Circulating Tumor DNA (ctDNA) in Gastroesophageal Adenocarcinoma (GEA): Evidence and Emerging Applications
Simple Summary
Abstract
1. Introduction
2. ctDNA
3. MRD
3.1. Prognostic Value of ctDNA-Based MRD
3.2. MRD-Guided Management
4. ctDNA in Advanced/Metastatic GEA
4.1. Baseline Prognostic Value
4.2. On-Treatment Response Monitoring
4.3. Plasma Genotyping for Actionable Targets
4.4. Resistance and Clonal Evolution
4.5. Implementation, Feasibility and Limitations
5. Conclusions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.; Vignat, J.; Laversanne, M.; et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–2040: A population-based modelling study. eClinicalMedicine 2022, 47, 101404. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Rosati, G.; Ferrara, D.; Manzione, L. New perspectives in the treatment of advanced or metastatic gastric cancer. World J. Gastroenterol. 2009, 15, 2689–2692. [Google Scholar] [CrossRef]
- Rustgi, A.K.; El-Serag, H.B. Esophageal carcinoma. N. Engl. J. Med. 2014, 371, 2499–2509. [Google Scholar] [CrossRef] [PubMed]
- Hoeppner, J.; Lordick, F.; Brunner, T.; Glatz, T.; Bronsert, P.; Röthling, N.; Schmoor, C.; Lorenz, D.; Ell, C.; Hopt, U.T.; et al. ESOPEC: Prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016, 16, 503. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Al-Batran, S.-E.; Wainberg, Z.A.; Muro, K.; Molena, D.; Van Cutsem, E.; Hyung, W.J.; Wyrwicz, L.; Oh, D.-Y.; Omori, T.; et al. Perioperative Durvalumab in Gastric and Gastroesophageal Junction Cancer. N. Engl. J. Med. 2025, 393, 217–230. [Google Scholar] [CrossRef]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Hoeppner, J.; Brunner, T.; Schmoor, C.; Bronsert, P.; Kulemann, B.; Claus, R.; Utzolino, S.; Izbicki, J.R.; Gockel, I.; Gerdes, B.; et al. Perioperative Chemotherapy or Preoperative Chemoradiotherapy in Esophageal Cancer. N. Engl. J. Med. 2025, 392, 323–335. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Esophageal and Esophagogastric Junction Cancers, Version 4.2025. 2025. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1433&utm_source=chatgpt.com (accessed on 1 September 2025).
- Ajani, J.A.; D’aMico, T.A.; Bentrem, D.J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Farjah, F.; Gerdes, H.; et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 393–422. [Google Scholar] [CrossRef]
- Shah, M.A.; Kennedy, E.B.; Alarcon-Rozas, A.E.; Alcindor, T.; Bartley, A.N.; Malowany, A.B.; Bhadkamkar, N.A.; Deighton, D.C.; Janjigian, Y.; Karippot, A.; et al. Immunotherapy and Targeted Therapy for Advanced Gastroesophageal Cancer: ASCO Guideline. J. Clin. Oncol. 2023, 41, 1470–1491. [Google Scholar] [CrossRef]
- Shah, M.A.; Kennedy, E.B.; Catenacci, D.V.; Deighton, D.C.; Goodman, K.A.; Malhotra, N.K.; Willett, C.; Stiles, B.; Sharma, P.; Tang, L.; et al. Treatment of Locally Advanced Esophageal Carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2677–2694. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Rha, S.Y.; Oh, D.-Y.; Yañez, P.; Bai, Y.; Ryu, M.-H.; Lee, J.; Rivera, F.; Alves, G.V.; Garrido, M.; Shiu, K.-K.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1181–1195. [Google Scholar] [CrossRef]
- Shitara, K.; Lordick, F.; Bang, Y.-J.; Enzinger, P.; Ilson, D.; Shah, M.A.; Van Cutsem, E.; Xu, R.-H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.-J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Plazas, J.G.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Qiu, M.-Z.; Oh, D.-Y.; Kato, K.; Arkenau, T.; Tabernero, J.; Correa, M.C.; Zimina, A.V.; Bai, Y.; Shi, J.; Lee, K.-W.; et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first line treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma: RATIONALE-305 randomised, double blind, phase 3 trial. BMJ 2024, 385, e078876. [Google Scholar] [CrossRef]
- Korpan, M.; Puhr, H.C.; Berger, J.M.; Friedrich, A.; Prager, G.W.; Preusser, M.; Ilhan-Mutlu, A. Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns. Cancers 2025, 17, 340. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Huang, Z.B.; Zhang, H.T.; Yu, B.; Yu, D.H. Cell-free DNA as a liquid biopsy for early detection of gastric cancer. Oncol. Lett. 2021, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabieres, C. Liquid biopsy in 2016: Circulating tumour cells and cell-free DNA in gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 73–74. [Google Scholar] [CrossRef]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., 3rd; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal–Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.-B.; Hou, L.-K.; Yu, F.; Zhang, J.; Wu, W.; Tang, X.-M.; Sun, F.; Lu, H.-M.; Deng, J.; et al. Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring. Mol. Cancer 2002, 21, 25. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, A.; Gonzalez, N.S.; Pimentel, I.; Suñol, A.; Zamora, E.; Ortiz, C.; Espinosa-Bravo, M.; Peg, V.; Vivancos, A.; Saura, C.; et al. Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: A systematic review and meta-analysis. Cancer Treat. Rev. 2022, 104, 102362. [Google Scholar] [CrossRef]
- Huffman, B.M.; Aushev, V.N.; Budde, G.L.; Chao, J.; Dayyani, F.; Hanna, D.; Botta, G.P.; Catenacci, D.V.; Maron, S.B.; Krinshpun, S.; et al. Analysis of Circulating Tumor DNA to Predict Risk of Recurrence in Patients with Esophageal and Gastric Cancers. JCO Precis. Oncol. 2022, 6, e2200420. [Google Scholar] [CrossRef]
- Maron, S.B.; Chase, L.M.; Lomnicki, S.; Kochanny, S.; Moore, K.L.; Joshi, S.S.; Landron, S.; Johnson, J.; Kiedrowski, L.A.; Nagy, R.J.; et al. Circulating Tumor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin. Cancer Res. 2019, 25, 7098–7112. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Chabner, B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef]
- Kim, H.; Park, K.U. Clinical Circulating Tumor DNA Testing for Precision Oncology. Cancer Res. Treat. 2023, 55, 351–366. [Google Scholar] [CrossRef]
- Cheng, F.; Su, L.; Qian, C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget 2016, 7, 48832–48841. [Google Scholar] [CrossRef]
- Mouliere, F.; Rosenfeld, N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc. Natl. Acad. Sci. USA 2015, 112, 3178–3179. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Cardona, A.F.; Cristofanilli, M.; Paz-Ares, L.; Mochon, J.J.D.; Duran, I.; Raez, L.E.; Russo, A.; Lorente, J.A.; Malapelle, U.; et al. Challenges and opportunities of cfDNA analysis implementation in clinical practice: Perspective of the International Society of Liquid Biopsy (ISLB). Crit. Rev. Oncol. 2020, 151, 102978. [Google Scholar] [CrossRef]
- Grizzi, G.; Salati, M.; Bonomi, M.; Ratti, M.; Holladay, L.; De Grandis, M.C.; Spada, D.; Baiocchi, G.L.; Ghidini, M. Circulating Tumor DNA in Gastric Adenocarcinoma: Future Clinical Applications and Perspectives. Int. J. Mol. Sci. 2023, 24, 9421. [Google Scholar] [CrossRef]
- Jahangiri, L.; Hurst, T. Assessing the Concordance of Genomic Alterations between Circulating-Free DNA and Tumour Tissue in Cancer Patients. Cancers 2019, 11, 1938. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Mei, C.; Nan, X.; Hui, L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene 2016, 590, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Chan, H.T.; Nagayama, S.; Otaki, M.; Chin, Y.M.; Fukunaga, Y.; Ueno, M.; Nakamura, Y.; Low, S.-K. Tumor-informed or tumor-agnostic circulating tumor DNA as a biomarker for risk of recurrence in resected colorectal cancer patients. Front. Oncol. 2023, 12, 1055968. [Google Scholar] [CrossRef]
- Chidharla, A.; Rapoport, E.; Agarwal, K.; Madala, S.; Linares, B.; Sun, W.; Chakrabarti, S.; Kasi, A. Circulating Tumor DNA as a Minimal Residual Disease Assessment and Recurrence Risk in Patients Undergoing Curative-Intent Resection with or without Adjuvant Chemotherapy in Colorectal Cancer: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 10230. [Google Scholar] [CrossRef]
- Watanabe, K.; Nakamura, T.; Kimura, Y.; Motoya, M.; Kojima, S.; Kuraya, T.; Murakami, T.; Kaneko, T.; Shinohara, Y.; Kitayama, Y.; et al. Tumor-Informed Approach Improved ctDNA Detection Rate in Resected Pancreatic Cancer. Int. J. Mol. Sci. 2022, 23, 11521. [Google Scholar] [CrossRef]
- Battaglin, F.; Lenz, H.-J. Clinical Applications of Circulating Tumor DNA Profiling in GI Cancers. JCO Oncol. Pract. 2024, 20, 1481–1490. [Google Scholar] [CrossRef]
- de Steur, W.; van Amelsfoort, R.; Hartgrink, H.; Putter, H.; Kranenbarg, E.M.-K.; van Grieken, N.; van Sandick, J.; Claassen, Y.; Braak, J.; Jansen, E.; et al. Adjuvant chemotherapy is superior to chemoradiation after D2 surgery for gastric cancer in the per-protocol analysis of the randomized CRITICS trial. Ann. Oncol. 2021, 32, 360–367. [Google Scholar] [CrossRef]
- Eyck, B.M.; van Lanschot, J.J.B.; Hulshof, M.C.; van der Wilk, B.J.; Shapiro, J.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; van Laarhoven, H.W.; Nieuwenhuijzen, G.A.; et al. Ten-Year Outcome of Neoadjuvant Chemoradiotherapy Plus Surgery for Esophageal Cancer: The Randomized Controlled CROSS Trial. J. Clin. Oncol. 2021, 39, 1995–2004. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.-X.; Wang, Y.; Xu, X.-Q.; Sun, T.; Tian, B.-G.; Du, L.-L.; Zhao, X.-W.; Han, C.-Z. Tumor Markers for Diagnosis, Monitoring of Recurrence and Prognosis in Patients with Upper Gastrointestinal Tract Cancer. Asian Pac. J. Cancer Prev. 2015, 15, 10267–10272. [Google Scholar] [CrossRef] [PubMed]
- Dawood, Z.S.; Alaimo, L.; Lima, H.A.; Moazzam, Z.; Shaikh, C.; Ahmed, A.S.; Munir, M.M.; Endo, Y.; Pawlik, T.M. ASO Visual Abstract: Circulating Tumor DNA, Imaging, and Carcinoembryonic Antigen: Comparison of Surveillance Strategies in Patients Who Underwent Resection pf Colorectal Cancer: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2022, 30, 277. [Google Scholar] [CrossRef]
- Arisi, M.F.; Dotan, E.; Fernandez, S.V. Circulating Tumor DNA in Precision Oncology and Its Applications in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 4441. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.M.; Aushev, V.N.; Huffman, B.M.; Hanna, D.; Dutta, P.; Ferguson, J.; Sharma, S.; Jurdi, A.; Liu, M.C.; Eng, C.; et al. Circulating Tumor DNA as a Prognostic Biomarker for Recurrence in Patients with Locoregional Esophagogastric Cancers with a Pathologic Complete Response. JCO Precis. Oncol. 2024, 8, e2400288. [Google Scholar] [CrossRef] [PubMed]
- Iden, C.R.; Mustafa, S.M.; Øgaard, N.; Henriksen, T.; Jensen, S.Ø.; Ahlborn, L.B.; Egebjerg, K.; Baeksgaard, L.; Garbyal, R.S.; Nedergaard, M.K.; et al. Circulating tumor DNA predicts recurrence and survival in patients with resectable gastric and gastroesophageal junction cancer. Gastric Cancer 2024, 28, 83–95. [Google Scholar] [CrossRef]
- Yang, J.; Gong, Y.; Lam, V.K.; Shi, Y.; Guan, Y.; Zhang, Y.; Ji, L.; Chen, Y.; Zhao, Y.; Qian, F.; et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer. Cell Death Dis. 2020, 11, 346. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, H.; Fu, T.; Meng, M.; Feng, Y.; Qu, C.; Li, Z.; Xing, X.; Li, W.; Ye, M.; et al. Liquid biopsy: Circulating tumor DNA monitors neoadjuvant chemotherapy response and prognosis in stage II/III gastric cancer. Mol. Oncol. 2023, 17, 1930–1942. [Google Scholar] [CrossRef]
- Zaanan, A.; Didelot, A.; Broudin, C.; Laliotis, G.; Spickard, E.; Dutta, P.; Saltel-Fulero, A.; Sullo, F.G.; Pizzamiglio, M.; Mariani, A.; et al. Longitudinal circulating tumor DNA analysis during treatment of locally advanced resectable gastric or gastroesophageal junction adenocarcinoma: The PLAGAST prospective biomarker study. Nat. Commun. 2025, 16, 6815. [Google Scholar] [CrossRef]
- Han, B.; Lee, H.; Jung, M.; Kim, B.J.; Cha, Y.; Heo, S.; Rha, S.Y.; Kim, H.-D.; Ryu, M.-H.; Koo, D.-H.; et al. Abstract 4556: Postoperative minimal residual disease detection using tumor-informed circulating tumor DNA analysis in stage II-III gastric cancer. Cancer Res. 2025, 85, 4556. [Google Scholar] [CrossRef]
- Mi, J.; Wang, R.; Han, X.; Ma, R.; Li, H. Circulating tumor DNA predicts recurrence and assesses prognosis in operable gastric cancer: A systematic review and meta-analysis. Medicine 2023, 102, e36228. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Qu, H.; Yu, W.; Zhang, X.; Li, P.; Cui, X.; Wei, M.; Zhang, D.; Ma, M.; et al. Feasibility of circulating tumor DNA-based minimal residual disease (ctDNA-MRD)-guided adjuvant chemotherapy in patients with stage II–III gastric cancer (GC): An adaptive trial (MRD-GATE). J. Clin. Oncol. 2025, 43, 4061. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Foote, M.B.; Lumish, M.; Capanu, M.; Chou, J.; Garcia-Aguilar, J.; Weiser, M.; Konner, J.; Strong, V.; Jewell, E.; et al. Abstract CT002: Circulating tumor DNA status to direct adjuvant immunotherapy for mismatch repair deficient tumors. Cancer Res. 2025, 85, CT002. [Google Scholar] [CrossRef]
- The First Affiliated Hospital with Nanjing Medical University. Using ctDNA to Guide Treatment Decisions for Stage III Gastric Cancer (CLAYMORE). 2025. Available online: https://www.centerwatch.com/clinical-trials/listings/NCT06939439/using-ctdna-to-guide-treatment-decisions-for-stage-iii-gastric-cancer (accessed on 1 September 2025).
- Smyth, E.; Griffiths, D.; Cozens, K.; Hurt, C.; Waugh, R.; Turkington, R.; Foley, K.; Roy, R.; Sharma, S.; Jurdi, A.; et al. 499TiP A single arm phase II trial of trastuzumab deruxtecan in patients with gastro-oesophageal adenocarcinoma cancer who are ctDNA and HER2 positive: DECIPHER (TRIALS IN PROGRESS). Ann. Oncol. 2024, 35, S199. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224. [Google Scholar] [CrossRef]
- Leal, A.; van Grieken, N.C.T.; Palsgrove, D.N.; Phallen, J.; Medina, J.E.; Hruban, C.; Broeckaert, M.A.M.; Anagnostou, V.; Adleff, V.; Bruhm, D.C.; et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat. Commun. 2020, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.G.; Lo, A.; Yu, J.; Gonda, A.; Dehkordi-Vakil, F.; Dayyani, F.; Senthil, M. Circulating Tumor DNA is Unreliable to Detect Somatic Gene Alterations in Gastrointestinal Peritoneal Carcinomatosis. Ann. Surg. Oncol. 2022, 30, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ococks, E.; Sharma, S.; Ng, A.W.T.; Aleshin, A.; Fitzgerald, R.C.; Smyth, E. Serial Circulating Tumor DNA Detection Using a Personalized, Tumor-Informed Assay in Esophageal Adenocarcinoma Patients Following Resection. Gastroenterology 2021, 161, 1705–1708.e2. [Google Scholar] [CrossRef]
- van Velzen, M.J.; Creemers, A.; van den Ende, T.; Schokker, S.; Krausz, S.; Reinten, R.J.; Dijk, F.; van Noesel, C.J.; Halfwerk, H.; Meijer, S.L.; et al. Circulating tumor DNA predicts outcome in metastatic gastroesophageal cancer. Gastric Cancer 2022, 25, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.A.; Cristescu, R.; Peña, C.; Watkins, A.; Espenschied, C.R.; Zhang, N.; Liao, J. Assessment of Circulating Tumor DNA Burden in Patients with Metastatic Gastric Cancer Using Real-World Data. JCO Precis. Oncol. 2025, 9, e2400582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, H.; Wang, N.; Wang, L.; Huang, Y. An update of clinical value of circulating tumor DNA in esophageal cancer: A systematic review and meta-analysis. BMC Cancer 2024, 24, 129. [Google Scholar] [CrossRef] [PubMed]
- Tougeron, D.; Louvet, C.; Desramé, J.; Evesque, L.; Angelergues, A.; Carnot, A.; Breysacher, G.; Zaanan, A.; Etchepare, N.; Mabro, M.; et al. Circulating tumor DNA strongly predicts efficacy of chemotherapy plus immune checkpoint inhibitors in patients with advanced gastro-esophageal adenocarcinoma. Commun. Med. 2025, 5, 136. [Google Scholar] [CrossRef]
- Jiang, R.; Cheng, X.; Li, P.; Meng, E.; Wu, X.; Wu, H. Plasma circulating tumor DNA unveils the efficacy of PD-1 inhibitors and chemotherapy in advanced gastric cancer. Sci. Rep. 2024, 14, 14027. [Google Scholar] [CrossRef]
- Schrock, A.B.; Pavlick, D.; Klempner, S.J.; Chung, J.H.; Forcier, B.; Welsh, A.; Young, L.; Leyland-Jones, B.; Bordoni, R.; Carvajal, R.D.; et al. Hybrid Capture–Based Genomic Profiling of Circulating Tumor DNA from Patients with Advanced Cancers of the Gastrointestinal Tract or Anus. Clin. Cancer Res. 2018, 24, 1881–1890. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bucheit, L.; Saha, J.; Clemens, K.; Barnett, R.; Zhang, N.; Mahipal, A. HER2-directed therapy following ctDNA-identified ERBB2 amplification in patients with advanced gastroesophageal cancer: Exploration of real-world outcomes. ESMO Gastrointest. Oncol. 2024, 4, 100056. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Sakamoto, Y.; et al. Trastuzumab deruxtecan in HER2-positive advanced gastric cancer: Exploratory biomarker analysis of the randomized, phase 2 DESTINY-Gastric01 trial. Nat. Med. 2024, 30, 1933–1942. [Google Scholar] [CrossRef]
- Seo, S.; Ryu, M.-H.; Park, Y.S.; Ahn, J.Y.; Park, Y.; Park, S.R.; Ryoo, B.-Y.; Lee, G.H.; Jung, H.-Y.; Kang, Y.-K. Loss of HER2 positivity after anti-HER2 chemotherapy in HER2-positive gastric cancer patients: Results of the GASTric cancer HER2 reassessment study 3 (GASTHER3). Gastric Cancer 2018, 22, 527–535. [Google Scholar] [CrossRef]
- Jogo, T.; Nakamura, Y.; Shitara, K.; Bando, H.; Yasui, H.; Esaki, T.; Terazawa, T.; Satoh, T.; Shinozaki, E.; Nishina, T.; et al. Circulating Tumor DNA Analysis Detects FGFR2 Amplification and Concurrent Genomic Alterations Associated with FGFR Inhibitor Efficacy in Advanced Gastric Cancer. Clin. Cancer Res. 2021, 27, 5619–5627. [Google Scholar] [CrossRef]
- Catenacci, D.V.; Moya, S.; Lomnicki, S.; Chase, L.M.; Peterson, B.F.; Reizine, N.; Alpert, L.; Setia, N.; Xiao, S.-Y.; Hart, J.; et al. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II Study Evaluating an Individualized Treatment Strategy for Metastatic Disease. Cancer Discov. 2020, 11, 308–325. [Google Scholar] [CrossRef]
- Gouda, M.A.; Janku, F.; Yuan, Y.; Drusbosky, L.M.; Chen, A.P.; Zheng, X.; Patel, K.; Hamilton, S.R.; Routbort, M.; Tricoli, J.V.; et al. Concordance between Tumor Tissue and Plasma DNA Genotyping in the NCI-MATCH Trial (EAY131). Clin. Cancer Res. 2025, 31, 4299–4310. [Google Scholar] [CrossRef]
- Umemoto, K.; Sunakawa, Y.; Ueno, M.; Furukawa, M.; Mizuno, N.; Sudo, K.; Kawamoto, Y.; Kajiwara, T.; Ohtsubo, K.; Okano, N.; et al. Clinical significance of circulating-tumour DNA analysis by metastatic sites in pancreatic cancer. Br. J. Cancer 2023, 128, 1603–1608. [Google Scholar] [CrossRef] [PubMed]
- A Wainberg, Z.; Enzinger, P.C.; Kang, Y.-K.; Qin, S.; Yamaguchi, K.; Kim, I.-H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022, 23, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Taniguchi, H.; Ikeda, M.; Bando, H.; Kato, K.; Morizane, C.; Esaki, T.; Komatsu, Y.; Kawamoto, Y.; Takahashi, N.; et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat. Med. 2020, 26, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, C.M.; Borsu, L.; Cankovic, M.; Earle, J.S.; Gocke, C.D.; Hameed, M.; Jordan, D.; Lopategui, J.R.; Pullambhatla, M.; Reuther, J.; et al. Recommendations for Cell-Free DNA Assay Validations: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2023, 25, 876–897. [Google Scholar] [CrossRef]
- Hernandez, K.M.; Bramlett, K.S.; Agius, P.; Baden, J.; Cao, R.; Clement, O.; Corner, A.S.; Craft, J.; Dean, D.A., II; Dry, J.R.; et al. Contrived Materials and a Data Set for the Evaluation of Liquid Biopsy Tests: A Blood Profiling Atlas in Cancer (BLOODPAC) Community Study. J. Mol. Diagn. 2023, 25, 143–155. [Google Scholar] [CrossRef]
- Westphalen, C.; Bielo, L.B.; Aftimos, P.; Beltran, H.; Benary, M.; Chakravarty, D.; Collienne, M.; Dienstmann, R.; El Helali, A.; Gainor, J.; et al. ESMO Precision Oncology Working Group recommendations on the structure and quality indicators for molecular tumour boards in clinical practice. Ann. Oncol. 2025, 36, 614–625. [Google Scholar] [CrossRef]
- Mahuron, K.M.; Fong, Y. Applications of Liquid Biopsy for Surgical Patients with Cancer. JAMA Surg. 2024, 159, 96–103. [Google Scholar] [CrossRef]
- Mögele, T.; Hildebrand, K.; Sultan, A.; Sommer, S.; Rentschler, L.; Kling, M.; Sax, I.; Schlesner, M.; Märkl, B.; Trepel, M.; et al. Dissecting Tumor Heterogeneity by Liquid Biopsy—A Comparative Analysis of Post-Mortem Tissue and Pre-Mortem Liquid Biopsies in Solid Neoplasias. Int. J. Mol. Sci. 2025, 26, 7614. [Google Scholar] [CrossRef] [PubMed]



| Author/Study Design | Number of Subjects (Characteristics) | Assay Type | Major Study Findings | Median Lead Time to Recurrence |
|---|---|---|---|---|
| Huffman et al. [28]/retrospective cohort | 295 (stage I–III; 68 in MRD window) | Tumor-informed 16-plex mPCR-NGS (Signatera) | Postoperative ctDNA (MRD) was detected in 23.5%; recurrence in 81.2% vs. 13.5% (RFS HR 10.7). Anytime postoperative ctDNA was detected in 27.2%; recurrence in 88.2% vs. 5.5% (RFS HR 23.6) | Not reported |
| Lander et al. [49]/retrospective cohort | 42 (23 in MRD window; pCR/near-pCR subset) | Tumor-informed 16-plex mPCR-NGS (Signatera) | Postoperative ctDNA (MRD) detected in 13%; recurrence in 67% vs. 15% (RFS HR 6.2). ctDNA positivity during surveillance detected in 15.6%; recurrence in 100% vs. 7.4% (RFS HR 37.6). | 78 days |
| Iden et al. [50]/prospective, observational cohort study | 86 (53 with post-op samples) | Tumor-agnostic methylation ddPCR (TriMeth) | Postoperative ctDNA detected in 15%; 24-month RFS 12.5% vs. 70.7% and OS ~20% vs. ~80% (HR 6.37, p = 0.001). | Not reported |
| Yang et al. [51]/prospective, observational cohort study | 46 | Tumor-informed 1021-gene hybrid-capture NGS panel (1.09 Mb) | Postoperative ctDNA (MRD) detected in 18%; recurrence in 100% vs. 32% (DFS HR 6.56, p < 0.0001; OS HR 5.96, p = 0.0007). ctDNA positivity at any postoperative time point detected in 84% of patients who recurred vs. 4% without recurrence (p < 0.0001). Sensitivity was 39% and specificity was 100%, for predicting recurrence at 30 months. | 179 days |
| Zhang et al. [52]/prospective, observational cohort study | 79 (57 underwent surgery) | Tumor-informed high-depth hybrid-capture NGS (425 genes) | Postoperative ctDNA-positive 3-yr OS 38% vs. 68% in ctDNA-negative. After neoadjuvant chemotherapy (NACT): 34% vs. 73%. Persistent ctDNA negativity after NACT/surgery associated with longest OS; negative to positive conversion after NACT predicted worst survival. | Not reported |
| Zaanan et al. [53]/prospective, observational cohort study | 62 (50 evaluable MRD) | Tumor-informed mPCR-NGS (Signatera) | Postoperative ctDNA (MRD) positivity associated with markedly worse outcomes; RFS HR 12.94 (median RFS 3.57 mo vs. NR) and OS HR 14.54 (median OS 8.59 mo vs. NR). | 184 days |
| Han et al./Prospective phase III randomized trial sub-study, interim results (EXODOX, NCT04787354) [54] | 42 | Tumor-informed bespoke WES-based panel (CancerDetect™ (CeGaT GmbH, Tübingen, Germany), IMBdx (IMBdx Inc., Seoul, Republic of Korea)) | Postoperative ctDNA positivity at 3–10 weeks (P0) 45.2%; not significantly associated with RFS (P = 0.101). ctDNA positivity at 6 months (P1 = 29.6%) and 12 months (P2 = 35.2%) predicted worse RFS (P = 0.003 and 0.038). Persistent ctDNA positivity post-ACT conferred poorest RFS, whereas ctDNA clearance after ACT yielded RFS comparable to persistently negative patients (P = 0.480). | Not reported |
| Characteristic | Subgroup(s) | Representative Studies | Assay Type/Setting | ctDNA Detection Findings | Interpretation/Comment |
|---|---|---|---|---|---|
| Histology | Diffuse/Signet-ring vs. Intestinal/Non-diffuse | Leal A et al. [61] | Tumor-agnostic hybrid-capture | Median mutant allele fraction (MAF) significantly higher in intestinal than in diffuse gastric cancers (p = 0.02). | Diffuse-type tumors exhibited lower ctDNA fraction, consistent with lower shedding and plasma detectability |
| Tumor differentiation | Well, moderate, poor | Leal A et al. [61] | Tumor-agnostic hybrid-capture | Trend toward higher MAF in poorly differentiated tumors (p = 0.07, NS). | Poorly differentiated tumors may shed more ctDNA due to greater cellular turnover and necrosis, though the association was not statistically significant. |
| Disease Stage | Stage I vs. Stage II–III | Zaanan A et al. [53] | tumor-informed (Signatera) | Baseline ctDNA detection: 37.5% in Stage I (n = 16), 81% in Stage II (n = 21), 87.5% in Stage III (n = 16). | ctDNA detectability rises with advancing stage suggesting different shedding biology where small, early-stage (T1–2N0) tumors release insufficient ctDNA for reliable detection. |
| Primary vs Metastatic Site | Peritoneal-only vs. Visceral/Liver | Sullivan BG et al. [62]; Ococks E et al. [63] | Tumor-agnostic hybrid-capture (Guardant360); tumor-informed (Signatera) | Significantly lower mean mVAF was observed in peritoneal carcinomatosis-only group compared with patients with visceral metastases (14.2 ± 42 vs. 36.7 ± 56.5; p < 0.01). Ococks et al. reported one recurrence confined to peritoneum that was missed by Signatera. | Peritoneal involvement yields reduced plasma ctDNA levels; potentially limiting surveillance advantage in this group |
| Application | Clinical Utility | Limitations |
|---|---|---|
| Minimal Residual Disease (MRD) | Predicts relapse risk | Prognostic but not predictive |
| Monitoring | Real-time treatment efficacy | Unclear thresholds for “molecular response” |
| Actionable Alterations | Expands therapy access (HER2, MSI-H) | May miss low-shedding tumors |
| Resistance | Detects new drivers of progression | Still investigational |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahwan, O.; Batha, L.; Jamal, F.; Sonbol, M.B. Circulating Tumor DNA (ctDNA) in Gastroesophageal Adenocarcinoma (GEA): Evidence and Emerging Applications. Cancers 2025, 17, 3692. https://doi.org/10.3390/cancers17223692
Sahwan O, Batha L, Jamal F, Sonbol MB. Circulating Tumor DNA (ctDNA) in Gastroesophageal Adenocarcinoma (GEA): Evidence and Emerging Applications. Cancers. 2025; 17(22):3692. https://doi.org/10.3390/cancers17223692
Chicago/Turabian StyleSahwan, Oudai, Lin Batha, Fares Jamal, and Mohamad Bassam Sonbol. 2025. "Circulating Tumor DNA (ctDNA) in Gastroesophageal Adenocarcinoma (GEA): Evidence and Emerging Applications" Cancers 17, no. 22: 3692. https://doi.org/10.3390/cancers17223692
APA StyleSahwan, O., Batha, L., Jamal, F., & Sonbol, M. B. (2025). Circulating Tumor DNA (ctDNA) in Gastroesophageal Adenocarcinoma (GEA): Evidence and Emerging Applications. Cancers, 17(22), 3692. https://doi.org/10.3390/cancers17223692

