Therapeutic Intensification Based on Immune Checkpoint Inhibitors in Non-Muscle Invasive Bladder Cancer: State of the Art and Future Perspectives
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Evidence Synthesis
3.1. BCG-Unresponsive NMIBC
3.2. BCG-Naive NMIBC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol. 2020, 38, 1895–1904. [Google Scholar] [CrossRef]
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef]
- Jobczyk, M.; Stawiski, K.; Fendler, W.; Różański, W. Validation of EORTC, CUETO, and EAU risk stratification in prediction of recurrence, progression, and death of patients with initially non-muscle-invasive bladder cancer (NMIBC): A cohort analysis. Cancer Med. 2020, 9, 4014–4025. [Google Scholar] [CrossRef]
- Gontero, P.; Birtle, A.; Capoun, O.; Compérat, E.; Dominguez-Escrig, J.L.; Liedberg, F.; Mariappan, P.; Masson-Lecomte, A.; Mostafid, H.A.; Pradere, B.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)-A Summary of the 2024 Guidelines Update. Eur. Urol. 2024, 86, 531–549. [Google Scholar] [CrossRef]
- Lamm, D.L.; Blumenstein, B.A.; Crissman, J.D.; Montie, J.E.; Gottesman, J.E.; Lowe, B.A.; Sarosdy, M.F.; Bohl, R.D.; Grossman, H.B.; Beck, T.M.; et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: A randomized Southwest Oncology Group Study. J. Urol. 2000, 163, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; van der Meijden, A.P.; Lamm, D.L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: A meta-analysis of the published results of randomized clinical trials. J. Urol. 2002, 168, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Grimm, M.-O.; van der Heijden, A.G.; Colombel, M.; Muilwijk, T.; Martínez-Piñeiro, L.; Babjuk, M.M.; Türkeri, L.N.; Palou, J.; Patel, A.; Bjartell, A.S.; et al. Treatment of High-grade Non-muscle-invasive Bladder Carcinoma by Standard Number and Dose of BCG Instillations Versus Reduced Number and Standard Dose of BCG Instillations: Results of the European Association of Urology Research Foundation Randomised Phase III Clinical Trial “NIMBUS”. Eur. Urol. 2020, 78, 690–698. [Google Scholar] [CrossRef]
- Oddens, J.; Brausi, M.; Sylvester, R.; Bono, A.; van de Beek, C.; van Andel, G.; Gontero, P.; Hoeltl, W.; Turkeri, L.; Marreaud, S.; et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guérin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: One-third dose versus full dose and 1 year versus 3 years of maintenance. Eur. Urol. 2013, 63, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, K.; Kikuchi, E.; Mikami, S.; Hayakawa, N.; Matsumoto, K.; Niwa, N.; Oya, M. Clinical Role of Programmed Cell Death-1 Expression in Patients with Non-muscle-invasive Bladder Cancer Recurring After Initial Bacillus Calmette-Guérin Therapy. Ann. Surg. Oncol. 2018, 25, 2484–2491. [Google Scholar] [CrossRef]
- Salomé, B.; Sfakianos, J.P.; Ranti, D.; Daza, J.; Bieber, C.; Charap, A.; Hammer, C.; Banchereau, R.; Farkas, A.M.; Ruan, D.F.; et al. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell 2022, 40, 1027–1043.e9. [Google Scholar] [CrossRef]
- Ranti, D.; Yu, H.; Salomé, B.; Bang, S.; Duquesne, I.; Wang, Y.A.; Bieber, C.; Strandgaard, T.; Merritt, E.; Doherty, G.; et al. HLA-E and NKG2A Mediate Resistance to M. bovis BCG Immunotherapy in Non-Muscle-Invasive Bladder Cancer. BioRxiv 2025. [Google Scholar] [CrossRef]
- Van den Bosch, S.; Alfred Witjes, J. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: A systematic review. Eur. Urol. 2011, 60, 493–500. [Google Scholar] [CrossRef]
- Sylvester, R.J.; van der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.; Kurth, K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 2006, 49, 465–466; discussion 475–477. [Google Scholar] [CrossRef] [PubMed]
- Zlotta, A.R.; Fleshner, N.E.; Jewett, M.A. The management of BCG failure in non-muscle-invasive bladder cancer: An update. Can. Urol. Assoc. J. 2009, 3, S199–S205. [Google Scholar] [CrossRef] [PubMed]
- Prayer Galetti, T.; Soligo, M.; Morlacco, A.; Lami, V.; Nguyen, A.A.L.; Iafrate, M.; Zattoni, F. Morbidity, mortality, and quality assessment following open radical cystectomy in elderly patients with bladder cancer. Aging Clin. Exp. Res. 2021, 33, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Bahlburg, H.; Reicherz, A.; Reike, M.; Bach, P.; Butea-Bocu, M.C.; Tully, K.H.; Roghmann, F.; Noldus, J.; Müller, G. A prospective evaluation of quality of life, psychosocial distress, and functional outcomes two years after radical cystectomy and urinary diversion in 842 German bladder cancer patients. J. Cancer Surviv. 2025, 19, 1102–1110. [Google Scholar] [CrossRef]
- Chowell, D.; Yoo, S.-K.; Valero, C.; Pastore, A.; Krishna, C.; Lee, M.; Hoen, D.; Shi, H.; Kelly, D.W.; Patel, N.; et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. 2022, 40, 499–506. [Google Scholar] [CrossRef]
- Chowell, D.; Krishna, C.; Pierini, F.; Makarov, V.; Rizvi, N.A.; Kuo, F.; Morris, L.G.T.; Riaz, N.; Lenz, T.L.; Chan, T.A.; et al. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 2019, 25, 1715–1720. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef]
- Chhibber, A.; Huang, L.; Zhang, H.; Xu, J.; Cristescu, R.; Liu, X.; Mehrotra, D.V.; Shen, J.; Shaw, P.M.; Hellmann, M.D.; et al. Germline HLA landscape does not predict efficacy of pembrolizumab monotherapy across solid tumor types. Immunity 2022, 55, 56–64.e4. [Google Scholar] [CrossRef]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Rodríguez-Izquierdo, M.; Del Cañizo, C.G.; Rubio, C.; Reina, I.A.; Hernández Arroyo, M.; Rodríguez Antolín, A.; Dueñas Porto, M.; Guerrero-Ramos, F. Immune Predictors of Response after Bacillus Calmette–Guérin Treatment in Non-Muscle-Invasive Bladder Cancer. Cancers 2023, 15, 5554. [Google Scholar] [CrossRef]
- Necchi, A.; Roumiguié, M.; Kamat, A.M.; Shore, N.D.; Boormans, J.L.; Esen, A.A.; Lebret, T.; Kandori, S.; Bajorin, D.F.; Krieger, L.E.M.; et al. Pembrolizumab monotherapy for high-risk non-muscle-invasive bladder cancer without carcinoma in situ and unresponsive to BCG (KEYNOTE-057): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2024, 25, 720–730. [Google Scholar] [CrossRef]
- Black, P.C.; Tangen, C.M.; Singh, P.; McConkey, D.J.; Lucia, M.S.; Lowrance, W.T.; Koshkin, V.S.; Stratton, K.L.; Bivalacqua, T.J.; Kassouf, W.; et al. Phase 2 Trial of Atezolizumab in Bacillus Calmette-Guérin-unresponsive High-risk Non-muscle-invasive Bladder Cancer: SWOG S1605. Eur. Urol. 2023, 84, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Sexton, W.J.; Dhillon, J.; Berglund, A.; Naidu, S.; Borjas, G.; Rose, K.; Kim, Y.; Wang, X.; Conejo-Garcia, J.R.; et al. A Phase II Study of Durvalumab for Bacillus Calmette-Guerin (BCG) Unresponsive Urothelial Carcinoma In Situ of the Bladder. Clin. Cancer Res. 2023, 29, 3875–3881. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, S.; Van der Heijden, M.S.; Jacob, J.M.; Guerrero-Ramos, F.; Bögemann, M.; Simone, G.; Pieczonka, C.M.; Canales Casco, N.; Zainfeld, D.; Spiegelhalder, P.; et al. TAR-200 for Bacillus Calmette-Guérin–Unresponsive High-Risk Non–Muscle-Invasive Bladder Cancer: Results From the Phase IIb SunRISe-1 Study. J. Clin. Oncol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Balar, A.V.; Kamat, A.M.; Kulkarni, G.S.; Uchio, E.M.; Boormans, J.L.; Roumiguié, M.; Krieger, L.E.M.; Singer, E.A.; Bajorin, D.F.; Grivas, P.; et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 919–930. [Google Scholar] [CrossRef]
- Herbst, R.S.; Majem, M.; Barlesi, F.; Carcereny, E.; Chu, Q.; Monnet, I.; Sanchez-Hernandez, A.; Dakhil, S.; Camidge, D.R.; Winzer, L.; et al. COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 3383–3393. [Google Scholar] [CrossRef]
- Li, R.; Shah, P.H.; Stewart, T.F.; Nam, J.K.; Bivalacqua, T.J.; Lamm, D.L.; Uchio, E.M.; Geynisman, D.M.; Jacob, J.M.; Meeks, J.J.; et al. Oncolytic adenoviral therapy plus pembrolizumab in BCG-unresponsive non-muscle-invasive bladder cancer: The phase 2 CORE-001 trial. Nat. Med. 2024, 30, 2216–2223. [Google Scholar] [CrossRef]
- ASCO GU 2025: A Phase 1/2 Trial of Durvalumab plus Intravesical Gemcitabine and Docetaxel in BCG-Unresponsive Non-Muscle Invasive Bladder Cancer Patients (HCRN GU16-243: ADAPT-BLADDER Cohort 4). Available online: https://www.urotoday.com/conference-highlights/asco-gu-2025/asco-gu-2025-bladder-cancer/158301-asco-gu-2025-a-phase-1-2-trial-of-durvalumab-plus-intravesical-gemcitabine-and-docetaxel-in-bcg-unresponsive-non-muscle-invasive-bladder-cancer-patients-hcrn-gu16-243-adapt-bladder-cohort-4.html (accessed on 14 February 2025).
- Lobo, N.; Brooks, N.A.; Zlotta, A.R.; Cirillo, J.D.; Boorjian, S.; Black, P.C.; Meeks, J.J.; Bivalacqua, T.J.; Gontero, P.; Steinberg, G.D.; et al. 100 years of Bacillus Calmette-Guérin immunotherapy: From cattle to COVID-19. Nat. Rev. Urol. 2021, 18, 611–622. [Google Scholar] [CrossRef]
- van Puffelen, J.H.; Keating, S.T.; Oosterwijk, E.; van der Heijden, A.G.; Netea, M.G.; Joosten, L.A.B.; Vermeulen, S.H. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 2020, 17, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Hahn, N.M.; O’Donnell, M.A.; Efstathiou, J.A.; Zahurak, M.; Rosner, G.L.; Smith, J.; Kates, M.R.; Bivalacqua, T.J.; Tran, P.T.; Song, D.Y.; et al. A Phase 1 Trial of Durvalumab in Combination with Bacillus Calmette-Guerin (BCG) or External Beam Radiation Therapy in Patients with BCG-unresponsive Non-muscle-Invasive Bladder Cancer: The Hoosier Cancer Research Network GU16-243 ADAPT-BLADDER Study. Eur. Urol. 2023, 83, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Inman, B.A.; Hahn, N.M.; Stratton, K.; Kopp, R.; Sankin, A.; Skinner, E.; Pohar, K.; Gartrell, B.A.; Pham, S.; Rishipathak, D.; et al. A Phase 1b/2 Study of Atezolizumab with or Without Bacille Calmette-Guérin in Patients with High-risk Non-muscle-invasive Bladder Cancer. Eur. Urol. Oncol. 2023, 6, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Shore, N.D.; Powles, T.B.; Bedke, J.; Galsky, M.D.; Palou Redorta, J.; Ku, J.H.; Kretkowski, M.; Xylinas, E.; Alekseev, B.; Ye, D.; et al. Sasanlimab plus BCG in BCG-naive, high-risk non-muscle invasive bladder cancer: The randomized phase 3 CREST trial. Nat. Med. 2025, 31, 2806–2814. [Google Scholar] [CrossRef]
- De Santis, M.; Palou Redorta, J.; Nishiyama, H.; Krawczyński, M.; Seyitkuliev, A.; Novikov, A.; Guerrero-Ramos, F.; Zukov, R.; Kato, M.; Kawahara, T.; et al. Durvalumab in combination with BCG for BCG-naive, high-risk, non-muscle-invasive bladder cancer (POTOMAC): Final analysis of a randomised, open-label, phase 3 trial. Lancet 2025. [Google Scholar] [CrossRef]
- Roupret, M.; Bertaut, A.; Pignot, G.; Neuzillet, Y.; Houede, N.; Mathieu, R.; Corbel, L.; Besson, D.; Seisen, T.; Jaffrelot, L.; et al. ALBAN (GETUG-AFU 37): A phase 3, randomized, open-label, international trial of intravenous atezolizumab and intravesical Bacillus Calmette-Guérin (BCG) versus BCG alone in BCG-naive high-risk, non-muscle invasive bladder cancer (NMIBC). Ann. Oncol. 2025. [Google Scholar] [CrossRef]
- Lebret, T.; Bonastre, J.; Fraslin, A.; Neuzillet, Y.; Droupy, S.; Rebillard, X.; Vordos, D.; Guy, L.; Villers, A.; Schneider, M.; et al. Cohort profile: COBLAnCE: A French prospective cohort to study prognostic and predictive factors in bladder cancer and to generate real-world data on treatment patterns, resource use and quality of life. BMJ Open 2023, 13, e075942. [Google Scholar] [CrossRef]
- ASCO GU 2023 Bladder Cancer. Available online: https://www.urotoday.com/conference-highlights/asco-gu-2023/asco-gu-2023-bladder-cancer.html (accessed on 18 February 2023).
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef]
- van der Heijden, M.S.; Sonpavde, G.; Powles, T.; Necchi, A.; Burotto, M.; Schenker, M.; Sade, J.P.; Bamias, A.; Beuzeboc, P.; Bedke, J.; et al. Nivolumab plus Gemcitabine-Cisplatin in Advanced Urothelial Carcinoma. N. Engl. J. Med. 2023, 389, 1778–1789. [Google Scholar] [CrossRef]
- Powles, T.; Valderrama, B.P.; Gupta, S.; Bedke, J.; Kikuchi, E.; Hoffman-Censits, J.; Iyer, G.; Vulsteke, C.; Park, S.H.; Shin, S.J.; et al. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. N. Engl. J. Med. 2024, 390, 875–888. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Ullén, A.; Loriot, Y.; Sridhar, S.S.; Sternberg, C.N.; Bellmunt, J.; et al. Avelumab First-Line Maintenance for Advanced Urothelial Carcinoma: Results From the JAVELIN Bladder 100 Trial After ≥2 Years of Follow-Up. J. Clin. Oncol. 2023, 41, 3486–3492. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]
- Apolo, A.B.; Ballman, K.V.; Sonpavde, G.; Berg, S.; Kim, W.Y.; Parikh, R.; Teo, M.Y.; Sweis, R.F.; Geynisman, D.M.; Grivas, P.; et al. Adjuvant Pembrolizumab versus Observation in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2025, 392, 45–55. [Google Scholar] [CrossRef]
- Rui, X.; Gu, T.-T.; Pan, H.-F.; Zhang, H.-Z. Evaluation of PD-L1 biomarker for immune checkpoint inhibitor (PD-1/PD-L1 inhibitors) treatments for urothelial carcinoma patients: A meta-analysis. Int. Immunopharmacol. 2019, 67, 378–385. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lorente, I.; Gimeno, L.; López-Abad, A.; López Cubillana, P.; Fernández Aparicio, T.; Asensio Egea, L.J.; Moreno Avilés, J.; Doñate Iñiguez, G.; Guzmán Martínez-Valls, P.L.; Server, G.; et al. Differential Role of NKG2A/HLA-E Interaction in the Outcomes of Bladder Cancer Patients Treated with M. bovis BCG or Other Therapies. Biomedicines 2025, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Ramos, F.; Suárez-Cabrera, C.; Gómez-Canizo, C.; Hernández-Arroyo, M.; Martín-Rodríguez, R.; Gervás-Yubero, C.; Martín-Bernardo, Á.; Castellano, D.; Jesús, P.; Rodríguez-Antolín, A.; et al. Ip14-31 bladimirplus: A non-invasive urine-based biomarker panel for predicting bladder cancer immunotherapy outcomes. J. Urol. 2025, 213, e758. [Google Scholar] [CrossRef]
- Kato, M.; Uchida, J. Recent advances in immune checkpoint inhibitors in the treatment of urothelial carcinoma: A review. Int. J. Urol. 2023, 30, 1068–1077. [Google Scholar] [CrossRef]
| KEYNOTE 057 FDA Approved | SWOG S1605 | Phase-2 Durvalumab | SunRise-1 Cohort 3 | ENHANCE | |
|---|---|---|---|---|---|
| Immunotherapy | Pembrolizumab | Atezolizumab | Durvalumab | Cetrelimab | Durvalumab + Monalizumab |
| Mechanism | Anti PD-1 | Anti PD-L1 | Anti PD-L1 | Anti PD-1 | Anti PDL-L1 + Anti NKG2A |
| Duration of Immunotherapy | 2 years | 1 year | 1 year | 18 months | 1 years |
| Immunotherapy administration | Intravenous | Intravenous | Intravenous | Intravenous | Intravenous |
| Immunotherapy schedule | Every 3 weeks | Every 3 weeks | Every 4 weeks | Every 3 weeks | Every 4 weeks |
| Number of patients | 101 (CIS ± Ta/T1) | 129 (74 CIS) | 17 (CIS) | 28 (CIS) | 60 (43 CIS ± Ta/T1 and 17 Ta/T1) |
| 3 months CR in CIS (%) | 41 | 43 | 12 * | / | NA |
| 12 months CR in CIS (%) | 19 | 25 | / | 22.8 | NA |
| Persistence of CR at 12 months (%) | 57.4 | 56 | 50 | 48.5 | NA |
| Any all-grade treatment-related AEs, n (%) | 67 (65.7) | 81 (97) | 17 (100) | 15 (53.6) | NA |
| Grade 3–5 treatment-related AEs, n (%) | 13 (13) | 13 (14) | 7 (41) | 7.1% | NA |
| Discontinuation because of treatment-related AEs, n (%) | 9 (8.8) | 9 (9) | 0 (0) | 1 (4.2) | NA |
| Death because of treatment-related AEs, n (%) | 0 (0) | 2 (2) | 0 (0) | 0 (0) | NA |
| ALBAN | CREST | POTOMAC | KEYNOTE 676 | SunRise-3 | |
|---|---|---|---|---|---|
| Immunotherapy | Atezolizumab | Sasanlimab | Durvalumab | Pembrolizumab | Cetrelimab |
| Mechanism | Anti PD-L1 | Anti PD-1 | Anti PD-L1 | Anti PD-1 | Anti PD-1 |
| Duration of Immunotherapy | 1 year | 2 years | 1 year | 1 year | 2 years |
| Administration of Immunotherapy | Intravenous | Subcutaneous | Intravenous | Intravenous | Intravenous |
| Immunotherapy schedule | Every 3 weeks | Every 4 weeks | Every 4 weeks | Every 3 weeks | Every 3 weeks |
| Estimated number of patients | 517 | 1055 | 1018 | 1000 | 1050 |
| Treatment arms | Atezolizumab + BCG (IND + MAIN) vs. BCG control | Sasanlimab + BCG (IND + MAIN) or + BCG (IND) vs. BCG control | Durvalumab + BCG (IND + MAIN) or + BCG (IND) vs. BCG control | Pembrolizumab + BCG (IND + MAIN) vs. Pembrolizumab + BCG (IND + reduced MAIN) vs. BCG control | Cetrelimab + TAR 200 vs. TAR 200 vs. BCG control |
| Primary endpoint | RFS | EFS | DFS | EFS | EFS |
| Results for the primary endpoint | Negative | Positive | Positive | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, P.-E.; Horowitz, A.; Guerrero-Ramos, F.; Soria, F.; Moschini, M.; D’Andrea, D.; Pradère, B.; Sfakianos, J.P.; Xylinas, E. Therapeutic Intensification Based on Immune Checkpoint Inhibitors in Non-Muscle Invasive Bladder Cancer: State of the Art and Future Perspectives. Cancers 2025, 17, 3555. https://doi.org/10.3390/cancers17213555
Gabriel P-E, Horowitz A, Guerrero-Ramos F, Soria F, Moschini M, D’Andrea D, Pradère B, Sfakianos JP, Xylinas E. Therapeutic Intensification Based on Immune Checkpoint Inhibitors in Non-Muscle Invasive Bladder Cancer: State of the Art and Future Perspectives. Cancers. 2025; 17(21):3555. https://doi.org/10.3390/cancers17213555
Chicago/Turabian StyleGabriel, Pierre-Etienne, Amir Horowitz, Felix Guerrero-Ramos, Francesco Soria, Marco Moschini, David D’Andrea, Benjamin Pradère, John P. Sfakianos, and Evanguelos Xylinas. 2025. "Therapeutic Intensification Based on Immune Checkpoint Inhibitors in Non-Muscle Invasive Bladder Cancer: State of the Art and Future Perspectives" Cancers 17, no. 21: 3555. https://doi.org/10.3390/cancers17213555
APA StyleGabriel, P.-E., Horowitz, A., Guerrero-Ramos, F., Soria, F., Moschini, M., D’Andrea, D., Pradère, B., Sfakianos, J. P., & Xylinas, E. (2025). Therapeutic Intensification Based on Immune Checkpoint Inhibitors in Non-Muscle Invasive Bladder Cancer: State of the Art and Future Perspectives. Cancers, 17(21), 3555. https://doi.org/10.3390/cancers17213555

