SH003 as a Redox-Immune Modulating Phytomedicine: A Ferroptosis Induction, Exosomal Crosstalk, and Translational Oncology Perspective
Simple Summary
Abstract
1. Introduction
Review Methodology
2. Mechanistic Basis of SH003 in Redox Biology
2.1. Exosome-Immune Crosstalk and NRF2 Modulation
2.2. Ferroptosis Induction
2.3. NRF2-KEAP1 and Redox Adaptation
2.4. ER Stress and Apoptosis
2.5. Mitochondrial ROS Disruption
2.6. ROS-Generation Properties of SH003 Constituents
2.7. Integrated Perspective
2.8. Biomarkers and Translational Perspectives
3. Discussion and Translational Perspectives
Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| 4-HNE | 4-hydroxynonenal |
| ACSL4 | acyl-CoA synthetase long chain family member 4 |
| AKT | protein kinase B |
| AMPK | AMP-activated protein kinase |
| ATF4 | activating transcription factor 4 |
| BAK1 | BCL2 antagonist/killer 1 |
| BAX | BCL2-associated X apoptosis regulator |
| CHOP | DNA damage inducible transcript 3 |
| CYCS | cytochrome c, somatic |
| eIF2α | eukaryotic translation initiation factor 2 subunit alpha |
| ER | endoplasmic reticulum |
| GPX4 | glutathione peroxidase 4 |
| GSK3β | glycogen synthase kinase 3 beta |
| HO-1 | heme oxygenase 1 |
| JAK2 | Janus kinase 2 |
| KEAP1 | kelch-like ECH-associated protein 1 |
| LPCAT3 | lysophosphatidylcholine acyltransferase 3 |
| miRNA | microRNA |
| NF-κB | nuclear factor kappa B |
| NQO1 | NAD(P)H quinone dehydrogenase 1 |
| NRF2 | NFE2-like bZIP transcription factor 2 |
| NSCLC | non-small cell lung cancer |
| OXPHOS | oxidative phosphorylation |
| p62/SQSTM1 | sequestosome 1 |
| PD-L1 | Programmed death-ligand 1 |
| PERK | eukaryotic translation initiation factor 2 alpha kinase 3 |
| PI3K | phosphatidylinositol 3-kinase |
| ROS | reactive oxygen species |
| SLC7A11 | solute carrier family 7 member 11 |
| STAT3 | signal transducer and activator of transcription 3 |
| TNBC | triple-negative breast cancer |
| Treg | regulatory T cell |
| TRX2 | thioredoxin 2 |
| ULK1 | Unc-51 like autophagy activating kinase 1 |
| UPR | unfolded protein response |
| VPS34 | class III phosphatidylinositol 3-kinase (PIK3C3) |
References
- Ju, S.; Singh, M.K.; Han, S.; Ranbhise, J.; Ha, J.; Choe, W.; Yoon, K.S.; Yeo, S.G.; Kim, S.S.; Kang, I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int. J. Mol. Sci. 2024, 25, 12387. [Google Scholar] [CrossRef]
- Hayashi, M.; Okazaki, K.; Papgiannakopoulos, T.; Motohashi, H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb. Perspect. Med. 2024, 14, a041546. [Google Scholar] [CrossRef]
- Choi, Y.K.; Cho, S.G.; Woo, S.M.; Yun, Y.J.; Park, S.; Shin, Y.C.; Ko, S.G. Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling. Mediat. Inflamm. 2014, 2014, 492173. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.Y.; Cheon, C.; Ko, S.-G. Development and Validation of a New Analytical HPLC-PDA Method for Simultaneous Determination of Cucurbitacins B and D from the Roots of Trichosanthes kirilowii. J. Chem. 2022, 2022, 2109502. [Google Scholar] [CrossRef]
- Kim, H.I.; Han, Y.; Kim, M.H.; Boo, M.; Cho, K.J.; Kim, H.L.; Lee, I.S.; Jung, J.H.; Kim, W.; Um, J.Y.; et al. The multi-herbal decoction SH003 alleviates LPS-induced acute lung injury by targeting inflammasome and extracellular traps in neutrophils. Phytomedicine 2024, 133, 155926. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Lee, S.-E.; Kim, D.; Lim, H.-I.; Choi, D.K.; Park, B.K.; Jeon, C.-Y.; Ko, S.-G. The combination of SH003 and DTX induces cytotoxic cell infiltration in anti-PD1 resistant lung cancer. Cancer Immunol. Immunother. 2025, 74, 198. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.; Lee, H.W.; Sym, S.J.; Ko, S.-G. Safety of the herbal medicine SH003 in patients with solid cancer: A multi-center, single-arm, open-label, dose-escalation phase I study. Integr. Cancer Ther. 2024, 23, 15347354241293451. [Google Scholar] [CrossRef]
- Cheon, C.; Ko, S.-G. A phase I study to evaluate the safety of the herbal medicine SH003 in patients with solid cancer. Integr. Cancer Ther. 2020, 19, 1534735420911442. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.; Kim, H.; Kang, S.Y.; Lee, S.Y.; Park, K.H.; Ko, S.-G. Safety Evaluation of SH003 and Docetaxel Combination in Patients With Breast and Lung Cancer: A Multi-Center, Open-Label, Dose Escalation Phase I Clinical Trial. Integr. Cancer Ther. 2025, 24, 15347354251363892. [Google Scholar] [CrossRef]
- Luo, L.-Y.; Fan, M.-X.; Zhao, H.-Y.; Li, M.-X.; Wu, X.; Gao, W.-Y. Pharmacokinetics and bioavailability of the isoflavones formononetin and ononin and their in vitro absorption in ussing chamber and Caco-2 cell models. J. Agric. Food Chem. 2018, 66, 2917–2924, Correction in: J. Agric. Food Chem. 2018, 66, 12453. [Google Scholar] [CrossRef]
- Jia, X.; Chen, J.; Lin, H.; Hu, M. Disposition of flavonoids via enteric recycling: Enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. J. Pharmacol. Exp. Ther. 2004, 310, 1103–1113. [Google Scholar] [CrossRef]
- Ding, M.; Bao, Y.; Liang, H.; Zhang, X.; Li, B.; Yang, R.; Zeng, N. Potential mechanisms of formononetin against inflammation and oxidative stress: A review. Front. Pharmacol. 2024, 15, 1368765. [Google Scholar] [CrossRef]
- Urabe, F.; Kosaka, N.; Ito, K.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am. J. Physiol. Cell Physiol. 2020, 318, C29–C39. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiong, Y.; Zhang, H.; Zhao, Y.; Han, K.; Zhang, J.; Zhao, D.; Yu, Z.; Geng, Z.; Wang, L.; et al. hPMSCs-Derived Exosomal miRNA-21 Protects Against Aging-Related Oxidative Damage of CD4(+) T Cells by Targeting the PTEN/PI3K-Nrf2 Axis. Front. Immunol. 2021, 12, 780897. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Yuan, D.; Yue, S.; Yang, Z. Follicular fluid derived exosomal miR-4449 regulates cell proliferation and oxidative stress by targeting KEAP1 in human granulosa cell lines KGN and COV434. Exp. Cell Res. 2023, 430, 113735. [Google Scholar] [CrossRef]
- Park, M.N.; Kim, M.; Lee, S.; Kang, S.; Ahn, C.-H.; Tallei, T.E.; Kim, W.; Kim, B. Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology. Antioxidants 2025, 14, 501. [Google Scholar] [CrossRef] [PubMed]
- Lei, D.; Li, B.; Isa, Z.; Ma, X.; Zhang, B. Hypoxia-elicited cardiac microvascular endothelial cell-derived exosomal miR-210–3p alleviate hypoxia/reoxygenation-induced myocardial cell injury through inhibiting transferrin receptor 1-mediated ferroptosis. Tissue Cell 2022, 79, 101956. [Google Scholar] [CrossRef]
- Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C.; Traverso, N. Hormesis and oxidative distress: Pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants 2022, 11, 1613. [Google Scholar] [CrossRef]
- Xu, L.; Cao, Y.; Xu, Y.; Li, R.; Xu, X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol. Biosci. 2024, 24, 2300238. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Meiners, S.; Lukas, C.; Stathopoulos, G.T.; Chen, J. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif. 2020, 53, e12828. [Google Scholar] [CrossRef] [PubMed]
- Masaoutis, C.; Mihailidou, C.; Tsourouflis, G.; Theocharis, S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie 2018, 151, 27–36. [Google Scholar] [CrossRef]
- Vautrot, V.; Chanteloup, G.; Elmallah, M.; Cordonnier, M.; Aubin, F.; Garrido, C.; Gobbo, J. Exosomal miRNA: Small Molecules, Big Impact in Colorectal Cancer. J. Oncol. 2019, 2019, 8585276. [Google Scholar] [CrossRef] [PubMed]
- Petroušková, P.; Hudáková, N.; Maloveská, M.; Humeník, F.; Cizkova, D. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer. Life 2022, 12, 524. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Hu, R.; Jiang, L.; Wen, B.; Jiang, Z.; Liu, H.; Mei, J. Butyrate enhances erastin-induced ferroptosis of lung cancer cells via modulating the ATF3/SLC7A11 pathway. Environ. Toxicol. 2024, 39, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Zhang, K.; Cao, Y.; Hu, Y. Adipose stem cell exosomes, stimulated by pro-inflammatory factors, enhance immune evasion in triple-negative breast cancer by modulating the HDAC6/STAT3/PD-L1 pathway through the transporter UCHL1. Cancer Cell Int. 2024, 24, 385. [Google Scholar] [CrossRef]
- Jeong, M.-S.; Lee, K.-W.; Choi, Y.-J.; Kim, Y.-G.; Hwang, H.-H.; Lee, S.-Y.; Jung, S.-E.; Park, S.-A.; Lee, J.-H.; Joo, Y.-J. Synergistic antitumor activity of SH003 and docetaxel via EGFR signaling inhibition in non-small cell lung cancer. Int. J. Mol. Sci. 2021, 22, 8405. [Google Scholar] [CrossRef]
- Cheon, C.; Ko, S.-G. Phase I study to evaluate the maximum tolerated dose of the combination of SH003 and docetaxel in patients with solid cancer: A study protocol. Medicine 2020, 99, e22228. [Google Scholar] [CrossRef]
- Choi, H.S.; Ku, J.K.; Ko, S.G.; Yun, P.Y. Anticancer effects of SH003 and its active component Cucurbitacin D on oral cancer cell lines via modulation of EMT and cell viability. Oncol. Res. 2025, 33, 1217–1227. [Google Scholar] [CrossRef]
- Han, N.R.; Kim, K.C.; Kim, J.S.; Ko, S.G.; Park, H.J.; Moon, P.D. The immune-enhancing effects of a mixture of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) or its active constituent nodakenin. J. Ethnopharmacol. 2022, 285, 114893. [Google Scholar] [CrossRef]
- He, W.; Chang, L.; Li, X.; Mei, Y. Research progress on the mechanism of ferroptosis and its role in diabetic retinopathy. Front. Endocrinol. 2023, 14, 1155296. [Google Scholar] [CrossRef]
- Ju, Y.; Ma, C.; Huang, L.; Tao, Y.; Li, T.; Li, H.; Huycke, M.M.; Yang, Y.; Wang, X. Inactivation of glutathione S-transferase alpha 4 blocks Enterococcus faecalis-induced bystander effect by promoting macrophage ferroptosis. Gut Microbes 2025, 17, 2451090. [Google Scholar] [CrossRef]
- Yang, M.; Chen, X.; Cheng, C.; Yan, W.; Guo, R.; Wang, Y.; Zhang, H.; Chai, J.; Cheng, Y.; Zhang, F. Cucurbitacin B induces ferroptosis in oral leukoplakia via the SLC7A11/mitochondrial oxidative stress pathway. Phytomedicine 2024, 129, 155548. [Google Scholar] [CrossRef]
- Li, H.; Li, J.-X.; Zeng, Y.-D.; Zheng, C.-X.; Dai, S.-S.; Yi, J.; Song, X.-D.; Liu, T.; Liu, W.-H. Luteolin ameliorates ischemic/reperfusion injury by inhibiting ferroptosis. Metab. Brain Dis. 2025, 40, 159. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, Z.; Chen, L.; Zhang, T.; Wei, D.; Chen, X.; Wang, Y. Cadmium Inhibits Proliferation of Human Bronchial Epithelial BEAS-2B Cells Through Inducing Ferroptosis via Targeted Regulation of the Nrf2/SLC7A11/GPX4 Pathway. Int. J. Mol. Sci. 2025, 26, 7204. [Google Scholar] [CrossRef]
- Tang, R.; Zhang, L.; Lou, J.; Mo, W.; Zhao, L.; Li, L.; Zhang, K.; Yu, Q. Formononetin prevents intestinal injury caused by radiotherapy in colorectal cancer mice via the Keap1-Nrf2 signaling pathway. Biochem. Biophys. Res. Commun. 2025, 761, 151676. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, G.O.; Afees, O.J.; Nwamaka, N.C.; Simon, N.; Oluwaseun, A.A.; Soyinka, T.; Oluwaseun, A.S.; Bankole, S. Selection of Luteolin as a potential antagonist from molecular docking analysis of EGFR mutant. Bioinformation 2018, 14, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, X.; Lin, D.; Zhang, L.; Wu, Y.; Chang, Y.; Jin, M.; Huang, G. Baicalin induces cell death of non-small cell lung cancer cells via MCOLN3-mediated lysosomal dysfunction and autophagy blockage. Phytomedicine 2024, 133, 155872. [Google Scholar] [CrossRef]
- Sahu, P.K.; Sahu, R.; Mishra, D.P.; Padmaja, K.; Mishra, S.K. Leea macrophylla root extract possess potential cytotoxicity in vitro against HepG2, MCF7 cells and in vivo in EAC xenografted model. Adv. Tradit. Med. 2025, 1–21. [Google Scholar] [CrossRef]
- Mann, G.E.; Bonacasa, B.; Ishii, T.; Siow, R.C. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones. Curr. Opin. Pharmacol. 2009, 9, 139–145. [Google Scholar] [CrossRef]
- Dastghaib, S.; Shafiee, S.M.; Ramezani, F.; Ashtari, N.; Tabasi, F.; Saffari-Chaleshtori, J.; Vakili, O.; Siri, M.; Igder, S.; Zamani, M.; et al. NRF1 or NRF2: Emerging Role of Redox Homeostasis on PERK/NRF/Autophagy Mediated Antioxidant in Tumor and Patient Dependent Chemo Sensitivity. Preprints 2024, 2024010079. [Google Scholar] [CrossRef]
- Wang, X.; Kang, N.; Liu, Y.; Xu, G. Formononetin Exerts Neuroprotection in Parkinson’s Disease via the Activation of the Nrf2 Signaling Pathway. Molecules 2024, 29, 5364. [Google Scholar] [CrossRef]
- Chen, H.; Lou, Y.; Lin, S.; Tan, X.; Zheng, Y.; Yu, H.; Jiang, R.; Wei, Y.; Huang, H.; Qi, X.; et al. Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation. J. Ethnopharmacol. 2024, 322, 117576. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Ko, R.; Goshima, H.; Koike, A.; Shibano, M.; Fujimori, K. Formononetin attenuates H2O2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. NeuroToxicology 2021, 85, 186–200. [Google Scholar] [CrossRef]
- Xu, K.; Ma, J.; Hall, S.R.; Peng, R.-W.; Yang, H.; Yao, F. Battles against aberrant KEAP1-NRF2 signaling in lung cancer: Intertwined metabolic and immune networks. Theranostics 2023, 13, 704. [Google Scholar] [CrossRef]
- MacLeod, A.K.; Acosta-Jimenez, L.; Coates, P.J.; McMahon, M.; Carey, F.A.; Honda, T.; Henderson, C.J.; Wolf, C.R. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br. J. Cancer 2016, 115, 1530–1539. [Google Scholar] [CrossRef]
- Pillai, R.; Hayashi, M.; Zavitsanou, A.-M.; Papagiannakopoulos, T. NRF2: KEAPing tumors protected. Cancer Discov. 2022, 12, 625–643. [Google Scholar] [CrossRef]
- Zavitsanou, A.-M.; Pillai, R.; Hao, Y.; Wu, W.L.; Bartnicki, E.; Karakousi, T.; Rajalingam, S.; Herrera, A.; Karatza, A.; Rashidfarrokhi, A. KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance. Cell Rep. 2023, 42, 113295. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Lee, M.-G.; El-Shazly, M.; Lai, K.-H.; Ke, S.-C.; Su, C.-W.; Shih, S.-P.; Sung, P.-J.; Hong, M.-C.; Wen, Z.-H. Isoaaptamine induces T-47D cells apoptosis and autophagy via oxidative stress. Mar. Drugs 2018, 16, 18. [Google Scholar] [CrossRef]
- Miao, X.; Zhuang, Z.; Zhou, Y.; Zhou, Y.; Xu, J.; Liu, Y. Serum SQSTM1 is a potential predictor for chemotherapeutic efficacy against non-small cell lung cancer. Int. J. Clin. Exp. Med. 2018, 11, 5811–5819. [Google Scholar]
- Hsu, H.Y.; Lin, T.Y.; Lu, M.K.; Leng, P.J.; Tsao, S.M.; Wu, Y.C. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer. Sci. Rep. 2017, 7, 44990. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Pareek, A.; Chuturgoon, A.A.; Sharma, R.; Pareek, A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed. Pharmacother. 2024, 173, 116294. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yun, M.; Kim, E.O.; Jung, D.B.; Won, G.; Kim, B.; Jung, J.H.; Kim, S.H. Decursin enhances TRAIL-induced apoptosis through oxidative stress mediated- endoplasmic reticulum stress signalling in non-small cell lung cancers. Br. J. Pharmacol. 2016, 173, 1033–1044. [Google Scholar] [CrossRef]
- Zasheva, D.; Mladenov, P.; Rusanov, K.; Simova, S.; Zapryanova, S.; Simova-Stoilova, L.; Moyankova, D.; Djilianov, D. Fractions of Methanol Extracts from the Resurrection Plant Haberlea rhodopensis Have Anti-Breast Cancer Effects in Model Cell Systems. Separations 2023, 10, 388. [Google Scholar] [CrossRef]
- Zheng, Y.; Dai, H.; Chen, R.; Zhong, Y.; Zhou, C.; Wang, Y.; Zhan, C.; Luo, J. Endoplasmic reticulum stress promotes sepsis-induced muscle atrophy via activation of STAT3 and Smad3. J. Cell. Physiol. 2023, 238, 582–596. [Google Scholar] [CrossRef]
- Ricciardi, C.A.; Gnudi, L. The endoplasmic reticulum stress and the unfolded protein response in kidney disease: Implications for vascular growth factors. J. Cell. Mol. Med. 2020, 24, 12910–12919. [Google Scholar] [CrossRef]
- Sarıkaya, S.; Almaghrebi, E.; Akat, F.; Hepbildi, E.N.; Kosucu, E.; Körez, M.K.; Vatansev, H. Investigation of endoplasmic reticulum stress parameters in patients with gestational diabetes mellitus: A prospective study. Int. J. Gynaecol. Obstet. 2025, 170, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Shen, F.; Liu, J.; Tang, H.; Zhang, K.; Teng, X.; Yang, F. The protective effect of Luteolin on chicken spleen lymphocytes from ammonia poisoning through mitochondria and balancing energy metabolism disorders. Poult. Sci. 2023, 102, 103093. [Google Scholar] [CrossRef] [PubMed]
- Atlante, A.; Calissano, P.; Bobba, A.; Azzariti, A.; Marra, E.; Passarella, S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 2000, 275, 37159–37166. [Google Scholar] [CrossRef]
- Yang, J.; Lu, Y.; Zhao, Y.; Wang, X. Mechanisms of SIRT3 regulation of aging and aging-related diseases and advances in drug therapy. Gerontology 2025, 68, 1–16. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Rupasinghe, H.V. Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxidative Med. Cell. Longev. 2013, 2013, 891748. [Google Scholar] [CrossRef]
- Song, T.; Yu, Z.; Shen, Q.; Xu, Y.; Hu, H.; Liu, J.; Zeng, K.; Lei, J.; Yu, L. Pharmacodynamic and Toxicity Studies of 6-Isopropyldithio-2′-guanosine Analogs in Acute T-Lymphoblastic Leukemia. Cancers 2024, 16, 1614. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82, 513–523. [Google Scholar] [CrossRef]
- Vaidya, T. Multiscale and Translational Quantitative Systems-Based Modeling and Simulation for Efficacy and Safety Assessment of Anti-Cancer Agents. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2020. [Google Scholar]
- Zhao, M.; Scott, S.; Evans, K.W.; Yuca, E.; Saridogan, T.; Zheng, X.; Wang, H.; Korkut, A.; Cruz Pico, C.X.; Demirhan, M. Combining neratinib with CDK4/6, mTOR, and MEK inhibitors in models of HER2-positive cancer. Clin. Cancer Res. 2021, 27, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-Q.; Zhao, L.-L.; Hong, C.; Zou, Q.-M.; Su, J.-X.; Li, S.-J.; Zhou, X.-F.; Li, Z.-S.; Deng, B.; Cao, J.; et al. Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol. Sin. 2024, 45, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Min, D.Y.; Jung, E.; Ahn, S.S.; Lee, Y.H.; Lim, Y.; Shin, S.Y. Chrysoeriol Prevents TNFα-Induced CYP19 Gene Expression via EGR-1 Downregulation in MCF7 Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 7523. [Google Scholar] [CrossRef] [PubMed]
- Bakar-Ates, F.; Ozkan, E. Cucurbitacin B and erastin co-treatment synergistically induced ferroptosis in breast cancer cells via altered iron-regulating proteins and lipid peroxidation. Toxicol. In Vitro 2024, 94, 105732. [Google Scholar] [CrossRef]
- Huang, S.; Cao, B.; Zhang, J.; Feng, Y.; Wang, L.; Chen, X.; Su, H.; Liao, S.; Liu, J.; Yan, J.; et al. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential. Cell Death Dis. 2021, 12, 237. [Google Scholar] [CrossRef]
- Kim, D.; Go, S.H.; Song, Y.; Lee, D.K.; Park, J.R. Decursin Induces G1 Cell Cycle Arrest and Apoptosis through Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress in Human Colorectal Cancer Cells in In Vitro and Xenograft Models. Int. J. Mol. Sci. 2024, 25, 9939. [Google Scholar] [CrossRef]
- Kim, T.W.; Ko, S.G. The Herbal Formula JI017 Induces ER Stress via Nox4 in Breast Cancer Cells. Antioxidants 2021, 10, 1881. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Ye, J.; Zhao, B.; Sun, J.; Gu, N.; Chen, X.; Ren, L.; Chen, J.; Cai, X.; Zhang, W.; et al. Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis. Redox Biol. 2020, 36, 101677. [Google Scholar] [CrossRef]
- Gao, H.; Wang, H.; Peng, J. Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway in HepG2 cancer cells. Cell Biochem. Biophys. 2014, 69, 27–34. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, W.; Li, T.; Jiang, L.; Lu, X.; Lin, J. Hispidulin exhibits potent anticancer activity in vitro and in vivo through activating ER stress in non-small-cell lung cancer cells. Oncol. Rep. 2020, 43, 1995–2003. [Google Scholar] [CrossRef]
- Eryilmaz, I.E.; Colakoglu Bergel, C.; Arioz, B.; Huriyet, N.; Cecener, G.; Egeli, U. Luteolin induces oxidative stress and apoptosis via dysregulating the cytoprotective Nrf2-Keap1-Cul3 redox signaling in metastatic castration-resistant prostate cancer cells. Mol. Biol. Rep. 2024, 52, 65. [Google Scholar] [CrossRef]
- Cao, Q.; Ding, S.; Zheng, X.; Li, H.; Yu, L.; Zhu, Y.; Jiang, D.; Ruan, S. Luteolin Induces GPX4-dependent Ferroptosis and Enhances Immune Activation in Colon Cancer. Phytomedicine 2025, 146, 157117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother. 2024, 174, 116512. [Google Scholar] [CrossRef]
- Xu, Y.; Tong, Y.; Lei, Z.; Zhu, J.; Wan, L. Abietic acid induces ferroptosis via the activation of the HO-1 pathway in bladder cancer cells. Biomed. Pharmacother. 2023, 158, 114154. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.; Cucci, M.A.; Grattarola, M.; Dianzani, C.; Muzio, G.; Pizzimenti, S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants 2021, 10, 510. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Q.; Lu, Y.; Zhang, J.; Yin, H.; Yi, Y. Clinical application of thioredoxin reductase as a novel biomarker in liver cancer. Sci. Rep. 2021, 11, 6069. [Google Scholar] [CrossRef]
- Li, F.; Lin, Q.; Shen, L.; Zhang, Z.; Wang, P.; Zhang, S.; Xing, Q.; Xia, Z.; Zhao, Z.; Zhang, Y. The diagnostic value of endoplasmic reticulum stress-related specific proteins GRP78 and CHOP in patients with sepsis: A diagnostic cohort study. Ann. Transl. Med. 2022, 10, 470. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Cao, Z.-G.; Hu, X.; Shao, Z.-M. The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res. Treat. 2014, 145, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhao, C.; Adajar, R.C.; DeZwaan-McCabe, D.; Rutkowski, D.T. A beneficial adaptive role for CHOP in driving cell fate selection during ER stress. EMBO Rep. 2024, 25, 228–253. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, L.; Wink, S.; Herpers, B.; Benedetti, G.; Hadi, M.; Bont, H.d.; Groothuis, G.; Luijten, M.; Danen, E.; Graauw, M.d. Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity. Toxicol. Sci. 2014, 140, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.-H.; Lee, B.-W.; Yi, D.-H.; Lee, S.-J.; Kim, W.-I.; Pak, S.-W.; Kim, H.-Y.; Kim, S.-H.; Shin, I.-S.; Kim, J.-C.; et al. Particulate matter-mediated oxidative stress induces airway inflammation and pulmonary dysfunction through TXNIP/NF-κB and modulation of the SIRT1-mediated p53 and TGF-β/Smad3 pathways in mice. Food Chem. Toxicol. 2024, 183, 114201. [Google Scholar] [CrossRef]
- Hao, Y.; Miao, J.; Liu, W.; Peng, L.; Chen, Y.; Zhong, Q. Formononetin protects against cisplatin-induced acute kidney injury through activation of the PPARα/Nrf2/HO-1/NQO1 pathway. Int. J. Mol. Med. 2021, 47, 511–522. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Shin, J.I.; Lee, S.; Lee, Y.G.; Kim, J.B.; Kwon, H.C.; Kim, S.H.; Kim, I.; Lee, K.; Han, Y.S. Angelica gigas Nakai Has Synergetic Effects on Doxorubicin-Induced Apoptosis. Biomed. Res. Int. 2018, 2018, 6716547. [Google Scholar] [CrossRef]
- Fathy, N.; Farouk, S.; Sayed, R.H.; Fahim, A.T. Ezetimibe ameliorates cisplatin-induced nephrotoxicity: A novel therapeutic approach via modulating AMPK/Nrf2/TXNIP signaling. FASEB J. 2024, 38, e23382. [Google Scholar] [CrossRef]
- Tang, Y.; Zhuang, Y.; Zhao, C.; Gu, S.; Zhang, J.; Bi, S.; Wang, M.; Bao, L.; Li, M.; Zhang, W.; et al. The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy. Front. Pharmacol. 2024, 15, 1280779. [Google Scholar] [CrossRef] [PubMed]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P. Iron complexes of flavonoids-antioxidant capacity and beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef]
- Tan, R.; Ge, C.; Yan, Y.; Guo, H.; Han, X.; Zhu, Q.; Du, Q. Deciphering ferroptosis in critical care: Mechanisms, consequences, and therapeutic opportunities. Front. Immunol. 2024, 15, 1511015. [Google Scholar] [CrossRef]
- Cheon, C.; Kang, S.; Ko, Y.; Kim, M.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Single-arm, open-label, dose-escalation phase I study to evaluate the safety of a herbal medicine SH003 in patients with solid cancer: A study protocol. BMJ Open 2018, 8, e019502. [Google Scholar] [CrossRef]
- Atwell, B.; Chalasani, P.; Schroeder, J. Nuclear epidermal growth factor receptor as a therapeutic target. Explor. Target. Antitumor Ther. 2023, 4, 616–629. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, H.; Xia, Y.; Le, X.; Tan, D.S.W.; Ramalingam, S.S.; Zhou, C. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 2025, 22, 95–116. [Google Scholar] [CrossRef]
- Choi, Y.K.; Cho, S.-G.; Choi, Y.-J.; Yun, Y.J.; Lee, K.M.; Lee, K.; Yoo, H.-H.; Shin, Y.C.; Ko, S.-G. SH003 suppresses breast cancer growth by accumulating p62 in autolysosomes. Oncotarget 2016, 8, 88386. [Google Scholar] [CrossRef]
- Kim, T.W.; Cheon, C.; Ko, S.G. SH003 activates autophagic cell death by activating ATF4 and inhibiting G9a under hypoxia in gastric cancer cells. Cell Death Dis. 2020, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Delgobo, M.; Gonçalves, R.M.; Delazeri, M.A.; Falchetti, M.; Zandoná, A.; Nascimento das Neves, R.; Almeida, K.; Fagundes, A.C.; Gelain, D.P.; Fracasso, J.I.; et al. Thioredoxin reductase-1 levels are associated with NRF2 pathway activation and tumor recurrence in non-small cell lung cancer. Free Radic. Biol. Med. 2021, 177, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Han, N.-R.; Park, H.-J.; Ko, S.-G.; Moon, P.-D. The Mixture of Natural Products SH003 Exerts Anti-Melanoma Effects through the Modulation of PD-L1 in B16F10 Cells. Nutrients 2023, 15, 2790. [Google Scholar] [CrossRef]
- Wongjaikam, S.; Siengdee, P.; Somnus, A.; Govitrapong, P. Melatonin Alleviates Erastin-Induced Cell Death by Inhibiting Ferroptosis and Amyloid Precursor Protein Processing in Neuronal Cell Lines. Neurotox. Res. 2025, 43, 25. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Lee, S.J. Extracellular Concentration of L-Cystine Determines the Sensitivity to System x(c) (-) Inhibitors. Biomol. Ther. 2022, 30, 184–190. [Google Scholar] [CrossRef]
- Lei, H.; Wang, G.; Zhang, J.; Han, Q. Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol. Rep. 2018, 40, 3447–3457. [Google Scholar] [CrossRef]
- Wigner, P.; Dziedzic, A.; Synowiec, E.; Miller, E.; Bijak, M.; Saluk-Bijak, J. Variation of genes encoding nitric oxide synthases and antioxidant enzymes as potential risks of multiple sclerosis development: A preliminary study. Sci. Rep. 2022, 12, 10603. [Google Scholar] [CrossRef]
- Udler, M.; Maia, A.-T.; Cebrian, A.; Brown, C.; Greenberg, D.; Shah, M.; Caldas, C.; Dunning, A.; Easton, D.; Ponder, B. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J. Clin. Oncol. 2007, 25, 3015–3023. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Lee, K.; Jeong, M.; Shin, Y.C.; Ko, S.-G. Metabolomic analysis of exosomes derived from lung cancer cell line H460 treated with SH003 and docetaxel. Metabolites 2022, 12, 1037. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, L.; Yu, H.; Chen, D.; Zhu, W.; Sun, C. Pharmacological effects of polyphenol phytochemicals on the JAK-STAT signaling pathway. Front. Pharmacol. 2021, 12, 716672. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Z.; Liu, Z. Formononetin restrains tumorigenesis of breast tumor by restraining STING-NF-κB and interfering with the activation of PD-L1. Discov. Med. 2024, 36, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Ma, N.; Wang, Y.; Li, X.; Xu, M. Reactive oxygen species in cancer: Mechanistic insights and therapeutic innovations. Cell Stress Chaperones 2025, 30, 100108. [Google Scholar]
- Jabalee, J.; Towle, R.; Garnis, C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018, 7, 93. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom. Proteom. Bioinform. 2015, 13, 17–24. [Google Scholar] [CrossRef]
- Marcus, M.E.; Leonard, J.N. FedExosomes: Engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals 2013, 6, 659–680. [Google Scholar] [CrossRef]
- Karabay, A.Z.; Ozkan, T.; Karadag Gurel, A.; Koc, A.; Hekmatshoar, Y.; Sunguroglu, A.; Aktan, F.; Buyukbingöl, Z. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 9701–9721. [Google Scholar] [CrossRef]
- Ferrari, P.; Scatena, C.; Ghilli, M.; Bargagna, I.; Lorenzini, G.; Nicolini, A. Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. Int. J. Mol. Sci. 2022, 23, 1665. [Google Scholar] [CrossRef]
- Mason, S.R.; Willson, M.L.; Egger, S.J.; Beith, J.; Dear, R.F.; Goodwin, A. Platinum-based chemotherapy for early triple-negative breast cancer. Cochrane Database Syst. Rev. 2023, 9. [Google Scholar] [CrossRef]
- Gao, T.; Hu, S.; Jiang, M.; Ou, G.; Zhong, R.; Sun, J.; Yang, Q.; Hu, K.; Gao, L. Combining network pharmacology and transcriptomics to validate and explore the efficacy and mechanism of Huayu Wan in treating non-small cell lung cancer. J. Ethnopharmacol. 2025, 347, 119724. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Mu, Y.; Gao, F.; Zhang, Y.; Shen, Z.; Zhao, Z.; Zhang, P.; Lv, T.; Wang, Y.; Liu, Y. Multi-tissue metabolomics and network pharmacology study on the intervention of Danggui Buxue Decoction in mice with gemcitabine induced myelosuppression. J. Ethnopharmacol. 2025, 343, 119498. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xi, J.; Liu, Z.; Ding, Y. Clinical study of Shenqi Fuzheng decoction directional penetration for the treatment of cancer pain in advanced lung cancer patients. Cirugía Cir. 2025, 93, 6–12. [Google Scholar] [CrossRef]
- Mao, J.T.; Xue, B.; Fan, S.; Neis, P.; Qualls, C.; Massie, L.; Fiehn, O. Leucoselect phytosome modulates serum eicosapentaenoic acid, docosahexaenoic acid, and prostaglandin E3 in a phase I lung cancer chemoprevention study. Cancer Prev. Res. 2021, 14, 619–626. [Google Scholar] [CrossRef]
- Santos, E.S.; Rodriguez, E. Treatment considerations for patients with advanced squamous cell carcinoma of the lung. Clin. Lung Cancer 2022, 23, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fu, Y.; Zhong, C.; Gacche, R.N.; Wu, P. Long non-coding RNA and Evolving drug resistance in lung cancer. Heliyon 2023, 9, e22591. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Y.; Tang, C.; Guan, X.; Zhang, W. Platinum-based systematic therapy in triple-negative breast cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2022, 1877, 188678. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, C.; Pratt, R.; Khoury, T.; Qu, J.; Fahey, J.W.; McCann, S.E.; Zhang, Y.; Wu, Y.; Hutson, A.D.; et al. A Presurgical-Window Intervention Trial of Isothiocyanate-Rich Broccoli Sprout Extract in Patients with Breast Cancer. Mol. Nutr. Food Res. 2022, 66, e2101094. [Google Scholar] [CrossRef]
- Ávila-Gálvez, M.; González-Sarrías, A.; Martínez-Díaz, F.; Abellán, B.; Martínez-Torrano, A.J.; Fernández-López, A.J.; Giménez-Bastida, J.A.; Espín, J.C. Disposition of Dietary Polyphenols in Breast Cancer Patients’ Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol. Nutr. Food Res. 2021, 65, e2100163. [Google Scholar] [CrossRef] [PubMed]
- Jafari, F.; Izadi-Avanji, F.S.; Maghami, M.; Sarvizadeh, M. Topical use of chicory root extract gel on the incidence and severity of radiodermatitis in breast cancer patients: A randomized controled trial. Support. Care Cancer 2024, 32, 805. [Google Scholar] [CrossRef] [PubMed]
- Meneses, A.G.; Ferreira, E.B.; Vieira, L.A.C.; Bontempo, P.S.M.; Guerra, E.N.S.; Ciol, M.A.; Reis, P. Comparison of liposomal gel with and without chamomile to prevent radiation dermatitis in breast cancer patients: A randomized controlled trial. Strahlenther. Onkol. 2025, 201, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Bounous, V.E.; Cipullo, I.; D’Alonzo, M.; Martella, S.; Franchi, D.; Villa, P.; Biglia, N.; Ferrero, A. A prospective, multicenter, randomized, double-blind placebo-controlled trial on purified and specific Cytoplasmic pollen extract for hot flashes in breast cancer survivors. Gynecol. Endocrinol. 2024, 40, 2334796. [Google Scholar] [CrossRef]
- Tanaka, M.; Tanaka, T.; Takamatsu, M.; Shibue, C.; Imao, Y.; Ando, T.; Baba, H.; Kamiya, Y. Effects of the Kampo medicine Yokukansan for perioperative anxiety and postoperative pain in women undergoing breast surgery: A randomized, controlled trial. PLoS ONE 2021, 16, e0260524. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Xin, X.U.; Jie, L.I.; Shengli, H.U.; Ying, W. Clinical effect of Shugan Jieyu San for improving liver function and alleviating depression in patients with triple negative breast cancer. J. Tradit. Chin. Med. 2025, 45, 633–638. [Google Scholar] [CrossRef]
- Siddiquee, S.; McGee, M.A.; Vincent, A.D.; Giles, E.; Clothier, R.; Carruthers, S.; Penniment, M. Efficacy of topical Calendula officinalis on prevalence of radiation-induced dermatitis: A randomised controlled trial. Australas. J. Dermatol. 2021, 62, e35–e40. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, P.; Sun, H. Clinical Efficacy of Yiqi Yangyin Decoction Combined with Adjuvant Chemotherapy on the Postoperative Life Quality of Breast Cancer. Nutr. Cancer 2024, 76, 824–830. [Google Scholar] [CrossRef]
- Heydari, B.; Sheikhalishahi, S.; Hoseinzade, F.; Shabani, M.; Ramezani, V.; Saghafi, F. Topical Curcumin for Prevention of Radiation-Induced Dermatitis: A Pilot Double-Blind, Placebo-Controlled Trial. Cancer Investig. 2025, 43, 173–182. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, F.F.; Cai, Y.Q.; Zhang, P.; Yang, X.F.; Bi, X.Y.; Qin, R.Y.; Zhang, S.; Yin, J.H.; Shen, L.P.; et al. Oral Decoctions Based on Qi-Yin Syndrome Differentiation After Adjuvant Chemotherapy in Resected Stage ΙΙΙA Non-Small Cell Lung Cancer: A Randomized Controlled Trial. Integr. Cancer Ther. 2024, 23, 15347354241268271. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Tang, X.; Yu, J.; Xiong, M.; Zhu, H.; Xiong, L.; Zeng, R.; Yu, P. Clinical observation of Yiqi Qingdu prescription on the treatment of intermediate-stage and advanced non-small-cell lung cancer. J. Tradit. Chin. Med. 2021, 41, 308–315. [Google Scholar]
- Kwag, E.; Kim, S.D.; Shin, S.H.; Oak, C.; Park, S.J.; Choi, J.Y.; Hoon Yoon, S.; Kang, I.C.; Jeong, M.K.; Woo Lee, H.; et al. A Randomized, Multi-Center, Open Label Study to Compare the Safety and Efficacy between Afatinib Monotherapy and Combination Therapy with HAD-B1 for the Locally Advanced or Metastatic NSCLC Patients with EGFR Mutations. Integr. Cancer Ther. 2024, 23, 15347354241268231. [Google Scholar] [CrossRef]
- Ko, M.M.; Na, S.W.; Yi, J.M.; Jang, H.; Choi, C.M.; Lee, S.H.; Lee, S.Y.; Jeong, M.K. Effects of Bojungikki-Tang on immune response and clinical outcomes in NSCLC patients receiving immune checkpoint inhibitors: A randomized pilot study. BMC Cancer 2025, 25, 1229. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, A.; Chen, D.; Yang, M.; Zhang, Y.; Liu, M.; Zhang, X.; Li, Y.; Liu, D.; Wang, Y.; et al. Gegen Qinlian Tablets attenuate immune-related adverse events in NSCLC patients: A multi-center randomized controlled trial in China. Phytomedicine 2025, 145, 156968. [Google Scholar] [CrossRef]
- Ming, W.; Yun, Z. Clinical value of modified Shenling Baizhu powder in treating targeted therapy-induced diarrhea in non-small cell lung cancer. J. Tradit. Chin. Med. 2024, 44, 1000–1005. [Google Scholar] [CrossRef]
- Ruixin, W.U.; Qingliang, F.; Sisi, G.; Xianglong, W.; Mengjun, S.; Zhujun, M.; Yabin, G.; Ling, X.U.; Di, Z.; Changsheng, D. A pilot study of precision treatment for patients with lung cancer pain by Longteng Tongluo recipe using serum genomics. J. Tradit. Chin. Med. 2024, 44, 1006–1016. [Google Scholar] [CrossRef] [PubMed]


| Compound | Chelation Potential | Biomarker | Key Mechanism | Translational Relevance | Model | Reference |
|---|---|---|---|---|---|---|
| Baicalein (5,6,7-trihydroxy flavone core) | Possible Fe2+ binding via 5-OH/4-keto; weaker than catechol flavonoids | NRF2/ GPX4 redox balance | Promotes ROS-driven cytotoxicity; inhibits JAK2/STAT3 → GPX4 suppression → ferroptosis | Biomarker modulation (NRF2/GPX4); ferroptosis sensitizer | HCT116, DLD1, CRC xenograft | [67] |
| Chrysoeriol (3″-methoxy-4″,5,7-trihydroxy flavone) | Lacks catechol; Fe2+ binding via 5-OH/4-keto | Inhibits TNFα-induced EGR-1/CYP19; reduces estrogen biosynthesis | Supportive flavonoid; potential chemopreventive adjuvant in ER+ breast cancer | MCF-7 | [68] | |
| Cucurbitacin B/D (Triterpenoid) | No strong chelation; enhances ferroptosis via SLC7A11–GPX4 suppression and ROS accumulation | GPX4, SLC7A11 | STAT3 inhibition (CuB strong; CuD possible); suppression of SLC7A11–GPX4 | Ferroptosis biomarker (GPX4↓); immune modulation via STAT3 (CuB evidence, CuD inferred) | MCF-7, MDA-MB-231, CNE1 xenograft | [69,70] |
| Decursin (pyranocoumarin) | No catechol chelation; redox modulation via ER stress | CHOP | Induces ER stress (PERK–eIF2α–ATF4–CHOP); Nox4-mediated ROS; caspase-3/9 activation | Biomarker: CHOP↑; ER stress–apoptosis driver; potential chemo-combination (oxaliplatin) | HCT-116, HCT-8, MCF-7, MDA-MB-231, LNCaP, DU145, PC3, PANC-1, MiaPaCa-2 | [71,72] |
| Formononetin (isoflavone) | No catechol chelation | NRF2, PI3K | Modulates KEAP1–NRF2 (GSTP1↑); PI3K/Akt–NRF2 linkage; ER stress (context-dependent) | Biomarker: NRF2 pathway; normal tissue protection; safe in oxaliplatin combinations | A549, HCT116, HT29, MCF-7, SH-SY5Y, CRC xenograft | [35,41,73] |
| Hispidulin (4″-methoxy-5,7-dihydroxy) | Limited Fe2+ binding (5,7-dihydroxy) | UPR/ CHOP | ROS-dependent apoptosis via mitochondrial dysfunction and ER stress (CHOP↑) | Translational apoptosis driver (UPR biomarker: CHOP↑, p-eIF2α↑) | HepG2, A549, NCI-H460 | [74,75] |
| Luteolin (3″,4″-dihydroxy catechol moiety, 5,7-dihydroxy) | Strong Fe2+ chelation (catechol group) | GPX4, NRF2 | Induces oxidative stress; downregulates NRF2–KEAP1–Cul3; triggers GPX4-dependent ferroptosis | Ferroptosis biomarkers (GPX4↓, lipid peroxidation, GSH/GSSG); immune activation (M1 polarization, CD8+ T-cell infiltration) | PC3, DU145; MC38, CT26; syngeneic mouse | [76,77] |
| Target | SH003 Modulation | Mechanistic Pathways | Biomarkers | Translational Relevance | Evidence Level | Refs: |
|---|---|---|---|---|---|---|
| Trx1/Trx2 | TrxR inhibition (baicalein, reported); TRX2 speculative/unvalidated | ↑ ASK1 activation, ↑ p53 stabilization, apoptosis/senescence | Trx1/Trx2 ratio, oxidation state | Established oxidative stress marker (clinical correlation); potential stratifier | Clinical correlation | [81] |
| GPX4 | Inhibition by cucurbitacin D | ↑ Ferroptotic cell death | GPX4 protein | Predictive marker for ferroptosis sensitivity (TNBC, NSCLC) | MDA-MB-231, Hs578T; A549, H460 | [79] |
| NRF2 | Suppression by baicalein, formononetin | ↓ antioxidant genes, ↑ ROS | NRF2 localization, HO-1/NQO1 | Context-dependent marker of adaptation and therapy resistance | HK-2, Wistar rat AKI | [87] |
| CHOP | Upregulation by decursin, hispidulin | ↑ ER stress–mediated apoptosis | CHOP expression | Apoptosis stress marker (HCC, prostate, cervical models) | HepG2, PC-3, DU145, HeLa, PC-3 xenograft, HepG2 xenograft | [88] |
| TXNIP | Indirect upregulation | ↑ ASK1 activation, oxidative apoptosis | TXNIP mRNA/ protein | Oxidative imbalance marker; therapeutic monitoring in nephrotoxicity | HK-2, Wistar rat | [89] |
| Cancer Type | Main Clinical Focus of Natural Products | Example Interventions | SH003 Positioning |
|---|---|---|---|
| Breast cancer | Supportive care → QoL improvement, radiodermatitis prevention, perioperative anxiety, menopausal symptom relief, depression management | Broccoli sprout extract (isothiocyanates) [122], Polyphenol capsules (Curcumin, isoflavones, lignans) [123], Chicory root extract [124], chamomile gel [125], PureCyTonin (pollen extract) [126], Yokukansan (Kampo) [127], Shugan Jieyu San [128], calendula [129], Yiqi Yangyin decoction +chemo [130], curcumin [131]. | Tumor-modifying phytomedicine → Mechanistic redox disruption & immune modulation [9]. |
| Lung cancer | Disease-modifying strategies → Tumor suppression, drug resistance overcoming, immune modulation, ferroptosis induction | Oral decoctions after adjuvant chemo [132], Yiqi Qingdu prescription [133], multi-herbal combinations [134], BJIKT + ICIs [135], GQT + ICIs [136], Shenling Baizhu powder [137], LTTL [138]. | Ferroptosis induction + NRF2 adaptation + immune remodeling → Translational bridge: preclinical evidence → Phase I feasibility [9]. |
| Section | Item | Proposed Content |
|---|---|---|
| Population/Setting | Indications | EGFR-mutant NSCLC or TNBC with measurable, advanced disease; prior standard therapy permitted. |
| Eligibility highlights | ECOG 0–1; adequate organ function; archival or fresh tumor tissue available for biomarker testing. | |
| Arms (Phase Ib/II) | Arm A | Docetaxel + SH003. |
| Arm B (control) | Docetaxel alone. | |
| Exploratory cohort | Anti-PD-1/PD-L1 + SH003 in PD-1–refractory subsets (signal-seeking). | |
| Primary endpoints | Phase Ib | Dose-limiting toxicities (DLTs), MTD, RP2D (combination). |
| Phase II | Progression-free survival (PFS; RECIST 1.1). | |
| Key secondary endpoints | Efficacy & safety | ORR, DoR, DCR, OS; safety (AE/SAE, irAEs); patient-reported outcomes (QoL). |
| Stratification factors (pre-specified) | Genomic/biologic | KEAP1/NFE2L2 genotype; NRF2 target-gene signature (high vs. low); GPX4 expression (low vs. high); PD-L1 status. |
| Clinical | Smoking history (to aid interpretation of metabolomic/circulating biomarker signals). | |
| Correlative/Pharmacodynamic endpoints | Redox/ferroptosis | Tumor SLC7A11, GPX4; lipid peroxidation markers (4-HNE, MDA); NRF2 targets (NQO1, GCLC). |
| ER-stress/mitochondria | CHOP (DDIT3); thioredoxin system (Trx/TrxR; including TRX2) as mitochondrial redox readouts. | |
| Immune remodeling | CD8+ infiltration; M1/M2 ratio; p-STAT3; PD-L1 (IHC). | |
| Circulating biomarkers | Serum SQSTM1 (p62); exosome-based miRNA panel (e.g., miR-200c/21/210/96); cfDNA/ctDNA. | |
| Exosome metabolomics | Exploratory predictive biomarker collection in combination arms; functional immunologic causality to be tested prospectively. | |
| Dosing/Safety | SH003 | Start at safe monotherapy exposure from prior Phase I; stepwise escalation to combination RP2D (e.g., 2400–4800 mg/day), with close hepatic/hematologic monitoring. |
| Docetaxel | Standard dose and schedule per label or institutional practice. | |
| Drug–drug considerations | Monitor for metabolism/transport interactions; pre-specify management of overlapping toxicities. | |
| Interim/Statistics | Interim analyses | Planned futility/safety looks at pre-defined information fractions. |
| Subgroup testing | Pre-specified interaction tests for KEAP1/NFE2L2 strata; estimate differential benefit in NRF2-hyperactivated tumors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.N.; Fahim, M.M.H.; Kang, H.N.; Bae, H.; Rani, A.; Nurkolis, F.; Tallei, T.E.; Ko, S.-G.; Kim, B. SH003 as a Redox-Immune Modulating Phytomedicine: A Ferroptosis Induction, Exosomal Crosstalk, and Translational Oncology Perspective. Cancers 2025, 17, 3519. https://doi.org/10.3390/cancers17213519
Park MN, Fahim MMH, Kang HN, Bae H, Rani A, Nurkolis F, Tallei TE, Ko S-G, Kim B. SH003 as a Redox-Immune Modulating Phytomedicine: A Ferroptosis Induction, Exosomal Crosstalk, and Translational Oncology Perspective. Cancers. 2025; 17(21):3519. https://doi.org/10.3390/cancers17213519
Chicago/Turabian StylePark, Moon Nyeo, Md. Maharub Hossain Fahim, Han Na Kang, Hanul Bae, Amama Rani, Fahrul Nurkolis, Trina E. Tallei, Seong-Gyu Ko, and Bonglee Kim. 2025. "SH003 as a Redox-Immune Modulating Phytomedicine: A Ferroptosis Induction, Exosomal Crosstalk, and Translational Oncology Perspective" Cancers 17, no. 21: 3519. https://doi.org/10.3390/cancers17213519
APA StylePark, M. N., Fahim, M. M. H., Kang, H. N., Bae, H., Rani, A., Nurkolis, F., Tallei, T. E., Ko, S.-G., & Kim, B. (2025). SH003 as a Redox-Immune Modulating Phytomedicine: A Ferroptosis Induction, Exosomal Crosstalk, and Translational Oncology Perspective. Cancers, 17(21), 3519. https://doi.org/10.3390/cancers17213519

