Mutational Landscape and Clinical Impact of SPEN Mutations in Patients with Chronic Lymphocytic Leukemia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Clinical and Laboratory Characteristics
2.3. Targeted Next Generation Gene Sequencing
2.4. Statistical Analyses
3. Results
3.1. Patients and Clinical Characteristics
3.2. SPEN Mutations
3.3. Concurrent Gene Mutations
3.4. Correlation with Other CLL Prognostic Biomarkers
3.5. SPEN Mutations Carry Independent Prognostic Impact in CLL Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiorazzi, N.; Rai, K.R.; Ferrarini, M. Chronic lymphocytic leukemia. N. Engl. J. Med. 2005, 352, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’Brien, S.; Gribben, J.; Rai, K. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Prim. 2017, 3, 16096. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.R.; Jain, P. Chronic lymphocytic leukemia (CLL)-Then and now. Am. J. Hematol. 2016, 91, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Paulus, A.; Malavasi, F.; Chanan-Khan, A. CD38 as a multifaceted immunotherapeutic target in CLL. Leuk. Lymphoma. 2022, 63, 2265–2275. [Google Scholar] [CrossRef]
- Admirand, J.H.; Knoblock, R.J.; Coombes, K.R.; Tam, C.; Schlette, E.J.; Wierda, W.G.; Ferrajoli, A.; O’Brien, S.; Keating, M.J.; Luthra, R.; et al. Immunohistochemical detection of ZAP70 in chronic lymphocytic leukemia predicts immunoglobulin heavy chain gene mutation status and time to progression. Mod. Pathol. 2010, 23, 1518–1523. [Google Scholar] [CrossRef]
- Baumann, T.; Delgado, J.; Santacruz, R.; Martínez-Trillos, A.; Royo, C.; Navarro, A.; Pinyol, M.; Rozman, M.; Poreira, A.; Villamor, N.; et al. Chronic lymphocytic leukemia in the elderly: Clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica 2014, 99, 1599–1604. [Google Scholar] [CrossRef]
- Fabbri, G.; Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 2016, 16, 145–162. [Google Scholar] [CrossRef]
- Nadeu, F.; Delgado, J.; Royo, C.; Baumann, T.; Stankovic, T.; Pinyol, M.; Jares, P.; Navarro, A.; Martin-Garcia, D.; Bea, S.; et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016, 127, 2122–2130. [Google Scholar] [CrossRef]
- Rossi, D.; Rasi, S.; Fabbri, G.; Spina, V.; Fangasio, A.; Forconi, F.; Marasca, R.; Laurenti, A.; Bruscaggin, A.; Cerri, M.; et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012, 119, 521–529. [Google Scholar] [CrossRef]
- Wang, L.; Lawrence, M.S.; Wan, Y.; Stojanov, P.; Sougnez, C.; Stevenson, K.; Werner, L.; Sivachenko, A.; DeLuca, D.S.; Zhang, L.; et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 2011, 365, 2497–2506. [Google Scholar] [CrossRef]
- Wu, B.; Słabicki, M.; Sellner, L.; Dietrich, S.; Liu, X.; Jethwa, A.; Hullein, J.; Walther, T.; Wagner, L.; Huang, Z.; et al. MED12 mutations and NOTCH signaling in chronic lymphocytic leukaemia. Br. J. Haematol. 2017, 179, 421–429. [Google Scholar] [CrossRef]
- Edelmann, J.; Holzmann, K.; Tausch, E.; Saunderson, E.; Jebaraj, B.; Steinbrecher, D.; Dolnik, A.; Blatte, A.; Landau, D.; Saub, J.; et al. Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription. Haematologica 2020, 105, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Andreani, G.; Carrà, G.; Lingua, M.F.; Maffeo, B.; Brancaccio, M.; Taulli, R.; Morotti, A. Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets. Cancers 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Roos-Weil, D.; Nguyen-Khac, F.; Bernard, O.A. Chronic lymphocytic leukemia: Time to go past genomics? Am. J. Hematol. 2016, 91, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Helbig, D.R.; Abu-Zeinah, G.; Bhavsar, E.; Christos, P.J.; Furman, R.R.; Allan, J.N. Outcomes in CLL patients with NOTCH1 regulatory pathway mutations. Am. J. Hematol. 2021, 96, E187–E189. [Google Scholar] [CrossRef]
- Hu, B.; Patel, K.P.; Chen, H.C.; Wang, X.; Luthra, R.; Routbort, M.J.; Kanagal-Shamanna, R.; Medeiros, L.J.; Yin, C.C.; Zuo, Z.; et al. Association of gene mutations with time-to-first treatment in 384 treatment-naive chronic lymphocytic leukaemia patients. Br. J. Haematol. 2019, 187, 307–318. [Google Scholar] [CrossRef]
- Puente, S.; Beà, S.; Valdés-Mas, R.; Villamor, N.; Gutiérrez-Abril, A.; Martin-Subero, J.; Munar, M.; Rubio-Perez, C.; Jares, P.; Aymerich, M.; et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015, 526, 519–524. [Google Scholar] [CrossRef]
- Machnicki, M.; Górniak, P.; Pępek, M.; Szymczyk, A.; Jażdżewska, E.; Steckiewicz, P.; Bluszcz, A.; Rydzanics, A.; Hus, M.; Ploski, R.; et al. Predictive significance of selected gene mutations in relapsed and refractory chronic lymphocytic leukemia patients treated with ibrutinib. Eur. J. Haematol. 2021, 106, 320–326. [Google Scholar] [CrossRef]
- Close, V.; Close, W.; Kugler, S.J.; Reichenzeller, M.; Yosifov, D.; Bloehdom, J.; Pan, L.; Tausch, E.; Westhoff, M.; Dohner, H.; et al. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood 2019, 133, 830–839. [Google Scholar] [CrossRef]
- Jelloul, F.Z.; Yang, R.K.; Wang, P.; Garces, S.; Kanagal-Shamanna, R.; Ok, C.Y.; Loghavi, S.; Routbort, M.; Zuo, Z.; Yin, C.; et al. Non-coding NOTCH1 mutations in chronic lymphocytic leukemia negatively impact prognosis. Am. J. Hematol. 2022, 97, E100–E102. [Google Scholar] [CrossRef]
- Jelloul, F.Z.; Yang, R.K.; Wang, P.; Garces, S.; Kanagal-Shamanna, R.; Ok, C.Y.; Loghavi, S.; Routbort, M.; Zuo, Z.; Yin, C.; et al. Landscape of NOTCH1 mutations and co-occurring biomarker alterations in chronic lymphocytic leukemia. Leuk. Res. 2022, 116, 106827. [Google Scholar] [CrossRef]
- Baldoni, S.; Del Papa, B.; De Falco, F.; Dorillo, E.; Sorrentino, C.; Rompietti, C.; Adamo, F.; Nogaratto, M.; Cecchini, D.; Mondani, E.; et al. NOTCH1 Activation Negatively Impacts on Chronic Lymphocytic Leukemia Outcome and Is Not Correlated to the NOTCH1 and IGHV Mutational Status. Front. Oncolo. 2021, 11, 668573. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, G.; Holmes, A.B.; Viganotti, M.; Scuoppo, C.; Belver, L.; Herranz, D.; Yan, X.J.; Kieso, Y.; Rossi, D.; Gaidano, G.; et al. Common non-mutational NOTCH1 activation in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2017, 114, E2911–E2919. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Fangazio, M.; Rasi, S.; Vaisitti, T.; Monti, S.; Cresta, S.; Chiaretti, S.; Giudice, I.; Fabbri, G.; Bruscaggin, A.; et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012, 119, 2854–2862. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Bruscaggin, A.; Spina, V.; Rasi, S.; Khiabanian, H.; Messina, M.; Fangasio, M.; Vaisitti, T.; Monti, S.; Chiaretti, S.; et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: Association with progression and fludarabine-refractoriness. Blood 2011, 118, 6904–6908. [Google Scholar] [CrossRef] [PubMed]
- Soussi, T.; Baliakas, P. Landscape of TP53 Alterations in Chronic Lymphocytic Leukemia via Data Mining Mutation Databases. Front. Oncol. 2022, 16, 808886. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.; Becq, J.; Humphray, S.; Alexa, A.; Burns, A.; Clifford, R.; Feller, S.; Grocock, R.; Handerson, S.; Khrebtukova, I.; et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 2012, 120, 4191–4196. [Google Scholar] [CrossRef]
- Kujawski, L.; Ouillette, P.; Erba, H.; Saddler, C.; Jakubowiak, A.; Kaminski, M.; Kerby, S.; Malek, S. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood 2008, 112, 1993–2003. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Rasi, S.; Spina, V.; Bruscaggin, A.; Monti, S.; Ciardullo, C.; Deambrogi, C.; Khiabanian, H.; Serra, R.; Bertoni, F.; et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013, 121, 1403–1412. [Google Scholar] [CrossRef] [PubMed]



| SPEN M48. | Scheme 1569. | p = Value | |
|---|---|---|---|
| Characteristics | N (%) | N (%) | |
| Age at diagnosis (year) | 65 (40–87) | 64 (36–89) | 0.20 |
| Gender | |||
| Female | 21 (44) | 318 (32) | 0.10 |
| Male | 27 (56) | 665 (67) | |
| Ratio (M:F) | 27/21 | 665/318 | |
| Unknown | 0 | 586 | |
| Treatment-naïve | 31 (64.6) | 166 (62.6) | 0.80 |
| Relapse/Refractory | 17 (35.4) | 99 (37.3) | |
| Unknown | 0 | 1304 | |
| Time-to-first treatment (years) | 2.5 | 4.07 | 0.01 |
| IGHV | |||
| IGHV unmutated | 35 (79.5) | 435 (57.8) | 0.004 |
| IGHV mutated | 9 (20.4) | 317 (42.1) | |
| Unknown | 4 | 817 | |
| ZAP70 | |||
| ZAP70 positive | 34 (77.3) | 452 (58.3) | 0.01 |
| ZAP70 negative | 10 (22.7) | 323 (41.7) | |
| ZAP70 unknown | 4 | 794 | |
| CD38 | |||
| CD38 positive | 33 (73.3) | 436 (52.4) | 0.01 |
| CD38 negative | 12 (26.7) | 396 (47.6) | |
| CD38 unknown | 3 | 737 | |
| CG Hierarchical Model | |||
| Del17p | 7 (15.2%) | 93 (16.5%) | 0.80 |
| Del11q | 8 (17.4%) | 96 (17.1%) | 0.90 |
| Trisomy 12 | 20 (43.5%) | 77 (13.7%) | <0.001 |
| Del13q | 4 (8.7%) | 210 (37.4%) | <0.001 |
| 0 | 7 (15.2%) | 86 (15.3%) | 0.90 |
| Unknown | 2 | 1007 |
| Genomic Position | Protein Change | Number of Patients | % |
|---|---|---|---|
| c.3420_3421dupA | p.P1141fs | 1 | 2.1 |
| c.1882C > T | p.Q628* | 1 | 2.1 |
| 1909C > T | p.R637* | 1 | 2.1 |
| c.3290_3301delinsCTGATTT | p.E1097fs | 1 | 2.1 |
| c.3308C > A | p.S1103* | 2 | 4.2 |
| c.2363dupA | p.N788fs | 2 | 4.2 |
| c.3967_3968del | p.M1323fs | 1 | 2.1 |
| c.2431_2432del | p.K811fs | 1 | 2.1 |
| c.2530C > T | p.R844* | 2 | 4.2 |
| c.2596G > T | p.G866* | 1 | 2.1 |
| c.9079C > T | p.R3027* | 1 | 2.1 |
| c.3150_3154del | p.K1050fs | 1 | 2.1 |
| c.3199C > T | p.Q1067* | 2 | 4.2 |
| c.3245C > G | p.S1082* | 1 | 2.1 |
| c.2460_2500del | p.D820fs | 1 | 2.1 |
| c.9645_9646dupGG | p.V3216fs | 1 | 2.1 |
| c.3276del | p.G1093fs | 1 | 2.1 |
| c.3295C > T | p.Q1099* | 1 | 2.1 |
| c.3304C > T | p.Q1102* | 2 | 4.2 |
| c.3452A > G | p.H1151R | 1 | 2.1 |
| c.3477dupT | p.G1160fs | 1 | 2.1 |
| c.3508C > T | p.R1170* | 1 | 2.1 |
| c.3541C > T | p.Q1181* | 1 | 2.1 |
| c.3581del | p.S1194fs | 1 | 2.1 |
| c.3591dupA | p.D1198fs | 1 | 2.1 |
| c.3632_3654del | p.V1211fs | 1 | 2.1 |
| c.8406_8407del | p.A2804fs | 1 | 2.1 |
| c.3682_3686del | p.K1228fs | 1 | 2.1 |
| c.3682A > T | p.K1228* | 1 | 2.1 |
| c.3732_3736del | p.N1244fs | 1 | 2.1 |
| c.3855_3867del | p.G1286* | 1 | 2.1 |
| c.3900_3903del | p.I1300fs | 1 | 2.1 |
| c.3969G > A | p.M1323I | 1 | 2.1 |
| c.4060_4061del | p.S1354fs | 1 | 2.1 |
| c.4097G > A | p.R1366Q | 1 | 2.1 |
| c.4223T > A | p.L1408* | 1 | 2.1 |
| c.4268_4269del | p.S1423* | 1 | 2.1 |
| c.4886C > G | p.S1629* | 1 | 2.1 |
| c.5578G > T | p.G1860* | 1 | 2.1 |
| c.2176C > T | p.Q726* | 1 | 2.1 |
| c.5671G > T | p.E1891* | 1 | 2.1 |
| c.5773G > T | p.E1925* | 1 | 2.1 |
| c.5945G > A | p.R1982Q | 1 | 2.1 |
| c.6650C > T | p.A2217V | 1 | 2.1 |
| c.6915_6917del | p.N2306fs | 1 | 2.1 |
| c.7373del | p.D2458fs | 1 | 2.1 |
| c.7375_7381delins8 | p.V2459fs | 1 | 2.1 |
| c.8221G > A | p.V2741I | 1 | 2.1 |
| c.8388_8391del | p.P2797fs | 1 | 2.1 |
| c.9031C > T | p.R3011* | 1 | 2.1 |
| c.9394_9395del | p.R3132fs | 1 | 2.1 |
| c.2203C > T | p.Q735* | 1 | 2.1 |
| c.9731_9737del | p.T3246fs | 1 | 2.1 |
| Univariate | Multivariate | |||
|---|---|---|---|---|
| Hazard Ratio (95% CI) | p Values | Hazard Ratio (95% CI) | p Values | |
| Age at CLL diagnosis | 1.00 (0.99–1.00) | 0.55 | 0.99 (0.98–1.00) | 0.15 |
| Sex Male: Female | 1.03 (0.87–1.22) | 0.72 | 1.10 (0.85–1.42) | 0.48 |
| IGHV unmutated status | 0.37 (0.30–0.46) | <0.001 | 0.44 (0.32–0.63) | <0.001 |
| ZAP70 expression | 2.03 (1.67–2.48) | <0.001 | 1.23 (0.89–1.67) | 0.21 |
| TP53 disruption | 1.69 (1.35–2.13) | <0.001 | 1.87 (1.25–2.82) | 0.003 |
| Del(13q) | 0.47 (0.36–0.60) | <0.001 | 0.93 (0.58–1.49) | 0.76 |
| Trisomy 12 | 1.30 (0.97–1.74) | 0.08 | 1.90 (1.09–3.34) | 0.02 |
| Del11q | 1.77 (1.34–2.33) | <0.001 | 1.45 (0.85–2.48) | 0.17 |
| SPEN mutated | 1.47 (1.07–2.02) | 0.02 | 1.26 (0.85–1.88) | 0.25 |
| NOTCH1 mutated | 1.50 (1.25–1.80) | <0.001 | 0.77 (0.55–1.08) | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nirmalanantham, P.; Quesada, A.E.; Ghosh, A.; Lin, P.; Ok, C.Y.; Yang, R.K.; Fang, H.; Garces, S.; Kanagal-Shamanna, R.; Loghavi, S.; et al. Mutational Landscape and Clinical Impact of SPEN Mutations in Patients with Chronic Lymphocytic Leukemia. Cancers 2025, 17, 3586. https://doi.org/10.3390/cancers17213586
Nirmalanantham P, Quesada AE, Ghosh A, Lin P, Ok CY, Yang RK, Fang H, Garces S, Kanagal-Shamanna R, Loghavi S, et al. Mutational Landscape and Clinical Impact of SPEN Mutations in Patients with Chronic Lymphocytic Leukemia. Cancers. 2025; 17(21):3586. https://doi.org/10.3390/cancers17213586
Chicago/Turabian StyleNirmalanantham, Priyatharsini, Andrés E. Quesada, Anindita Ghosh, Pei Lin, Chi Y. Ok, Richard K. Yang, Hong Fang, Sofia Garces, Rashmi Kanagal-Shamanna, Sanam Loghavi, and et al. 2025. "Mutational Landscape and Clinical Impact of SPEN Mutations in Patients with Chronic Lymphocytic Leukemia" Cancers 17, no. 21: 3586. https://doi.org/10.3390/cancers17213586
APA StyleNirmalanantham, P., Quesada, A. E., Ghosh, A., Lin, P., Ok, C. Y., Yang, R. K., Fang, H., Garces, S., Kanagal-Shamanna, R., Loghavi, S., Routbort, M. J., Yin, C. C., Wei, W., Pasyar, S., Bassett, R., El Hussein, S., Jain, N., Burger, J., Wierda, W. G., ... Jelloul, F. Z. (2025). Mutational Landscape and Clinical Impact of SPEN Mutations in Patients with Chronic Lymphocytic Leukemia. Cancers, 17(21), 3586. https://doi.org/10.3390/cancers17213586

