---|---|---|---|
| Treatment Type | Aerobic Fitness | Muscle Strength | Muscle Endurance | Body Composition |
| Chemotherapy vs. No chemotherapy | - | ↓ Upper body strength (absolute) | ↓ Lower body endurance (absolute) | ↓ Body weight ↓ Body mass index ↓ Total lean mass ↓ Bone mineral density ↓ Bone mineral content |
| ≥60 years vs. <60 years | ↓ Absolute VO2peak | - | - | ↓ Body weight ↓ Body mass index |
| Top half vs. Bottom half baseline fitness values | ↓ Absolute VO2peak ↓ Relative VO2peak | ↓ Upper body strength (absolute and relative) ↓ Lower body strength (absolute and relative) | ↓ Upper body endurance (absolute and relative) ↓ Lower body endurance (absolute and relative) | ↑ Body weight ↑ Body mass index ↓ Total lean mass and lean mass percentage ↑ Total fat mass and body fat percentage ↑ Lean-to-fat ratio ↓ Bone mineral density ↓ Bone mineral content |
| Anthracycline-based vs. Taxane-based | ↓ Absolute VO2peak | - | - | ↓ Fat mass |
| RDI < 85% vs. RDI ≥ 85% | ↓ Relative VO2peak | - | ↓ Upper body endurance (relative) | ↑ Body weight ↑ Body mass index |
| Mastectomy vs. Lumpectomy | - | - | - | ↓ Total lean mass |
| Radiotherapy vs. No radiotherapy | - | - | - | - |
| Hormone therapy vs. No hormone therapy | - | ↓ Lower body strength (absolute and relative) | - | - |
| Targeted therapy vs. No targeted therapy | ↓ Relative VO2peak | - | ↑ Lower body endurance (absolute and relative) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthuso, F.Z.; An, K.-Y.; Wang, Q.; Kokts-Porietis, R.L.; Morielli, A.R.; McNeely, M.L.; Vallance, J.K.; Culos-Reed, S.N.; Bell, G.J.; Dickau, L.; et al. Associations of Breast Cancer Treatments with One-Year Changes in Health-Related Fitness. Cancers 2025, 17, 4026. https://doi.org/10.3390/cancers17244026
Arthuso FZ, An K-Y, Wang Q, Kokts-Porietis RL, Morielli AR, McNeely ML, Vallance JK, Culos-Reed SN, Bell GJ, Dickau L, et al. Associations of Breast Cancer Treatments with One-Year Changes in Health-Related Fitness. Cancers. 2025; 17(24):4026. https://doi.org/10.3390/cancers17244026
Chicago/Turabian StyleArthuso, Fernanda Z., Ki-Yong An, Qinggang Wang, Renée L. Kokts-Porietis, Andria R. Morielli, Margaret L. McNeely, Jeff K. Vallance, S. Nicole Culos-Reed, Gordon J. Bell, Leanne Dickau, and et al. 2025. "Associations of Breast Cancer Treatments with One-Year Changes in Health-Related Fitness" Cancers 17, no. 24: 4026. https://doi.org/10.3390/cancers17244026
APA StyleArthuso, F. Z., An, K.-Y., Wang, Q., Kokts-Porietis, R. L., Morielli, A. R., McNeely, M. L., Vallance, J. K., Culos-Reed, S. N., Bell, G. J., Dickau, L., Filion, M., Ntoukas, S. M., McNeil, J., Yang, L., Matthews, C. E., Friedenreich, C. M., & Courneya, K. S. (2025). Associations of Breast Cancer Treatments with One-Year Changes in Health-Related Fitness. Cancers, 17(24), 4026. https://doi.org/10.3390/cancers17244026

