Toxicity Profile of New Therapies in Metastatic Urothelial Carcinoma and Its Impact on Treatment Selection
Simple Summary
Abstract
1. Introduction
Review Design and Literature Search
2. New Therapies
2.1. Antibody–Drug Conjugates (ADCs)
2.1.1. Enfortumab-Vedotin
2.1.2. Trop-2 Inhibitors
2.1.3. HER2 Inhibitors
2.2. Checkpoint Inhibitors (ICI)
2.3. Targeted Therapy
FGFR Inhibitors
2.4. Combination Therapies Involving ICI
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Powles, T.; Bellmunt, J.; Comperat, E.; De Santis, M.; Huddart, R.; Loriot, Y.; Necchi, A.; Valderrama, B.P.; Ravaud, A.; Shariat, S.F.; et al. Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 244–258. [Google Scholar] [CrossRef]
- De Santis, M.; Bellmunt, J.; Mead, G.; Kerst, J.M.; Leahy, M.; Maroto, P.; Gil, T.; Marreaud, S.; Daugaard, G.; Skoneczna, I.; et al. Randomized Phase II/III Trial Assessing Gemcitabine/Carboplatin and Methotrexate/Carboplatin/Vinblastine in Patients with Advanced Urothelial Cancer Who Are Unfit for Cisplatin-Based Chemotherapy: EORTC Study 30986. J. Clin. Oncol. 2012, 30, 191–199. [Google Scholar] [CrossRef]
- Von Der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, with Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients with Bladder Cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- Powles, T.; Bellmunt, J.; Comperat, E.; De Santis, M.; Huddart, R.; Loriot, Y.; Necchi, A.; Valderrama, B.P.; Ravaud, A.; Shariat, S.F.; et al. ESMO Clinical Practice Guideline interim update on first-line therapy in advanced urothelial carcinoma. Ann. Oncol. 2024, 35, 485–490. [Google Scholar] [CrossRef]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef]
- Powles, T.; Tagawa, S.; Vulsteke, C.; Gross-Goupil, M.; Park, S.H.; Necchi, A.; De Santis, M.; Duran, I.; Morales-Barrera, R.; Guo, J.; et al. Sacituzumab govitecan in advanced urothelial carcinoma: TROPiCS-04, a phase III randomized trial. Ann. Oncol. 2025, 36, 561–571. [Google Scholar] [CrossRef]
- Pathak, N.; Di Iorio, M.; Gimenez, D.M.; Berner-Wygoda, Y.; Savill, J.; Aljuhani, A.; Mittal, A.; Kumar, V.; Amir, E. Adverse effect of trastuzumab deruxtecan in solid tumours: A systematic review and meta-analysis. Crit. Rev. Oncol./Hematol. 2025, 213, 104787. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar]
- Loriot, Y.; Matsubara, N.; Park, S.H.; Huddart, R.A.; Burgess, E.F.; Houede, N.; Banek, S.; Guadalupi, V.; Ku, J.H.; Valderrama, B.P.; et al. Erdafitinib or Chemotherapy in Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2023, 389, 1961–1971. [Google Scholar] [CrossRef]
- Powles, T.; Valderrama, B.P.; Gupta, S.; Bedke, J.; Kikuchi, E.; Hoffman-Censits, J.; Iyer, G.; Vulsteke, C.; Park, S.H.; Shin, S.J.; et al. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. N. Engl. J. Med. 2024, 390, 875–888. [Google Scholar] [CrossRef]
- Van Der Heijden, M.S.; Sonpavde, G.; Powles, T.; Necchi, A.; Burotto, M.; Schenker, M.; Sade, J.P.; Bamias, A.; Beuzeboc, P.; Bedke, J.; et al. Nivolumab plus Gemcitabine–Cisplatin in Advanced Urothelial Carcinoma. N. Engl. J. Med. 2023, 389, 1778–1789. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Wang, L.; Wu, Y.; Hao, J.; Wang, Z.; Lu, W.; Wang, X.; Zhang, F.; Cao, Y.; et al. A novel PI3K/AKT signaling axis mediates Nectin-4-induced gallbladder cancer cell proliferation, metastasis and tumor growth. Cancer Lett. 2016, 375, 179–189. [Google Scholar] [CrossRef]
- Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; et al. Enfortumab Vedotin Antibody—Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res. 2016, 76, 3003–3013. [Google Scholar] [CrossRef]
- Liu, B.A.; Olson, D.; Snead, K.; Gosink, J.; Tenn, E.-M.; Zaval, M.; Cao, A.; Sahetya, D.; Nesterova, A.; Hensley, K.; et al. Abstract 5581: Enfortumab vedotin, an anti-Nectin-4 ADC demonstrates bystander cell killing and immunogenic cell death anti-tumor activity mechanisms of action in urothelial cancers. Cancer Res. 2020, 80 (Suppl. 16), 5581. [Google Scholar] [CrossRef]
- Lacouture, M.E.; Patel, A.B.; Rosenberg, J.E.; O’Donnell, P.H. Management of Dermatologic Events Associated with the Nectin-4-directed Antibody-Drug Conjugate Enfortumab Vedotin. Oncologist 2022, 27, e223–e232. [Google Scholar] [CrossRef]
- Doronina, S.O.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Cerveny, C.G.; Chace, D.F.; DeBlanc, R.L.; Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784. [Google Scholar] [CrossRef]
- Taoka, R.; Kamada, M.; Izumi, K.; Tanimoto, R.; Daizumoto, K.; Hayashida, Y.; Uematsu, K.; Arai, H.; Sano, T.; Saito, R.; et al. Peripheral neuropathy and nerve electrophysiological changes with enfortumab vedotin in patients with advanced urothelial carcinoma: A prospective multicenter cohort study. Int. J. Clin. Oncol. 2024, 29, 602–611. [Google Scholar] [CrossRef]
- Best, R.L.; LaPointe, N.E.; Azarenko, O.; Miller, H.; Genualdi, C.; Chih, S.; Shen, B.-Q.; Jordan, M.A.; Wilson, L.; Feinstein, S.C.; et al. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): Mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol. Appl. Pharmacol. 2021, 421, 115534. [Google Scholar] [CrossRef]
- Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; et al. FDA Approval Summary: Enfortumab Vedotin for Locally Advanced or Metastatic Urothelial Carcinoma. Clin. Cancer Res. 2021, 27, 922–927. [Google Scholar] [CrossRef]
- Sato, T.; Suzuki, H.; Asashima, Y.; Sone, H. Enfortumab Vedotin-induced Hyperglycemia and Ileal Conduit Reconstruction-induced Metabolic Acidosis. JCEM Case Rep. 2023, 1, luad092. [Google Scholar]
- Stoyanova, T.; Goldstein, A.S.; Cai, H.; Drake, J.M.; Huang, J.; Witte, O.N. Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling. Genes Dev. 2012, 26, 2271–2285. [Google Scholar] [CrossRef]
- Shvartsur, A.; Bonavida, B. Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications. Genes Cancer 2014, 6, 84–105. [Google Scholar] [CrossRef]
- Fornaro, M.; Arciprete, R.D.; Stella, M.; Bucci, C.; Nutini, M.; Capri, M.G.; Alberti, S. Cloning of the gene encoding TROP-2, a cell-surface glycoprotein expressed by human carcinomas. Int. J. Cancer 1995, 62, 610–618. [Google Scholar] [CrossRef]
- Trerotola, M.; Cantanelli, P.; Guerra, E.; Tripaldi, R.; Aloisi, A.L.; Bonasera, V.; Lattanzio, R.; Lange, R.D.; Weidle, U.H.; Piantelli, M.; et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 2013, 32, 222–233. [Google Scholar] [CrossRef]
- Fong, D.; Moser, P.; Krammel, C.; Gostner, J.M.; Margreiter, R.; Mitterer, M.; Gastl, G.; Spizzo, G. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br. J. Cancer 2008, 99, 1290–1295. [Google Scholar] [CrossRef]
- Mühlmann, G.; Spizzo, G.; Gostner, J.; Zitt, M.; Maier, H.; Moser, P.; Gastl, G.; Zitt, M.; Müller, H.M.; Margreiter, R.; et al. TROP2 expression as prognostic marker for gastric carcinoma. J. Clin. Pathol. 2009, 62, 152–158. [Google Scholar] [CrossRef]
- Fang, Y.J.; Lu, Z.H.; Wang, G.Q.; Pan, Z.Z.; Zhou, Z.W.; Yun, J.P.; Zhang, M.F.; Wan, D.S. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int. J. Color. Dis. 2009, 24, 875–884. [Google Scholar] [CrossRef]
- Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Arrojo, R.; Liu, D.; Rossi, E.A.; Chang, C.-H.; Goldenberg, D.M. Sacituzumab Govitecan (IMMU-132), an Anti-Trop-2/SN-38 Antibody–Drug Conjugate: Characterization and Efficacy in Pancreatic, Gastric, and Other Cancers. Bioconjugate Chem. 2015, 26, 919–931. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Stein, R.; Sharkey, R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018, 9, 28989–29006. [Google Scholar] [CrossRef]
- Fong, D.; Spizzo, G.; Gostner, J.M.; Gastl, G.; Moser, P.; Krammel, C.; Gerhard, S.; Rasse, M.; Laimer, K. TROP2: A novel prognostic marker in squamous cell carcinoma of the oral cavity. Mod. Pathol. 2008, 21, 186–191. [Google Scholar] [CrossRef]
- Lisberg, A.; Drakaki, A.; Meric-Bernstam, F.; Alhalabi, O.; Kojima, T.; Kato, M.; Spira, A.I.; Salkeni, M.A.; Heist, R.; Gao, X.; et al. Datopotamab deruxtecan in locally advanced/metastatic urothelial cancer: Preliminary results from the phase 1 TROPION-PanTumor01 study. J. Clin. Oncol. 2024, 42 (Suppl. 4), 603. [Google Scholar] [CrossRef]
- Ye, D.; Jiang, S.; Yuan, F.; Zhou, F.; Jiang, K.; Zhang, X.; Li, X.; Seneviratne, L.C.; Yu, G.; Zhang, M.; et al. Efficacy and safety of sacituzumab tirumotecan monotherapy in patients with advanced urothelial carcinoma who progressed on or after prior anti-cancer therapies: Report from the phase 1/2 MK-2870-001 study. J. Clin. Oncol. 2025, 43 (Suppl. 5), 796. [Google Scholar] [CrossRef]
- Tang, S.; Dorff, T.B.; Tsao-Wei, D.D.; Massopust, K.; Ketchens, C.; Hu, J.; Goldkorn, A.; Sadeghi, S.; Pinski, J.K.; Averia, M.; et al. Single arm phase II study of docetaxel and lapatinib in metastatic urothelial cancer: USC trial 4B-10-4. J. Clin. Oncol. 2016, 34 (Suppl. 2), 424. [Google Scholar] [CrossRef]
- Choudhury, N.J.; Campanile, A.; Antic, T.; Yap, K.L.; Fitzpatrick, C.A.; Wade, J.L.; Karrison, T.; Stadler, W.M.; Nakamura, Y.; O’Donnell, P.H. Afatinib Activity in Platinum-Refractory Metastatic Urothelial Carcinoma in Patients with ERBB Alterations. J. Clin. Oncol. 2016, 34, 2165–2171. [Google Scholar] [CrossRef]
- Font, A.; Real, F.X.; Puente, J.; Vazquez Mazon, F.J.; Sala, N.; Virizuela, J.A.; Rodriguez-Vida, A.; Grande Pulido, E.; Castellano, D.; Climent, M.A.; et al. Afatinib in patients with advanced or metastatic urothelial carcinoma (UC) with genetic alterations in ErbB receptors 1–3 who failed on platinum-based chemotherapy: The Phase II LUX-Bladder 1 trial. Ann. Oncol. 2017, 28, v326. [Google Scholar] [CrossRef]
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.-Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Sheng, X.; Yan, X.; Wang, L.; Shi, Y.; Yao, X.; Luo, H.; Shi, B.; Liu, J.; He, Z.; Yu, G.; et al. Open-label, Multicenter, Phase II Study of RC48-ADC, a HER2-Targeting Antibody–Drug Conjugate, in Patients with Locally Advanced or Metastatic Urothelial Carcinoma. Clin. Cancer Res. 2021, 27, 43–51. [Google Scholar] [CrossRef]
- Xu, H.; Sheng, X.; Zhou, L.; Yan, X.; Li, S.; Chi, Z.; Cui, C.; Si, L.; Tang, B.; Mao, L.; et al. A phase II study of RC48-ADC in HER2-negative patients with locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol. 2022, 40 (Suppl. 16), 4519. [Google Scholar] [CrossRef]
- Moasser, M.M. The oncogene HER2: Its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007, 26, 6469–6487. [Google Scholar] [CrossRef]
- Begnami, M.D.; Fukuda, E.; Fregnani, J.H.T.G.; Nonogaki, S.; Montagnini, A.L.; Da Costa, W.L.; Soares, F.A. Prognostic Implications of Altered Human Epidermal Growth Factor Receptors (HERs) in Gastric Carcinomas: HER2 and HER3 Are Predictors of Poor Outcome. J. Clin. Oncol. 2011, 29, 3030–3036. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Baselga, J.; Cortés, J.; Kim, S.-B.; Im, S.-A.; Hegg, R.; Im, Y.-H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; et al. Pertuzumab plus Trastuzumab plus Docetaxel for Metastatic Breast Cancer. N. Engl. J. Med. 2012, 366, 109–119. [Google Scholar] [CrossRef]
- Curigliano, G.; Mueller, V.; Borges, V.; Hamilton, E.; Hurvitz, S.; Loi, S.; Murthy, R.; Okines, A.; Paplomata, E.; Cameron, D.; et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): Final overall survival analysis. Ann. Oncol. 2022, 33, 321–329. [Google Scholar] [CrossRef]
- Iyer, G.; Al-Ahmadie, H.; Schultz, N.; Hanrahan, A.J.; Ostrovnaya, I.; Balar, A.V.; Kim, P.H.; Lin, O.; Weinhold, N.; Sander, C.; et al. Prevalence and Co-Occurrence of Actionable Genomic Alterations in High-Grade Bladder Cancer. J. Clin. Oncol. 2013, 31, 3133–3140. [Google Scholar] [CrossRef]
- Albarrán, V.; Rosero, D.I.; Chamorro, J.; Pozas, J.; San Román, M.; Barrill, A.M.; Alía, V.; Sotoca, P.; Guerrero, P.; Calvo, J.C.; et al. Her-2 Targeted Therapy in Advanced Urothelial Cancer: From Monoclonal Antibodies to Antibody-Drug Conjugates. Int. J. Mol. Sci. 2022, 23, 12659. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]
- Powles, T.; Durán, I.; Van Der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Van Der Heijden, M.S.; Loriot, Y.; Durán, I.; Ravaud, A.; Retz, M.; Vogelzang, N.J.; Nelson, B.; Wang, J.; Shen, X.; Powles, T. Atezolizumab Versus Chemotherapy in Patients with Platinum-treated Locally Advanced or Metastatic Urothelial Carcinoma: A Long-term Overall Survival and Safety Update from the Phase 3 IMvigor211 Clinical Trial. Eur. Urol. 2021, 80, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; De Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Ullén, A.; Loriot, Y.; Sridhar, S.S.; Sternberg, C.N.; Bellmunt, J.; et al. Avelumab First-Line Maintenance for Advanced Urothelial Carcinoma: Results From the JAVELIN Bladder 100 Trial After ≥2 Years of Follow-Up. J. Clin. Oncol. 2023, 41, 3486–3492. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Boparai, M.; Zhu, X.; Wu, S. Increased Risk of Hyperglycemia in Advanced Urothelial Cancer Patients Treated with Enfortumab Vedotin: A Systematic Review and Meta-Analysis. Cancer Investig. 2025, 43, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Del Conte, G.; Foti, S.; Yu, E.Y.; Machiels, J.-P.H.; Doger, B.; Necchi, A.; De Braud, F.G.; Hamilton, E.P.; Hennequin, A.; et al. Primary analysis from DS8201-A-U105: A phase 1b, two-part, open-label study of trastuzumab deruxtecan (T-DXd) with nivolumab (nivo) in patients (pts) with HER2-expressing urothelial carcinoma (UC). J. Clin. Oncol. 2022, 40 (Suppl. 6), 438. [Google Scholar] [CrossRef]
- Sheng, X.; Zhou, L.; Yang, K.; Zhang, S.; Xu, H.; Yan, X.; Li, S.; Li, J.; Cui, C.; Chi, Z.; et al. Disitamab vedotin, a novel humanized anti-HER2 antibody-drug conjugate (ADC), combined with toripalimab in patients with locally advanced or metastatic urothelial carcinoma: An open-label phase 1b/2 study. J. Clin. Oncol. 2023, 41 (Suppl. 16), 4566. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, H.; Yan, X.; Chi, Z.; Cui, C.; Si, L.; Tang, B.; Mao, L.; Lian, B.; Wang, X.; et al. RC48-ADC combined with toripalimab, an anti-PD-1 monoclonal antibody (Ab), in patients with locally advanced or metastatic urothelial carcinoma (UC): Preliminary results of a phase Ib/II study. J. Clin. Oncol. 2021, 39 (Suppl. 15), 4534. [Google Scholar] [CrossRef]
- Galsky, M.D.; Grande, E.; Necchi, A.; Koontz, M.Z.; Iyer, G.; Campbell, M.T.; Drakaki, A.; Loriot, Y.; Sokolowski, K.M.; Zhang, W.; et al. Phase 3 open-label, randomized, controlled study of disitamab vedotin with pembrolizumab versus chemotherapy in patients with previously untreated locally advanced or metastatic urothelial carcinoma that expresses HER2 (DV-001). J. Clin. Oncol. 2024, 42 (Suppl. 4), TPS717. [Google Scholar] [CrossRef]
- Grivas, P.; Pouessel, D.; Park, C.H.; Barthelemy, P.; Bupathi, M.; Petrylak, D.P.; Agarwal, N.; Gupta, S.; Fléchon, A.; Ramamurthy, C.; et al. Sacituzumab Govitecan in Combination with Pembrolizumab for Patients with Metastatic Urothelial Cancer That Progressed After Platinum-Based Chemotherapy: TROPHY-U-01 Cohort 3. J. Clin. Oncol. 2024, 42, 1415–1425. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Balar, A.V.; Petrylak, D.P.; Kalebasty, A.R.; Loriot, Y.; Fléchon, A.; Jain, R.K.; Agarwal, N.; Bupathi, M.; Barthelemy, P.; et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. J. Clin. Oncol. 2021, 39, 2474–2485. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortés, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Gómez Pardo, P.; et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 402, 1423–1433. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Loriot, Y.; Choy, E.; Castellano, D.; Lopez-Rios Moreno, F.; Banna, G.L.; De Giorgi, U.; Masini, C.; Bamias, A.; Garcia Del Muro, X.; et al. Final results from SAUL, a single-arm international real-world study of atezolizumab (atezo) in 1004 patients (pts) with pretreated locally advanced/metastatic urinary tract carcinoma (UTC). J. Clin. Oncol. 2023, 41 (Suppl. 16), 4569. [Google Scholar] [CrossRef]
- Koshkin, V.S.; Henderson, N.; James, M.; Natesan, D.; Freeman, D.; Nizam, A.; Su, C.T.; Khaki, A.R.; Osterman, C.K.; Glover, M.J.; et al. Efficacy of enfortumab vedotin in advanced urothelial cancer: Analysis from the Urothelial Cancer Network to Investigate Therapeutic Experiences (UNITE) study. Cancer 2022, 128, 1194–1205. [Google Scholar] [CrossRef]
- Galsky, M.D.; Hahn, N.M.; Rosenberg, J.; Sonpavde, G.; Hutson, T.; Oh, W.K.; Dreicer, R.; Vogelzang, N.; Sternberg, C.; Bajorin, D.F.; et al. A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol. 2011, 12, 211–214. [Google Scholar] [CrossRef]
- Gupta, S.; Bellmunt, J.; Plimack, E.R.; Sonpavde, G.P.; Grivas, P.; Apolo, A.B.; Pal, S.K.; Siefker-Radtke, A.O.; Flaig, T.W.; Galsky, M.D.; et al. Defining “platinum-ineligible” patients with metastatic urothelial cancer (mUC). J. Clin. Oncol. 2022, 40 (Suppl. 16), 4577. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Rumble, R.B.; Booth, C.M.; Gilligan, T.; Eapen, L.J.; Hauke, R.J.; Boumansour, P.; Lee, C.T. Guideline on Muscle-Invasive and Metastatic Bladder Cancer (European Association of Urology Guideline): American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J. Clin. Oncol. 2016, 34, 1945–1952. [Google Scholar] [CrossRef]
- Flaig, T.W.; Spiess, P.E.; Abern, M.; Agarwal, N.; Bangs, R.; Buyyounouski, M.K.; Chan, K.; Chang, S.S.; Chang, P.; Friedlander, T.; et al. Bladder Cancer, Version 3.2024: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2024, 22, 216–225. [Google Scholar] [CrossRef]
- Grivas, P.; Kopyltsov, E.; Su, P.J.; Parnis, F.X.; Park, S.H.; Yamamoto, Y.; Fong, P.C.; Tournigand, C.; Climent Duran, M.A.; Bamias, A.; et al. Patient-reported Outcomes from JAVELIN Bladder 100: Avelumab First-line Maintenance Plus Best Supportive Care Versus Best Supportive Care Alone for Advanced Urothelial Carcinoma. Eur. Urol. 2023, 83, 320–328. [Google Scholar] [CrossRef]
- Grande, E.; Birtle, A.J.; Kamat, A.M. Re: Thomas Powles, Begoña Pérez-Valderrama, Shilpa Gupta; et al. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. N Engl J Med 2024;390:875–88. Eur. Urol. 2024, 86, e152–e153. [Google Scholar] [CrossRef]
- Kiss, R.C.; Xia, F.; Acklin, S. Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int. J. Mol. Sci. 2021, 22, 8199. [Google Scholar] [CrossRef]
- Teo, M.Y.; Bambury, R.M.; Zabor, E.C.; Jordan, E.; Al-Ahmadie, H.; Boyd, M.E.; Bouvier, N.; Mullane, S.A.; Cha, E.K.; Roper, N.; et al. DNA Damage Response and Repair Gene Alterations Are Associated with Improved Survival in Patients with Platinum-Treated Advanced Urothelial Carcinoma. Clin. Cancer Res. 2017, 23, 3610–3618. [Google Scholar] [CrossRef]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.-L.; et al. Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to Frontline Chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef]
- Lotan, Y.; De Jong, J.J.; Liu, V.Y.T.; Bismar, T.A.; Boorjian, S.A.; Huang, H.-C.; Davicioni, E.; Mian, O.Y.; Wright, J.L.; Necchi, A.; et al. Patients with Muscle-Invasive Bladder Cancer with Nonluminal Subtype Derive Greatest Benefit from Platinum Based Neoadjuvant Chemotherapy. J. Urol. 2022, 207, 541–550. [Google Scholar] [CrossRef]
- Seiler, R.; Ashab, H.A.D.; Erho, N.; Van Rhijn, B.W.G.; Winters, B.; Douglas, J.; Van Kessel, K.E.; Fransen Van De Putte, E.E.; Sommerlad, M.; Wang, N.Q.; et al. Impact of Molecular Subtypes in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy. Eur. Urol. 2017, 72, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Al-Bozom, I.A.; Ben Gashir, M.; Taha, N.M. Intrinsic Molecular Subclassification of Urothelial Carcinoma of the Bladder: Are We Finally there? Adv. Anat. Pathol. 2019, 26, 251–256. [Google Scholar] [CrossRef]
- Kamoun, A.; De Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur. Urol. 2020, 77, 420–433. [Google Scholar] [CrossRef]
- Font, A.; Domenech, M.; Ramirez, J.L.; Marqués, M.; Benítez, R.; Ruiz De Porras, V.; Gago, J.L.; Carrato, C.; Sant, F.; Lopez, H.; et al. Predictive signature of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer integrating mRNA expression, taxonomic subtypes, and clinicopathological features. Front Oncol. 2023, 13, 1155244. [Google Scholar] [CrossRef]
- Teo, M.Y.; Seier, K.; Ostrovnaya, I.; Regazzi, A.M.; Kania, B.E.; Moran, M.M.; Cipolla, C.K.; Bluth, M.J.; Chaim, J.; Al-Ahmadie, H.; et al. Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers. J. Clin. Oncol. 2018, 36, 1685–1694. [Google Scholar] [CrossRef]
- Maiorano, B.A.; Di Maio, M.; Cerbone, L.; Maiello, E.; Procopio, G.; Roviello, G.; MeetUROGroup. Significance of PD-L1 in Metastatic Urothelial Carcinoma Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e241215. [Google Scholar] [CrossRef]
- Jindal, T.; Zhu, X.; Zhang, L.; Reyes, K.R.; Deshmukh, P.; De Kouchkovsky, I.; Kumar, V.; Maldonado, E.; Shipp, C.; Kwon, D.H.; et al. Association of biomarkers and response to immune checkpoint inhibitors (ICIs) in patients with metastatic urothelial carcinoma (mUC) with high and low tumor mutation burden (TMB). J. Clin. Oncol. 2023, 41 (Suppl. 6), 534. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Fradet, Y.; Climent, M.A.; Petrylak, D.P.; Lee, J.-L.; Fong, L.; Necchi, A.; Sternberg, C.N.; O’Donnell, P.H.; et al. Putative Biomarkers of Clinical Benefit with Pembrolizumab in Advanced Urothelial Cancer: Results from the KEYNOTE-045 and KEYNOTE-052 Landmark Trials. Clin. Cancer Res. 2022, 28, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Fléchon, A.; Morales-Barrera, R.; Powles, T.; Alva, A.; Özgüroğlu, M.; Csöszi, T.; Loriot, Y.; Rodriguez-Vida, A.; Géczi, L.; Cheng, S.Y.; et al. Association of Tumor Mutational Burden and PD-L1 with the Efficacy of Pembrolizumab with or without Chemotherapy versus Chemotherapy in Advanced Urothelial Carcinoma. Clin. Cancer Res. 2024, 30, 5353–5364. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Talukder, R.; Makrakis, D.; Diamantopoulos, L.; Enright, T.; Leary, J.B.; Patgunarajah, U.; Thomas, V.M.; Swami, U.; Agarwal, N.; et al. Association of Tumor Mutational Burden and Microsatellite Instability with Response and Outcomes in Patients with Urothelial Carcinoma Treated with Immune Checkpoint Inhibitor. Clin. Genitourin. Cancer 2024, 22, 102198. [Google Scholar] [CrossRef]
- Klümper, N.; Tran, N.K.; Zschäbitz, S.; Hahn, O.; Büttner, T.; Roghmann, F.; Bolenz, C.; Zengerling, F.; Schwab, C.; Nagy, D.; et al. NECTIN4 Amplification Is Frequent in Solid Tumors and Predicts Enfortumab Vedotin Response in Metastatic Urothelial Cancer. J. Clin. Oncol. 2024, 42, 2446–2455. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.F.; Fenton, S.E.; Nazari, S.; Elliott, A.; Garje, R.; Salmasi, A.; Bagrodia, A.; Nabhan, C.; VanderWeele, D.J.; McKay, R.R. Landscape analysis and oncologic outcomes in advanced urothelial carcinoma (UC) by NECTIN4 RNA expression. J. Clin. Oncol. 2024, 42 (Suppl. 16), 4585. [Google Scholar] [CrossRef]
- Vlachou, E.; Matoso, A.; McConkey, D.; Jing, Y.; Johnson, B.A.; Hahn, N.M.; Hoffman-Censits, J. Enfortumab Vedotin–related Cutaneous Toxicity and Radiographic Response in Patients with Urothelial Cancer: A Single-center Experience and Review of the Literature. Eur. Urol. Open Sci. 2023, 49, 100–103. [Google Scholar] [CrossRef]
- Fateh, H.R.; Madani, S.P. Role of interdigital sensory nerve conduction study as a noninvasive approach for early diagnosis of diabetic peripheral neuropathy. J. Diabetes Metab. Disord. 2021, 20, 71–75. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Salehifar, E.; Janbabaei, G.; Hendouei, N.; Alipour, A.; Tabrizi, N.; Avan, R. Comparison of the Efficacy and Safety of Pregabalin and Duloxetine in Taxane-Induced Sensory Neuropathy: A Randomized Controlled Trial. Clin. Drug Investig. 2020, 40, 249–257. [Google Scholar] [CrossRef]
- Farshchian, N.; Alavi, A.; Heydarheydari, S.; Moradian, N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother. Pharmacol. 2018, 82, 787–793. [Google Scholar] [CrossRef]
- Hirayama, Y.; Ishitani, K.; Sato, Y.; Iyama, S.; Takada, K.; Murase, K.; Kuroda, H.; Nagamachi, Y.; Konuma, Y.; Fujimi, A.; et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: A pilot randomized trial. Int. J. Clin. Oncol. 2015, 20, 866–871. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Chia, Y.L.; Yu, E.Y.; Powles, T.; Flaig, T.W.; Loriot, Y.; O’Donnell, P.H.; Heath, E.I.; Kojima, T.; Park, S.H.; et al. Impact of exposure on outcomes with enfortumab vedotin in patients with locally advanced or metastatic urothelial cancer. J. Clin. Oncol. 2024, 42 (Suppl. 6), 4503. [Google Scholar] [CrossRef]
- Mourey, L.; Flechon, A.; Tosi, D.; Abadie Lacourtoisie, S.; Joly, F.; Guillot, A.; Loriot, Y.; Dauba, J.; Roubaud, G.; Rolland, F.; et al. Vefora, GETUG-AFU V06 study: Randomized multicenter phase II/III trial of fractionated cisplatin (CI)/gemcitabine (G) or carboplatin (CA)/g in patients (pts) with advanced urothelial cancer (UC) with impaired renal function (IRF)—Results of a planned interim analysis. J. Clin. Oncol. 2020, 38 (Suppl. 6), 461. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, J.L.; You, D.; Jeong, I.G.; Song, C.; Hong, B.; Hong, J.H.; Ahn, H. Gemcitabine plus split-dose cisplatin could be a promising alternative to gemcitabine plus carboplatin for cisplatin-unfit patients with advanced urothelial carcinoma. Cancer Chemother. Pharmacol. 2015, 76, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Sternschuss, M.; Whiting, K.; Arbuiso, A.; Gupta, A.; Bent, E.H.; Alvarez, N.; Regazzi, A.M.; Liang, S.; Ahmed, F.; Akin, O.; et al. Treatment patterns and clinical outcomes with platinum-based chemotherapy after enfortumab vedotin and pembrolizumab in patients with metastatic urothelial carcinoma. J. Clin. Oncol. 2025, 43 (Suppl. 16), 4573. [Google Scholar] [CrossRef]
- Barthélémy, P.; Thibault, C.; Fléchon, A.; Gross-Goupil, M.; Voog, E.; Eymard, J.-C.; Abraham, C.; Chasseray, M.; Lorgis, V.; Hilgers, W.; et al. Real-world Study of Avelumab First-line Maintenance Treatment in Patients with Advanced Urothelial Carcinoma in France: Overall Results from the Noninterventional AVENANCE Study and Analysis of Outcomes by Second-line Treatment. Eur. Urol. Oncol. 2025, 8, 407–416. [Google Scholar] [CrossRef]
| Incidence | Most Relevant | Leading to Dose Reduction | Leading to Treatment Withdrawal | Leading to Death | |
|---|---|---|---|---|---|
| Enfortumab- Vedotin (n = 301) [6] | 70.9% | Dermatological (14.2%) Peripheral neuropathy (5.9%) Hyperglycemia (3.7%) Ocular disorders (0.7%) Hematological (14%) Decreased neutrophil count (6.1%) | 34.1% | 17.2% | 3.7% |
| Sacituzumab-Govitecan (n = 357) [7] | 67% | Neutropenia (35%) Anemia (13%) Diarrhea (15%) Nausea and vomiting (6%) | 37% | 11% | 7% |
| Pembrolizumab (n = 370) [51] | 16% | Hepatitis (1%) Colitis (1%) Pneumonitis (1%) Arthritis (1%) Rash < 1% | None | 11% | <1% |
| Atezolizumab (n = 119) [52] | 16% | Colitis (1%) Rash (1%) Hepatitis (1%) | None | 8% | <1% |
| Avelumab (n = 350) [9,53] | 16.6% | Colitis (0.6%) Arthritis (0.6%) Hypothyroidism (0.3%) Rash (0.3%) | None | 11.9% | <1% |
| Erdafitinib (n = 136) [10] | 45.9% | Hyperfosfatemia (5.2%) Stomatitis (8.1%) Palmar-plantar erythrodysesthesia (9.6%) Nail disorder (11.1%) Skin disorder (11.9%) Eye disorder (4.4%) | 65.9% | 8.1% | 4.4% |
| Disitamab- Vedotin (n = 43) [39] | 58.9% | Peripheral neuropathy (23.3%) Neutropenia (14%) | Not reported | 25.6% | None |
| Trastuzumab-Deruxtecan (n = 36) [38] | 41.5% | Neutropenia (10.9%) Anemia (10.9%) Pneumonitis (0.4%) | 36.6% | 9.8% | 2.4% |
| Grade | Definition | Management | Symptomatic Treatment |
|---|---|---|---|
| G1 | <10% body surface area Asymptomatic or mild symptoms | Continue therapy | Emollients, topical steroids, oral antihistamines |
| G2 | 10–30% body surface area Moderated symptoms (impacting daily activity) | Continue therapy * | Emollients, topical steroids, oral antihistamines |
| G3 | >30% body surface area Self-care limiting symptoms | Hold until ≤G1 Reintroduce at dose level −1 | Refer to dermatology |
| G4 | Severe, potentially life-threatening | Discontinue permanently | Hospital admission |
| Definition | Management | Symptomatic Treatment | |
|---|---|---|---|
| G1 | Asymptomatic or mild symptom. Clinical or diagnostic observations only | Continue therapy | Duloxetine has shown some clinical benefit in symptomatic cases 90–92 |
| G2 | Moderate symptoms limiting instrumental activities of daily living | Hold until ≤G1 Reintroduce at dose level −1 | |
| G3 | Severe symptoms limiting self-care activities | Discontinue permanently | |
| G4 | Severe, potentially life-threatening | Discontinue permanently |
| Definition | Management | Symptomatic Treatment | |||||
|---|---|---|---|---|---|---|---|
| G1 | Asymptomatic Radiologic findings only | EV Continue therapy | T-DXd Hold until complete resolution <28 days: same dose >28 days: level −1 | ICI Delay treatment Monitor symptons every 2–3 days | EV None | T-DXd Corticosteroids (0.5–1 mg/kg/day) | ICI None |
| G2 | Symptomatic, not limiting self-care (cough, mild/moderate dyspnea) | EV Hold until ≤G1 Reintroduce at dose level −1 | T-DXd Discontinue permanently | ICI Hold until ≤G1 | Corticosteroids (1 mg/kg/day) | ||
| G3 | Severe, limiting self-care (oxygen requirement) | Discontinue permanently | Hospitalize Corticosteroids (1–2 mg/kg/day) Cover with empirics antibiotics (if ICI are identified as the underlying cause) | ||||
| G4 | Severe, life-threatening (mechanical ventilation) | ||||||
| Definition | Management Baseline Ophthalmologic Evaluation Is Mandatory, Followed by Monthly Assessments for the First 4 Months and Every 3 Months Thereafter | |
|---|---|---|
| G1 | Asymptomatic or mild symptom. Clinical or diagnostic observations only, or abnormal Amsler grid test. | Ophthalmologic exam (OE) in <7 days:
|
| G2 | Moderate symptoms, limitation of age-appropriate activities of daily living | Hold and refer for OE immediately:
|
| G3 | Clinically significant symptoms, limitation of self-care activities of daily living without threat to vision | Hold and refer for OE immediately: If resolved within 4 weeks, reintroduce at level −2 after symptoms resolution |
| G4 | Vision-threatening consequences, blindness (20/200 or worse) | Discontinue permanently |
| Definition | Management | Symptomatic treatment | |
|---|---|---|---|
| G1 | Serum phosphate: 5.6–6.9 mg/dL | Continue therapy | Phosphate binder until ≤G1 |
| G2 | Serum phosphate: 7.0–8.9 mg/dL | Continue therapy or dose level −1 if:
| |
| G3 | Serum phosphate: 9.0–10.0 mg/dL | Hold until ≤G1 Reintroduce at same dose or level −1 if:
| |
| G4 | Serum phosphate: 7.0–9.0 mg/dL | Hold until ≤G1 Reintroduce at level −1 if or discontinue permanently if:
|
| Definition | Management | ||
|---|---|---|---|
| Sacituzumab-Govitecan | Anti-Trop2 | ||
| G1 | 1500 ≤ LLN/mm3 | Continue therapy | Continue therapy |
| G2 | 1000–1500/mm3 | Continue therapy | Continue therapy |
| G3 | 500–1000/mm3 | Grade 4 lasting ≥ 7 days Grade 3 and fever ≥ 38.5 °C Grade 3–4 causing a delay of 2 to 3 weeks until recovery to ≤Grade 1:
| Hold until ≤G2. Reintroduce:
|
| G4 | <500/mm3 | Hold until ≤G2. Reintroduce at level −1 | |
| Definition | Management | ||
|---|---|---|---|
| Vomiting | Diarrhea | ||
| G1 | Intervention not indicated | <4 stools per day | Continue therapy |
| G2 | Outpatient intravenous hydratation | 4–6 stools per day Limiting instrumental activities of daily living | Continue therapy |
| G3 | Hospitalization indicated: tube feeding or total parenteral nutrition | ≥7 stools per day Limiting self-care activities of daily living | Any Grade 3–4 vomiting or diarrhea that is not controlled with antiemetics and antidiarrheals (persists for more than 48 h despite optimal management) At the time of scheduled treatment causes a delay of 2 to 3 weeks until recovery to ≤Grade 1
|
| G4 | Life-threatening consequences | Life-threatening consequences | |
| Definition | Management | Symptomatic Treatment | |
|---|---|---|---|
| G1 | Asymptomatic or mild symptoms Clinical or diagnostic observations only Intervention not indicated | Continue therapy with close monitoring * | None |
| G2 | Moderated symptoms Limiting instrumental activities of daily living | Hold ICI and resume when symptoms and/or laboratory values revert until ≤G1 | Corticosteroids (0.5–1 mg/kg/day) |
| G3 | Limiting self-care activities of daily living | Hold until ≤G1 rechallenging may be offered (caution is advised) | Corticosteroids (1–2 mg/kg/day) They should be tapered over the course of at least 4–6 weeks If symptoms do not improve with 48–72 h, infliximab may be offered for some toxicities. |
| G4 | Severe symptoms Potentially life-threatening | Discontinue permanently |
| Initial Dose | Dose Reductions | |
|---|---|---|
| Enfortumab-Vedotin | 1.25 mg/kg/day | 1.00 mg/kg/day –> 0.75 mg/kg/day –> 0.5 mg/kg/day |
| Sacituzumab-Govitecan | 10 mg/kg/day | 7.5 mg/kg/day –> 5 mg/kg/day |
| ICI | Pembrolizumab: 200 mg/day Atezolizumab: 1200 mg/day Avelumab: 800 mg/day | Dose adjustments are not recommended |
| Erdafitinib | 8 mg/day Increase the dose to 9 mg after 14–21 days if no toxicity is observed. | 8 mg/day –> 6 mg/day –> 5 mg/day –> 5 mg/day |
| Trastuzumab- Deruxtecan | 5.4 mg/kg/day | 4.4 mg/kg/day –> 3.2 mg/kg/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, P.; González-Merino, C.; García de Quevedo, C.; Subiela, J.D.; Sotoca, P.; Calvo, J.C.; Bueno, C.; García, A.; Orejana, I.; Artiles, A.; et al. Toxicity Profile of New Therapies in Metastatic Urothelial Carcinoma and Its Impact on Treatment Selection. Cancers 2025, 17, 3523. https://doi.org/10.3390/cancers17213523
Guerrero P, González-Merino C, García de Quevedo C, Subiela JD, Sotoca P, Calvo JC, Bueno C, García A, Orejana I, Artiles A, et al. Toxicity Profile of New Therapies in Metastatic Urothelial Carcinoma and Its Impact on Treatment Selection. Cancers. 2025; 17(21):3523. https://doi.org/10.3390/cancers17213523
Chicago/Turabian StyleGuerrero, Patricia, Carlos González-Merino, Coral García de Quevedo, José Daniel Subiela, Pilar Sotoca, Juan Carlos Calvo, Carolina Bueno, Adriana García, Inmaculada Orejana, Alberto Artiles, and et al. 2025. "Toxicity Profile of New Therapies in Metastatic Urothelial Carcinoma and Its Impact on Treatment Selection" Cancers 17, no. 21: 3523. https://doi.org/10.3390/cancers17213523
APA StyleGuerrero, P., González-Merino, C., García de Quevedo, C., Subiela, J. D., Sotoca, P., Calvo, J. C., Bueno, C., García, A., Orejana, I., Artiles, A., & Gajate, P. (2025). Toxicity Profile of New Therapies in Metastatic Urothelial Carcinoma and Its Impact on Treatment Selection. Cancers, 17(21), 3523. https://doi.org/10.3390/cancers17213523

