The Puzzle of Genetic Stability and Chromosomal Copy Number Alterations for the Therapy of Ewing Sarcoma
Simple Summary
Abstract
1. Introduction
2. Normal Function of EWSR1
3. Role of EWSR1 Gene Fusions in Ewing Sarcoma and Other Tumors
4. EWSR1-FLI1—Driven R-Loop Accumulation
5. Does EWSR1 Loss Directly Promote LOH/CNAs?
6. The Copy Number/LOH Landscape of Ewing Sarcoma
6.1. Global Features
6.2. Prognostic Significance
7. Recurrent Mutations Affecting Genome Stability
8. Clinical Correlates and Therapeutic Implications
8.1. Risk Stratification
8.2. Therapeutic Targeting of RS and Vulnerable DNA Repair
8.3. Checkpoint Axis: ATR, CHEK1, WEE1
8.4. DNA Repair Axis: PARP and DNA-PK
8.5. RS Co-Targets and Source Control
8.6. Resistance Considerations and Rational Combinations
8.7. Cohesin Deficiency and ATR/PARP Dependency
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zöllner, S.K.; Amatruda, J.F.; Bauer, S.; Collaud, S.; de Álava, E.; DuBois, S.G.; Hardes, J.; Hartmann, W.; Kovar, H.; Metzler, M.; et al. Ewing Sarcoma—Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J. Clin. Med. 2021, 10, 1685. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, T.G.P.; Cidre-Aranaz, F.; Surdez, D.; Tomazou, E.M.; de Alava, E.; Kovar, H.; Sorensen, P.H.; Delattre, O.; Dirksen, U. Ewing sarcoma. Nat. Rev. Dis. Primers 2018, 4, 5. [Google Scholar] [CrossRef]
- Heesen, P.; Ranft, A.; Bhadri, V.; Brichard, B.; Collaud, S.; Cyprova, S.; Eich, H.; Ek, T.; Gelderblom, H.; Hardes, J.; et al. Association between local treatment modalities and event-free survival, overall survival, and local recurrence in patients with localised Ewing Sarcoma. Report from the Ewing 2008 trial. Eur. J. Cancer 2023, 192, 113260. [Google Scholar] [CrossRef]
- Koch, R.; Gelderblom, H.; Haveman, L.; Brichard, B.; Jürgens, H.; Cyprova, S.; van den Berg, H.; Hassenpflug, W.; Raciborska, A.; Ek, T.; et al. High-Dose Treosulfan and Melphalan as Consolidation Therapy Versus Standard Therapy for High-Risk (Metastatic) Ewing Sarcoma. J. Clin. Oncol. 2022, 40, 2307–2320. [Google Scholar] [CrossRef]
- Ohno, T.; Ouchida, M.; Lee, L.; Gatalica, Z.; Rao, V.N.; Reddy, E.S. The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 1994, 9, 3087–3097. [Google Scholar] [PubMed]
- Delattre, O.; Zucman, J.; Plougastel, B.; Desmaze, C.; Melot, T.; Peter, M.; Kovar, H.; Joubert, I.; De Jong, P.; Rouleau, G.; et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992, 359, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.Y.; Manley, J.L. The TET family of proteins: Functions and roles in disease. J. Mol. Cell Biol. 2009, 1, 82–92. [Google Scholar] [CrossRef]
- Paronetto, M.P. Ewing sarcoma protein: A key player in human cancer. Int. J. Cell Biol. 2013, 2013, 642853. [Google Scholar] [CrossRef]
- Spahn, L.; Petermann, R.; Siligan, C.; Schmid, J.A.; Aryee, D.N.T.; Kovar, H. Interaction of the EWS NH2 terminus with BARD1 links the Ewing’s sarcoma gene to a common tumor suppressor pathway. Cancer Res. 2002, 62, 4583–4587. [Google Scholar]
- Schwartz, J.C.; Wang, X.; Podell, E.R.; Cech, T.R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 2013, 5, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.; Kato, M.; Xiang, S.; Wu, L.; Theodoropoulos, P.; Mirzaei, H.; Han, T.; Xie, S.; Corden, J.L.; McKnight, S.L. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 2013, 155, 1049–1060. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, H.; Zhan, Y.Q.; Yin, R.H.; Li, C.Y.; Ge, C.H.; Yu, M.; Yang, X.M. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation. Cell Cycle 2016, 15, 2202–2215. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.; Schulz, E.T.; Azuma, Y.; Azuma, M. EWSR1 prevents the induction of aneuploidy through direct regulation of Aurora B. Front. Cell Dev. Biol. 2023, 11, 987153. [Google Scholar] [CrossRef]
- Borah, N.A.; Reddy, M.M. Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 2021, 26, 1981. [Google Scholar] [CrossRef]
- Gorthi, A.; Romero, J.C.; Loranc, E.; Cao, L.; Lawrence, L.A.; Goodale, E.; Iniguez, A.B.; Bernard, X.; Masamsetti, V.P.; Roston, S.; et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 2018, 555, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Sollier, J.; Cimprich, K.A. Breaking bad: R-loops and genome integrity. Trends Cell Biol. 2015, 25, 514–522. [Google Scholar] [CrossRef]
- Kabeche, L.; Nguyen, H.D.; Buisson, R.; Zou, L. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 2018, 359, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, R.; Niikura, Y.; Becker, A.; Houghton, P.J.; Kitagawa, K. EWSR1 maintains centromere identity. Cell Rep. 2023, 42, 112568. [Google Scholar] [CrossRef]
- Black, B.E.; Cleveland, D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 2011, 144, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Niikura, Y.; Kitagawa, R.; Kitagawa, K. CENP-A Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev. Cell 2017, 40, 7–8. [Google Scholar] [CrossRef]
- Hemmerich, P.; Weidtkamp-Peters, S.; Hoischen, C.; Schmiedeberg, L.; Erliandri, I.; Diekmann, S. Dynamics of inner kinetochore assembly and maintenance in living cells. J. Cell Biol. 2008, 180, 1101–1114. [Google Scholar] [CrossRef]
- Grobner, S.N.; Worst, B.C.; Weischenfeldt, J.; Buchhalter, I.; Kleinheinz, K.; Rudneva, V.A.; Johann, P.D.; Balasubramanian, G.P.; Segura-Wang, M.; Brabetz, S.; et al. The landscape of genomic alterations across childhood cancers. Nature 2018, 555, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.R. The role of genetic testing in soft tissue sarcoma. Histopathology 2006, 48, 13–21. [Google Scholar] [CrossRef]
- Kovar, H. Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma 2011, 2011, 837474. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.D.; de Borja, R.; Young, M.D.; Fuligni, F.; Rosic, A.; Roberts, N.D.; Hajjar, S.; Layeghifard, M.; Novokmet, A.; Kowalski, P.E.; et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 2018, 361, eaam8419. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, J.K.; Slotkin, E.; Tap, W.D.; Meyers, P.; Wexler, L.; Healey, J.; Vanoli, F.; Vanderbilt, C.M.; Antonescu, C.R. Chromoplexy Is a Frequent Early Clonal Event in EWSR1-Rearranged Round Cell Sarcomas That Can Be Detected Using Clinically Validated Targeted Sequencing Panels. Cancer Res. 2024, 84, 1504–1516. [Google Scholar] [CrossRef]
- Riggi, N.; Knoechel, B.; Gillespie, S.M.; Rheinbay, E.; Boulay, G.; Suva, M.L.; Rossetti, N.E.; Boonseng, W.E.; Oksuz, O.; Cook, E.B.; et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014, 26, 668–681. [Google Scholar] [CrossRef]
- Tomazou, E.M.; Sheffield, N.C.; Schmidl, C.; Schuster, M.; Schonegger, A.; Datlinger, P.; Kubicek, S.; Bock, C.; Kovar, H. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 2015, 10, 1082–1095. [Google Scholar] [CrossRef]
- Boulay, G.; Sandoval, G.J.; Riggi, N.; Iyer, S.; Buisson, R.; Naigles, B.; Awad, M.E.; Rengarajan, S.; Volorio, A.; McBride, M.J.; et al. Cancer-Specific Retargeting of BAF Complexes by a Prion-like Domain. Cell 2017, 171, 163–178.e19. [Google Scholar] [CrossRef]
- Chong, S.; Dugast-Darzacq, C.; Liu, Z.; Dong, P.; Dailey, G.M.; Cattoglio, C.; Heckert, A.; Banala, S.; Lavis, L.; Darzacq, X.; et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 2018, 361, eaar2555. [Google Scholar] [CrossRef]
- Musa, J.; Grunewald, T.G.P. Interaction between somatic mutations and germline variants contributes to clinical heterogeneity in cancer. Mol. Cell Oncol. 2020, 7, 1682924. [Google Scholar] [CrossRef] [PubMed]
- Sankar, S.; Bell, R.; Stephens, B.; Zhuo, R.; Sharma, S.; Bearss, D.J.; Lessnick, S.L. Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene 2013, 32, 5089–5100. [Google Scholar] [CrossRef]
- Krum, S.A.; Miranda, G.A.; Lin, C.; Lane, T.F. BRCA1 associates with processive RNA polymerase II. J. Biol. Chem. 2003, 278, 52012–52020. [Google Scholar] [CrossRef]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011, 12, 68–78. [Google Scholar] [CrossRef]
- Nepomuceno, T.C.; Fernandes, V.C.; Gomes, T.T.; Carvalho, R.S.; Suarez-Kurtz, G.; Monteiro, A.N.; Carvalho, M.A. BRCA1 recruitment to damaged DNA sites is dependent on CDK9. Cell Cycle 2017, 16, 665–672. [Google Scholar] [CrossRef]
- Koppenhafer, S.L.; Goss, K.L.; Terry, W.W.; Gordon, D.J. Inhibition of the ATR-CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2. Mol. Cancer Res. 2020, 18, 91–104. [Google Scholar] [CrossRef]
- Saldivar, J.C.; Cortez, D.; Cimprich, K.A. The essential kinase ATR: Ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 2017, 18, 622–636. [Google Scholar] [CrossRef]
- Olmedo-Pelayo, J.; Granado-Calle, E.; Delgado-Bellido, D.; Lobo-Selma, L.; Jordan-Perez, C.; Monteiro-Amaral, A.T.; Ehlers, A.C.; Ohmura, S.; Garcia-Dominguez, D.J.; Mackintosh, C.; et al. EWS::FLI1-DHX9 interaction promotes Ewing sarcoma sensitivity to DNA topoisomerase 1 poisons by altering R-loop metabolism. Oncogene 2025, 44, 3537–3552. [Google Scholar] [CrossRef]
- Shaikh, N.; Mazzagatti, A.; De Angelis, S.; Johnson, S.C.; Bakker, B.; Spierings, D.C.J.; Wardenaar, R.; Maniati, E.; Wang, J.; Boemo, M.A.; et al. Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. Genome Biol. 2022, 23, 223. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, T.; Said, M.; Naim, V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes 2020, 11, 642. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Schacherer, J. The dynamics of loss of heterozygosity events in genomes. EMBO Rep. 2025, 26, 602–612. [Google Scholar] [CrossRef]
- Park, H.; Turkalo, T.K.; Nelson, K.; Folmsbee, S.S.; Robb, C.; Roper, B.; Azuma, M. Ewing sarcoma EWS protein regulates midzone formation by recruiting Aurora B kinase to the midzone. Cell Cycle 2014, 13, 2391–2399. [Google Scholar] [CrossRef]
- Khmelinskii, A.; Schiebel, E. Assembling the spindle midzone in the right place at the right time. Cell Cycle 2008, 7, 283–286. [Google Scholar] [CrossRef]
- Hornick, J.E.; Karanjeet, K.; Collins, E.S.; Hinchcliffe, E.H. Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone. Semin. Cell Dev. Biol. 2010, 21, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Li, S.A. Mitotic kinases: The key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol. Ther. 2006, 111, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Galbraith, R.; Turner, T.; Mehojah, J.; Azuma, M. Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci. Rep. 2016, 6, 32297. [Google Scholar] [CrossRef] [PubMed]
- Kovar, H.; Jug, G.; Hattinger, C.; Spahn, L.; Aryee, D.N.; Ambros, P.F.; Zoubek, A.; Gadner, H. The EWS protein is dispensable for Ewing tumor growth. Cancer Res. 2001, 61, 5992–5997. [Google Scholar]
- Sankar, S.; Lessnick, S.L. Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 2011, 204, 351–365. [Google Scholar] [CrossRef]
- La Starza, R.; Barba, G.; Nofrini, V.; Pierini, T.; Pierini, V.; Marcomigni, L.; Perruccio, K.; Matteucci, C.; Storlazzi, C.T.; Daniele, G.; et al. Multiple EWSR1-WT1 and WT1-EWSR1 copies in two cases of desmoplastic round cell tumor. Cancer Genet. 2013, 206, 387–392. [Google Scholar] [CrossRef]
- Paronetto, M.P.; Minana, B.; Valcarcel, J. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol. Cell 2011, 43, 353–368. [Google Scholar] [CrossRef]
- Brohl, A.S.; Solomon, D.A.; Chang, W.; Wang, J.; Song, Y.; Sindiri, S.; Patidar, R.; Hurd, L.; Chen, L.; Shern, J.F.; et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014, 10, e1004475. [Google Scholar] [CrossRef]
- Tirode, F.; Surdez, D.; Ma, X.; Parker, M.; Le Deley, M.C.; Bahrami, A.; Zhang, Z.; Lapouble, E.; Grossetete-Lalami, S.; Rusch, M.; et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014, 4, 1342–1353. [Google Scholar] [CrossRef]
- Crompton, B.D.; Stewart, C.; Taylor-Weiner, A.; Alexe, G.; Kurek, K.C.; Calicchio, M.L.; Kiezun, A.; Carter, S.L.; Shukla, S.A.; Mehta, S.S.; et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014, 4, 1326–1341. [Google Scholar] [CrossRef]
- Agelopoulos, K.; Richter, G.H.; Schmidt, E.; Dirksen, U.; von Heyking, K.; Moser, B.; Klein, H.U.; Kontny, U.; Dugas, M.; Poos, K.; et al. Deep Sequencing in Conjunction with Expression and Functional Analyses Reveals Activation of FGFR1 in Ewing Sarcoma. Clin. Cancer Res. 2015, 21, 4935–4946. [Google Scholar] [CrossRef]
- Hattinger, C.M.; Potschger, U.; Tarkkanen, M.; Squire, J.; Zielenska, M.; Kiuru-Kuhlefelt, S.; Kager, L.; Thorner, P.; Knuutila, S.; Niggli, F.K.; et al. Prognostic impact of chromosomal aberrations in Ewing tumours. Br. J. Cancer 2002, 86, 1763–1769. [Google Scholar] [CrossRef]
- Savola, S.; Klami, A.; Tripathi, A.; Niini, T.; Serra, M.; Picci, P.; Kaski, S.; Zambelli, D.; Scotlandi, K.; Knuutila, S. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer 2009, 9, 17. [Google Scholar] [CrossRef]
- Davoli, T.; Xu, A.W.; Mengwasser, K.E.; Sack, L.M.; Yoon, J.C.; Park, P.J.; Elledge, S.J. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 2013, 155, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Mackintosh, C.; Ordonez, J.L.; Garcia-Dominguez, D.J.; Sevillano, V.; Llombart-Bosch, A.; Szuhai, K.; Scotlandi, K.; Alberghini, M.; Sciot, R.; Sinnaeve, F.; et al. 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene 2012, 31, 1287–1298. [Google Scholar] [CrossRef]
- Su, X.A.; Ma, D.; Parsons, J.V.; Replogle, J.M.; Amatruda, J.F.; Whittaker, C.A.; Stegmaier, K.; Amon, A. RAD21 is a driver of chromosome 8 gain in Ewing sarcoma to mitigate replication stress. Genes Dev. 2021, 35, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Brisset, S.; Schleiermacher, G.; Peter, M.; Mairal, A.; Oberlin, O.; Delattre, O.; Aurias, A. CGH analysis of secondary genetic changes in Ewing tumors: Correlation with metastatic disease in a series of 43 cases. Cancer Genet. Cytogenet. 2001, 130, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.S.; Putnam, A.R.; Druzgal, C.; Wright, J.; Spraker-Perlman, H.; Kinsey, M.; Zhou, H.; Boucher, K.M.; Randall, R.L.; Jones, K.B.; et al. Molecular inversion probe analysis detects novel copy number alterations in Ewing sarcoma. Cancer Genet. 2012, 205, 391–404. [Google Scholar] [CrossRef]
- Chicon-Bosch, M.; Sanchez-Serra, S.; Rosas-Lapena, M.; Costa-Fraga, N.; Besalu-Velazquez, J.; Illa-Bernadi, J.; Mateo-Lozano, S.; Cidre-Aranaz, F.; Grunewald, T.G.P.; Diaz-Lagares, A.; et al. Multi-omics profiling reveals key factors involved in Ewing sarcoma metastasis. Mol. Oncol. 2025, 19, 1002–1028. [Google Scholar] [CrossRef]
- Ferreira, B.I.; Alonso, J.; Carrillo, J.; Acquadro, F.; Largo, C.; Suela, J.; Teixeira, M.R.; Cerveira, N.; Molares, A.; Gomez-Lopez, G.; et al. Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma. Oncogene 2008, 27, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Paulussen, M.; Poremba, C.; Brinkschmidt, C.; Rerin, J.; Ahrens, S.; Hoffmann, C.; Hillmann, A.; Wai, D.; Schaefer, K.L.; et al. Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Genes Chromosomes Cancer 2001, 32, 164–171. [Google Scholar] [CrossRef]
- Hattinger, C.M.; Rumpler, S.; Strehl, S.; Ambros, I.M.; Zoubek, A.; Potschger, U.; Gadner, H.; Ambros, P.F. Prognostic impact of deletions at 1p36 and numerical aberrations in Ewing tumors. Genes Chromosomes Cancer 1999, 24, 243–254. [Google Scholar] [CrossRef]
- Jahromi, M.S.; Jones, K.B.; Schiffman, J.D. Copy Number Alterations and Methylation in Ewing’s Sarcoma. Sarcoma 2011, 2011, 362173. [Google Scholar] [CrossRef] [PubMed]
- Gillani, R.; Shulman, D.S.; DelRocco, N.J.; Klega, K.; Han, R.; Krailo, M.D.; Slack, J.C.; Tanhaemami, M.; Ward, A.; Bainer, V.; et al. Molecular characterization informs prognosis in patients with localized Ewing sarcoma: A report from the Children’s Oncology Group. medRxiv 2025. [Google Scholar] [CrossRef]
- Lerman, D.M.; Monument, M.J.; McIlvaine, E.; Liu, X.Q.; Huang, D.; Monovich, L.; Beeler, N.; Gorlick, R.G.; Marina, N.M.; Womer, R.B.; et al. Tumoral TP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2015, 62, 759–765. [Google Scholar] [CrossRef]
- Maurici, D.; Perez-Atayde, A.; Grier, H.E.; Baldini, N.; Serra, M.; Fletcher, J.A. Frequency and implications of chromosome 8 and 12 gains in Ewing sarcoma. Cancer Genet. Cytogenet. 1998, 100, 106–110. [Google Scholar] [CrossRef]
- Cheng, L.; Pandya, P.H.; Liu, E.; Chandra, P.; Wang, L.; Murray, M.E.; Carter, J.; Ferguson, M.; Saadatzadeh, M.R.; Bijangi-Visheshsaraei, K.; et al. Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma. BMC Med. Genom. 2019, 12, 23. [Google Scholar] [CrossRef]
- Wei, G.; Antonescu, C.R.; de Alava, E.; Leung, D.; Huvos, A.G.; Meyers, P.A.; Healey, J.H.; Ladanyi, M. Prognostic impact of INK4A deletion in Ewing sarcoma. Cancer 2000, 89, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Ranft, A.; Richter, G.H.S.; Kerkhoff, M.; Dirksen, U. Correspondence: A.R. Pediatrics III, University Hospital Essen, West German Cancer Center, Essen, Germany. 2025; (manuscript in preparation; to be submitted). [Google Scholar]
- Shulman, D.S.; Chen, S.; Hall, D.; Nag, A.; Thorner, A.R.; Lessnick, S.L.; Stegmaier, K.; Janeway, K.A.; DuBois, S.G.; Krailo, M.D.; et al. Adverse prognostic impact of the loss of STAG2 protein expression in patients with newly diagnosed localised Ewing sarcoma: A report from the Children’s Oncology Group. Br. J. Cancer 2022, 127, 2220–2226. [Google Scholar] [CrossRef] [PubMed]
- Surdez, D.; Zaidi, S.; Grossetete, S.; Laud-Duval, K.; Ferre, A.S.; Mous, L.; Vourc’h, T.; Tirode, F.; Pierron, G.; Raynal, V.; et al. STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 2021, 39, 810–826.e9. [Google Scholar] [CrossRef]
- Arlt, M.F.; Mulle, J.G.; Schaibley, V.M.; Ragland, R.L.; Durkin, S.G.; Warren, S.T.; Glover, T.W. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am. J. Hum. Genet. 2009, 84, 339–350. [Google Scholar] [CrossRef]
- Nieto-Soler, M.; Morgado-Palacin, I.; Lafarga, V.; Lecona, E.; Murga, M.; Callen, E.; Azorin, D.; Alonso, J.; Lopez-Contreras, A.J.; Nussenzweig, A.; et al. Efficacy of ATR inhibitors as single agents in Ewing sarcoma. Oncotarget 2016, 7, 58759–58767. [Google Scholar] [CrossRef] [PubMed]
- Jess, J.; Sorensen, K.M.; Boguslawski, E.A.; Stout, M.C.; Madaj, Z.B.; Caiello, B.P.; Pomaville, M.; Wilson, E.R.; Kinn-Gurzo, S.S.; Parker, C.C.; et al. Cell Context Is the Third Axis of Synergy for the Combination of ATR Inhibition and Cisplatin in Ewing Sarcoma. Clin. Cancer Res. 2024, 30, 3533–3548. [Google Scholar] [CrossRef]
- Lowery, C.D.; Dowless, M.; Renschler, M.; Blosser, W.; VanWye, A.B.; Stephens, J.R.; Iversen, P.W.; Lin, A.B.; Beckmann, R.P.; Krytska, K.; et al. Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clin. Cancer Res. 2019, 25, 2278–2289. [Google Scholar] [CrossRef]
- Slotkin, E.K.; Mauguen, A.; Dela Cruz, F.S.; Ortiz, M.V.; Avutu, V.; Meyers, P.A.; Wexler, L.H.; O’Donohue, T.J.; Kinnaman, M.D.; Kelly, C.M.; et al. ACR-368, a CHK1/2 Kinase Inhibitor, in Patients With Relapsed or Refractory Desmoplastic Small Round Cell Tumor: Phase I/II Trial Results. JCO Oncol. Adv. 2025, 2, e2400095. [Google Scholar] [CrossRef]
- Cole, K.A.; Pal, S.; Kudgus, R.A.; Ijaz, H.; Liu, X.; Minard, C.G.; Pawel, B.R.; Maris, J.M.; Haas-Kogan, D.A.; Voss, S.D.; et al. Phase I Clinical Trial of the Wee1 Inhibitor Adavosertib (AZD1775) with Irinotecan in Children with Relapsed Solid Tumors: A COG Phase I Consortium Report (ADVL1312). Clin. Cancer Res. 2020, 26, 1213–1219. [Google Scholar] [CrossRef]
- Ziener, J.; Henao-Restrepo, J.A.; Leonhardi, J.; Sturm, M.J.; Becker, S.; Morales-Prieto, D.M.; Milde, T.; Beck, J.F.; Sonnemann, J. Combined inhibition of ribonucleotide reductase and WEE1 induces synergistic anticancer activity in Ewing’s sarcoma cells. BMC Cancer 2025, 25, 277. [Google Scholar] [CrossRef]
- Strauss, S.J.; Berlanga, P.; McCabe, M.G. Emerging therapies in Ewing sarcoma. Curr. Opin. Oncol. 2024, 36, 297–304. [Google Scholar] [CrossRef]
- Keller, K.M.; Krausert, S.; Gopisetty, A.; Luedtke, D.; Koster, J.; Schubert, N.A.; Rodriguez, A.; van Hooff, S.R.; Stichel, D.; Dolman, M.E.M.; et al. Target Actionability Review: A systematic evaluation of replication stress as a therapeutic target for paediatric solid malignancies. Eur. J. Cancer 2022, 162, 107–117. [Google Scholar] [CrossRef]
- Collins, V.J.; Ludwig, K.R.; Nelson, A.E.; Sundara Rajan, S.; Yeung, C.; Vulikh, K.; Isanogle, K.A.; Mendoza, A.; Difilippantonio, S.; Karim, B.O.; et al. Enhancing Standard of Care Chemotherapy Efficacy Using DNA-Dependent Protein Kinase (DNA-PK) Inhibition in Preclinical Models of Ewing Sarcoma. Mol. Cancer Ther. 2024, 23, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.J.; Henao-Restrepo, J.A.; Becker, S.; Proquitte, H.; Beck, J.F.; Sonnemann, J. Synergistic anticancer activity of combined ATR and ribonucleotide reductase inhibition in Ewing’s sarcoma cells. J. Cancer Res. Clin. Oncol. 2023, 149, 8605–8617. [Google Scholar] [CrossRef]
- Marx, C.; Schaarschmidt, M.U.; Kirkpatrick, J.; Marx-Blumel, L.; Halilovic, M.; Westermann, M.; Hoelzer, D.; Meyer, F.B.; Geng, Y.; Buder, K.; et al. Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing’s sarcoma cells. Cell Biosci. 2021, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Salguero-Aranda, C.; Amaral, A.T.; Olmedo-Pelayo, J.; Diaz-Martin, J.; Alava, E. Breakthrough Technologies Reshape the Ewing Sarcoma Molecular Landscape. Cells 2020, 9, 804. [Google Scholar] [CrossRef]
- Iniguez, A.B.; Stolte, B.; Wang, E.J.; Conway, A.S.; Alexe, G.; Dharia, N.V.; Kwiatkowski, N.; Zhang, T.; Abraham, B.J.; Mora, J.; et al. EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell 2018, 33, 202–216.e6. [Google Scholar] [CrossRef]
- Brenner, J.C.; Feng, F.Y.; Han, S.; Patel, S.; Goyal, S.V.; Bou-Maroun, L.M.; Liu, M.; Lonigro, R.; Prensner, J.R.; Tomlins, S.A.; et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 2012, 72, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, K.; Ohno, T.; Kimura, M.; Masuda, T.; Nozawa, S.; Dohjima, T.; Yamamoto, T.; Nagano, A.; Kawai, G.; Matsuhashi, A.; et al. EWS-Fli1 up-regulates expression of the Aurora A and Aurora B kinases. Mol. Cancer Res. 2008, 6, 1937–1945. [Google Scholar] [CrossRef]
- Wang, S.; Hwang, E.E.; Guha, R.; O’Neill, A.F.; Melong, N.; Veinotte, C.J.; Conway Saur, A.; Wuerthele, K.; Shen, M.; McKnight, C.; et al. High-throughput Chemical Screening Identifies Focal Adhesion Kinase and Aurora Kinase B Inhibition as a Synergistic Treatment Combination in Ewing Sarcoma. Clin. Cancer Res. 2019, 25, 4552–4566. [Google Scholar] [CrossRef]
- Schwartz, G.K.; Carvajal, R.D.; Midgley, R.; Rodig, S.J.; Stockman, P.K.; Ataman, O.; Wilson, D.; Das, S.; Shapiro, G.I. Phase I study of barasertib (AZD1152), a selective inhibitor of Aurora B kinase, in patients with advanced solid tumors. Investig. New Drugs 2013, 31, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Mondal, G.; Stevers, M.; Goode, B.; Ashworth, A.; Solomon, D.A. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat. Commun. 2019, 10, 1686. [Google Scholar] [CrossRef] [PubMed]
- Gimenez-Llorente, D.; Cuadrado, A.; Andreu, M.J.; Sanclemente-Alaman, I.; Sole-Ferran, M.; Rodriguez-Corsino, M.; Losada, A. STAG2 loss in Ewing sarcoma alters enhancer-promoter contacts dependent and independent of EWS::FLI1. EMBO Rep. 2024, 25, 5537–5560. [Google Scholar] [CrossRef] [PubMed]
| CNA (Typical Call) | Key Locus/Genes | Likely Mechanism(s) | Why This Mechanism Possibly Fits/Assumed Correlative Evidence | References |
|---|---|---|---|---|
| +1q with −16q (often together) | 1q (multiple), 16q (multiple) | Unbalanced translocation der(16)t(1; 16) results in arm-level gain/loss | Classic cytogenetic/CGH work shows 1q gain frequently co-occurs with 16q loss via der(16)t(1; 16) at ~31–43%; reproduced across cohorts and summarized in consensus data | [55,60] |
| +8 (whole chromosome) ± 8q24 focal amp | RAD21, MYC(8q24) | Mitotic mis-segregation/selection(aneuploidy) + replication-stress buffering; high-level MYC amplification via double minutes/BFB in a subset | ~50% EwS harbor +8. Functional work shows +8 is selected because extra RAD21 dampens EWSR1-FLI1—induced replication stress; occasional MYC high-level amplifications are consistent with BFB/episomal amplification | [59] |
| +12 (whole chromosome) | multiple (MDM2/CDK4 region not typically amplified in EwS) | Mitotic mis-segregation/selection (aneuploidy) | Trisomy 12 is a recurrent numerical change at ~21–26% across CGH/array studies, consistent with whole-chromosome mis-segregation and clonal selection | [55,60] |
| 9p21 focal deletion (homozygous in subset) | CDKN2A/B | Focal DSB/repair-mediated deletion under selection (replication stress → DSBs → resection/micro-HR/NHEJ) | Recurrent focal loss of CDKN2A at ~12% across EwS cohorts; pattern is focal rather than arm-level, consistent with local break/repair and strong selective pressure | [52,58] |
| +20 (whole chromosome) | multiple | Mitotic mis-segregation/selection | Recurrent in ~15% of patients, whole-chromosome gain across CGH/array cohorts | [58,61] |
| Complex, clustered focal CNAs near fusion loci (subset) | regions around EWSR1 and partners | Chromoplexy-linked rearrangement bursts (with passenger CNAs) | ~31–42% of EwS harbor chromoplexy forming around the fusion; the same bursts generate additional SVs and local CNAs early in tumor evolution | [25,26] |
| Mechanistic Class/Target | Representative Agents | Mechanism of Action | Rationale in EwS (EWSR1 Loss/EWSR1-FLI1 RS) | Evidence in EwS (Status) | Key Refs. |
|---|---|---|---|---|---|
| Checkpoint Axis | |||||
| ATR | VE821, Berzosertib (M6620) | Inhibits ATR, the master kinase sensing stalled forks | R-loops and fork stalling sensitize to ATR block | Potent single-agent activity in EwS cell lines and xenografts; schedule-optimized cisplatin+ATRi synergy. Clinical development is ongoing in solid tumors | [76,77] |
| CHEK1/CHEK2 | Prexasertib (ACR-368) | Abrogates the S-phase checkpoint; results in replication catastrophe | RS + high CDK activity creates checkpoint addiction | Robust preclinical data; pediatric Phase I (combo with irinotecan), a confirmed PR in an EwS pt; tumor-agnostic trials (ongoing) | [78,79] |
| WEE1 | Adavosertib (AZD1775), ZN-c3 | Forces CDK1/2 activation; results in premature mitosis/DNA damage | EwS cells rely on WEE1 to cope with RS; combining with RNR or TOP1i is rational | Preclinical synergy with RNRi; pediatric Phase I (with irinotecan) with PR in EwS | [80,81] |
| DNA-Repair Axis | |||||
| PARP1/2 | Talazoparib, Olaparib, Niraparib | Inhibits PARP1/2; traps PARP on DNA | BRCA1 displacement by EWSR1-FLI1 causes HR defect; synergy with TOP1i or ATRi | Limited single-agent efficacy; combination trials (e.g., with irinotecan; with ATRi) | [15,82] (AcSé-ESMART) |
| DNA-PK (NHEJ) | Peposertib (M3814), AZD7648 | Blocks DNA-PKc-mediated DSB repair (NHEJ) | Fork collapse yields DSBs; NHEJ inhibition increases lethality | Preclinical rationale; early-phase data in solid tumors; clinical activity in EwS not yet established | [83,84] |
| RS Co-targets/Source Control | |||||
| RNR | Triapine | Depletes dNTPs, exacerbating RS | EwS depends on adequate dNTP pools; synergy with CHEK1/WEE1 inhibition | Preclinical EwS data show activity of triapine ± WEE1i; RRM2 depletion links to ATR/CHEK1 block | [36,81,85] |
| HSP90 | Luminespib (AUY922 ± ATRi) | Destabilizes client proteins; ATRi + HSP90i intensifies DDR | Dual inhibition overwhelms RS tolerance independent of TP53 | Preclinical synergy in EwS models | [86] |
| Transcriptional CDKs (CDK7/12/13) | THZ1, THZ531 (prototypes) | Suppresses hyper-transcription and R-loop formation | EWSR1-FLI1-driven RS reduced; enhances DNA damage/PARPi efficacy | Preclinical sensitivity; PARPi combination active in PDX models | [87,88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, G.H.S.; Ranft, A.; Kerkhoff, M.; Jens, M.; Kirchberg, I.E.; Dirksen, U. The Puzzle of Genetic Stability and Chromosomal Copy Number Alterations for the Therapy of Ewing Sarcoma. Cancers 2025, 17, 3719. https://doi.org/10.3390/cancers17223719
Richter GHS, Ranft A, Kerkhoff M, Jens M, Kirchberg IE, Dirksen U. The Puzzle of Genetic Stability and Chromosomal Copy Number Alterations for the Therapy of Ewing Sarcoma. Cancers. 2025; 17(22):3719. https://doi.org/10.3390/cancers17223719
Chicago/Turabian StyleRichter, Günther H. S., Andreas Ranft, Maximilian Kerkhoff, Marvin Jens, Ina E. Kirchberg, and Uta Dirksen. 2025. "The Puzzle of Genetic Stability and Chromosomal Copy Number Alterations for the Therapy of Ewing Sarcoma" Cancers 17, no. 22: 3719. https://doi.org/10.3390/cancers17223719
APA StyleRichter, G. H. S., Ranft, A., Kerkhoff, M., Jens, M., Kirchberg, I. E., & Dirksen, U. (2025). The Puzzle of Genetic Stability and Chromosomal Copy Number Alterations for the Therapy of Ewing Sarcoma. Cancers, 17(22), 3719. https://doi.org/10.3390/cancers17223719

