Take a Breather—Physiological Correlates of a Conscious Connected Breathing Session in a Trained Group of Breast Cancer Patients
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Materials
2.1.1. Patient Eligibility Criteria for the Study
- Histopathologically confirmed breast cancer.
- Status after previous surgical treatment.
- No prior treatment for another malignancy.
- No concurrent malignancies were diagnosed at the same time as breast cancer and during the patient’s follow-up.
- Patient performance status 0–1 on the ZUBROD scale.
- Patients over 18 years of age.
- Failure to meet any of the eligibility criteria.
- Pregnancy.
- Metastatic breast cancer.
- Comorbidities that may interfere with the evaluation of study parameters: chronic obstructive pulmonary disease, ischemic heart disease, renal disease, alcohol and drug addiction, anorexia and bulimia, schizophrenia, Parkinson’s disease, Alzheimer’s disease, disability, dementia, advanced atherosclerosis, and organic and post-traumatic brain damage.
- Age > 70 years
2.1.2. Rationale for the Analysis of Historical Data
2.2. Procedures
2.3. Data Collection
2.4. Reasons for Selecting the Above Parameters
2.4.1. Arterialized Capillary Blood Gas Analysis
2.4.2. Hormones: Cortisol and Prolactin
2.4.3. Immunoglobulin A (IgA)
2.5. Analytical Methods
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Changes in Hormonal, Immune, and Gasometric Arameters
3.3. Hormonal and Immune Markers
3.4. Gasometry
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, R.P.; Gerbarg, P.L.; Muench, F. Breathing Practices for Treatment of Psychiatric and Stress-Related Medical Conditions. Psychiatr. Clin. N. Am. 2013, 36, 121–140. [Google Scholar] [CrossRef]
- Boiten, F.A.; Frijda, N.H.; Wientjes, C.J. Emotions and respiratory patterns: Review and critical analysis. Int. J. Psychophysiol. 1994, 17, 103–128. [Google Scholar] [CrossRef]
- Homma, I.; Masaoka, Y. Breathing rhythms and emotions. Exp. Physiol. 2008, 93, 1011–1021. [Google Scholar] [CrossRef]
- Masaoka, Y.; Sugiyama, H.; Katayama, A.; Kashiwagi, M.; Homma, I. Remembering the past with slow breathing associated with activity in the parahippocampus and amygdala. Neurosci. Lett. 2012, 521, 98–103. [Google Scholar] [CrossRef]
- Gerbarg, P.L.; Brown, R.P. Breath-focused mind-body therapy for global mental health: War and other mass disasters. Acad. Ment. Health Well-Being 2024, 1, 1–14. [Google Scholar] [CrossRef]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef]
- Shao, R.; Man, I.S.C.; Lee, T.M.C. The Effect of Slow-Paced Breathing on Cardiovascular and Emotion Functions: A Meta-Analysis and Systematic Review. Mindfulness 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Rubin, B.K. Cognitive, Affective, and Physiological Outcomes of Rebirthing (Breath, Birth, Spiritual Psychology). Ph.D. Thesis, American University, Washington, DC, USA, 1983. [Google Scholar] [CrossRef]
- Rajski, P. Alcoholism and Rebirthing. Int. J. Adv. Couns. 2002, 24, 123–136. [Google Scholar] [CrossRef]
- Heyda, A. An Impact of Conscious Connected Breathing Training on Emotional States. In The Healing Breath: A Journal of Breathwork Practice, Psychology and Spirituality; Manné, J., Ed.; International Breathwork Foundation: Zurich, Switzerland, 2003; Volume 5, No. 2; pp. 9–17. [Google Scholar]
- Reggios, F. Des mots po1ur un corps, un corps pour des mots. Bull. Psychol. 1986, 39, 891–899. [Google Scholar] [CrossRef]
- Bahi, C.; Irrmischer, M.; Franken, K.; Fejer, G.; Schlenker, A.; Deijen, J.B.; Engelbregt, H. Effects of conscious connected breathing on cortical brain activity, mood and state of consciousness in healthy adults. Curr. Psychol. 2023, 43, 10578–10589. [Google Scholar] [CrossRef]
- Kumar, N.; Bhatnagar, S.; Velpandian, T.; Patnaik, S.; Menon, G.; Mehta, M.; Kashyap, K.; Singh, V.; Surajpal. Randomized controlled trial in advance stage breast cancer patients for the effectiveness on stress marker and pain through Sudarshan Kriya and Pranayam. Indian J. Palliat. Care 2013, 19, 180–185. [Google Scholar] [CrossRef]
- Sharma, P.; Thapliyal, A.; Chandra, T.; Singh, S.; Baduni, H.; Waheed, S.M. Rhythmic breathing: Immunological, biochemical, and physiological effects on health. Adv. Mind Body Med. 2015, 29, 18–25. [Google Scholar] [PubMed]
- Kharya, C.; Gupta, V.; Deepak, K.K.; Sagar, R.; Upadhyav, A.; Kochupillai, V.; Anand, S. Effect of controlled breathing exercises on the psychological status and the cardiac autonomic tone: Sudarshan Kriya and Prana-Yoga. Indian J. Physiol. Pharmacol. 2015, 58, 211–221. [Google Scholar]
- Chandra, S.; Jaiswal, A.K.; Singh, R.; Jha, D.; Mittal, A.P. Mental stress: Neurophysiology and its regulation by Sudarshan Kriya Yoga. Int. J. Yoga 2017, 10, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kochupillai, V.; Kumar, P.; Singh, D.; Aggarwal, D.; Bhardwaj, N.; Bhutani, M.; DAS, S.N. Effect of Rhythmic Breathing (Sudarshan Kriya and Pranayam) on Immune Functions and Tobacco Addiction. Ann. N. Y. Acad. Sci. 2005, 1056, 242–252. [Google Scholar] [CrossRef]
- Sharma, H.; Sen, S.; Singh, A.; Bhardwaj, N.K.; Kochupillai, V.; Singh, N. Sudarshan Kriya practitioners exhibit better antioxidant status and lower blood lactate levels. Biol. Psychol. 2003, 63, 281–291. [Google Scholar] [CrossRef]
- Sharma, H.; Datta, P.; Singh, A.; Sen, S.; Bhardwaj, N.K.; Kochupillai, V.; Singh, N. Gene expression profiling in practitioners of Sudarshan Kriya. J. Psychosom. Res. 2008, 64, 213–218. [Google Scholar] [CrossRef]
- Havenith, M.N.; Leidenberger, M.; Brasanac, J.; Corvacho, M.; Figueiredo, I.C.; Schwarz, L.; Uthaug, M.; Rakusa, S.; Bernardic, M.; Vasquez-Mock, L.; et al. Decreased CO2 saturation during circular breathwork supports emergence of altered states of consciousness. Commun. Psychol. 2025, 3, 1–17. [Google Scholar] [CrossRef]
- Vedamurthachar, A.; Janakiramaiah, N.; Hegde, J.; Shetty, T.; Subbakrishna, D.; Sureshbabu, S.; Gangadhar, B. Antidepressant efficacy and hormonal effects of Sudarshana Kriya Yoga (SKY) in alcohol dependent individuals. J. Affect. Disord. 2006, 94, 249–253. [Google Scholar] [CrossRef]
- Kamei, T.; Toriumi, Y.; Kimura, H.; Kimura, K. Correlation between alpha rhythms and natural killer cell activity during yogic respiratory exercise. Stress Health 2001, 17, 141–145. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Koong, A.C.; Denko, N.C.; Hudson, K.M.; Schindler, C.; Swiersz, L.; Koch, C.; Evans, S.; Ibrahim, H.; Le, Q.T.; Terris, D.J.; et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res. 2000, 15, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Orr, L.; Ray, S. Rebirthing in the New Age; Celestial Arts: Millbrae, CA, USA, 1983. [Google Scholar]
- Orr, L. Breath Awareness: Breath Awareness for Public Schools, Medical Profession; Inspiration University: Dubai, United Arab Emirates, 1988. [Google Scholar]
- Lutgendorf, S.K.; Andersen, B.L. Biobehavioral approaches to cancer progression and survival: Mechanisms and interventions. Am. Psychol. 2015, 70, 186–197. [Google Scholar] [CrossRef]
- Armaiz-Pena, G.N.; Cole, S.W.; Lutgendorf, S.K.; Sood, A.K. Neuroendocrine influences on cancer progression. Brain Behav. Immun. 2013, 30, S19–S25. [Google Scholar] [CrossRef] [PubMed]
- Colon-Echevarria, C.B.; Lamboy-Caraballo, R.; Aquino-Acevedo, A.N.; Armaiz-Pena, G.N. Neuroendocrine Regulation of Tumor-Associated Immune Cells. Front. Oncol. 2019, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.L.; Farrar, W.B.; Golden-Kreutz, D.; Kutz, L.A.; MacCallum, R.; Courtney, M.E.; Glaser, R. Stress and Immune Responses After Surgical Treatment for Regional Breast Cancer. JNCI J. Natl. Cancer Inst. 1998, 90, 30–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blomberg, B.B.; Alvarez, J.P.; Diaz, A.; Romero, M.G.; Lechner, S.C.; Carver, C.S.; Holley, H.; Antoni, M.H. Psychosocial adaptation and cellular immunity in breast cancer patients in the weeks after surgery: An exploratory study. J. Psychosom. Res. 2009, 67, 369–376. [Google Scholar] [CrossRef]
- Thornton, L.M.; Andersen, B.L.; Crespin, T.R.; Carson, W.E. Individual trajectories in stress covary with immunity during recovery from cancer diagnosis and treatments. Brain Behav. Immun. 2007, 21, 185–194. [Google Scholar] [CrossRef]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and autoimmunity: The hormone as an inflammatory cytokine. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101324. [Google Scholar] [CrossRef]
- Alemán-García, Y.P.; Vaquero-García, R.M.; Flores-Fernández, R.; Fuentes-Pananá, E.M.; Gorocica-Rosete, P.; Pizaña-Venegas, A.; Chávez-Sanchéz, L.; Blanco-Favela, F.; Legorreta-Haquet, M.V.; Chávez-Rueda, A.K. Prolactin Increases the Frequency of Follicular T Helper Cells with Enhanced IL21 Secretion and OX40 Expression in Lupus-Prone MRL/lpr Mice. J. Immunol. Res. 2021, 2021, 6630715. [Google Scholar] [CrossRef]
- Korpi-Steiner, N.; Horowitz, G.; Tesfazghi, M.; Suh-Lailam, B.B. Current Issues in Blood Gas Analysis. J. Appl. Lab. Med. 2022, 8, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Maniaci, G.; Daino, M.; Iapichino, M.; Giammanco, A.; Taormina, C.; Bonura, G.; Sardella, Z.; Carolla, G.; Cammareri, P.; Sberna, E.; et al. Neurobiological and Anti-Inflammatory Effects of a Deep Diaphragmatic Breathing Technique Based on Neofunctional Psychotherapy: A Pilot RCT. Stress Health 2024, 40, e3503. [Google Scholar] [CrossRef] [PubMed]
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Bos, R.; Neira, M. Preventing Disease Through Healthy Environments, a Global Assessment of the Burden of Disease from Environmental Risks; WHO: Geneva, Switzerland, 2016; ISBN 9789241565196. Available online: https://www.who.int/publications/i/item/9789241565196 (accessed on 13 November 2025).



| Measurement No. (Time) | Physiological Variables |
|---|---|
| I (at rest, 15 min before session no. 10) | Arterialized capillary blood gasometry: pO2, pCO2, pH, cH+, cHCO3, BE, BB, sO2, ctO2, MetHb, COHb, O2Hb, HHb Cortisol and prolactin concentrations IgA |
| II (at 30 min in session no. 10) | Same as above |
| Characteristic | Patients (n = 48) |
|---|---|
| Age—mean (range) | 53 (38–68) |
| Education n (%) | |
| Primary | 9 (19) |
| Vocational | 9 (19) |
| Secondary | 19 (39) |
| Higher | 11 (23) |
| Social status n (%) | |
| Married | 34 (71) |
| Divorced | 1 (2) |
| Widowed | 9 (19) |
| Single | 4 (8) |
| Smoking status n (%) | |
| Yes | 9 (19) |
| No | 39 (81) |
| Type of treatment | |
| Surgical treatment n (%) | |
| Mastectomy | 25 (52) |
| Conservative Surgery | 23 (48) |
| Chemiotherapy n (%) | |
| Adjuvant | 19 (40) |
| Neoadjuvant | 16 (33) |
| Hormonal therapy n (%) | 31 (65) |
| Area of radiotherapy n (%) | |
| Breast or chest wall with scar | 25 (52) |
| Breast/chest + axilla | 3 (6) |
| Breast/chest + axilla + supraclavicular | 20 (42) |
| Radiation dose n (%) | |
| 45 Gy/18 fx | 9 (19) |
| 50 Gy/25 fx | 39 (81) |
| Additional boost to the surgical bed (10 Gy) | 15 (31) |
| Receptor status | |
| ER status n (%) | |
| Negative | 15 (31) |
| 1 + | 9 (19) |
| 2 ++ | 14 (29) |
| 3 +++ | 9 (19) |
| No data | 1 (2) |
| PR status n (%) | |
| Negative | 17 (35) |
| 1 + | 9 (19) |
| 2 ++ | 11 (23) |
| 3 +++ | 9 (19) |
| No data | 2 (4) |
| HER status n (%) | |
| Negative | 18 (38) |
| 1 + | 14 (29) |
| 2 ++ | 4 (8) |
| 3 +++ | 3 (6) |
| No data | 9 (19) |
| Measure I (n = 48) | Measure II (n = 48) | |||||
|---|---|---|---|---|---|---|
| Mean ± SD | Mean ± SD | p Value | Effect Size (95% CI) | Effect Size Interpretation | Change Direction | |
| Hormonal and Immune Markers | ||||||
| Cortisol | 9.6 ± 3.2 | 8.4 ± 3.5 | <0.001 | −0.59 (−1.01 to −0.29) | medium | ↓ |
| Prolactin | 9.3 ± 5.1 | 11.5 ± 6.4 | <0.001 | 0.54 (0.33 to 0.76) | medium | ↑ |
| IgA | 2.6 ± 1.2 | 2.5 ± 1.2 | <0.001 | −0.56 (−0.88 to −0.32) | medium | ↓ |
| Gasometry | ||||||
| pH | 7.4 ± 0.0 | 7.5 ± 0.0 | <0.001 | 0.64 (0.39 to 0.91) | medium | ↑ |
| pO2 | 74.1 ± 6.2 | 69.4 ± 7.6 | <0.001 | −0.57 (−0.89 to −0.31) | medium | ↓ |
| pCO2 | 37.7 ± 3.8 | 35.9 ± 4.6 | 0.003 | −0.45 (−0.72 to −0.19) | small | ↓ |
| BB | 48.0 ± 1.8 | 48.2 ± 1.6 | 0.06 | 0.28 (−0.03 to 0.6) | small | ↔ |
| BE | 0.6 ± 1.7 | 1.1 ± 1.5 | <0.001 | 0.51 (0.25 to 0.84) | medium | ↑ |
| sO2 | 95.6 ± 1.9 | 94.9 ± 2.5 | 0.09 | −0.25 (−0.64 to −0.01) | small | ↔ |
| cH+ | 36.9 ± 2.0 | 35.0 ± 3.0 | <0.001 | −0.66 (−0.94 to −0.42) | medium | ↓ |
| ctO2 | 17.7 ± 1.4 | 16.9 ± 1.4 | <0.001 | −0.60 (−0.95 to −0.31) | medium | ↓ |
| cHCO3 | 24.6 ± 2.1 | 24.6 ± 1.9 | 0.98 | 0.00 (−0.28 to 0.30) | negligible | ↔ |
| ctHb | 13.4 ± 1.0 | 12.9 ± 1.0 | 0.001 | −0.50 (−0.85 to −0.24) | medium | ↓ |
| HHb | 4.1 ± 1.0 | 5.0 ± 2.5 | 0.004 | 0.44 (0.16 to 0.80) | small | ↑ |
| O2Hb | 93.6 ± 1.4 | 92.7 ± 2.7 | 0.01 | −0.38 (−0.75 to −0.19) | small | ↓ |
| MetHb | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.20 | 0.19 (−0.10 to 0.50) | small | ↔ |
| COHb | 1.8 ± 0.7 | 1.7 ± 0.7 | 0.03 | −0.32 (−0.68 to −0.03) | small | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heyda, A.; Gdowicz-Kłosok, A.; Bugowska, M.; Krzempek, M.; Dębiec, K.; Mrochem-Kwarciak, J.; Składowski, K. Take a Breather—Physiological Correlates of a Conscious Connected Breathing Session in a Trained Group of Breast Cancer Patients. Cancers 2025, 17, 3690. https://doi.org/10.3390/cancers17223690
Heyda A, Gdowicz-Kłosok A, Bugowska M, Krzempek M, Dębiec K, Mrochem-Kwarciak J, Składowski K. Take a Breather—Physiological Correlates of a Conscious Connected Breathing Session in a Trained Group of Breast Cancer Patients. Cancers. 2025; 17(22):3690. https://doi.org/10.3390/cancers17223690
Chicago/Turabian StyleHeyda, Alicja, Agnieszka Gdowicz-Kłosok, Magdalena Bugowska, Marcela Krzempek, Kinga Dębiec, Jolanta Mrochem-Kwarciak, and Krzysztof Składowski. 2025. "Take a Breather—Physiological Correlates of a Conscious Connected Breathing Session in a Trained Group of Breast Cancer Patients" Cancers 17, no. 22: 3690. https://doi.org/10.3390/cancers17223690
APA StyleHeyda, A., Gdowicz-Kłosok, A., Bugowska, M., Krzempek, M., Dębiec, K., Mrochem-Kwarciak, J., & Składowski, K. (2025). Take a Breather—Physiological Correlates of a Conscious Connected Breathing Session in a Trained Group of Breast Cancer Patients. Cancers, 17(22), 3690. https://doi.org/10.3390/cancers17223690

