Characteristics of Peripheral Blood Lymphocyte Populations in Patients with Locally Advanced Unresectable Non-Small Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AC | Adenocarcinoma | 
| CCRT | Concurrent chemo-radiotherapy | 
| ICIs | Immune checkpoint inhibitors | 
| IFN-γ | Interferon gamma | 
| NK | Natural killer cells | 
| NKT | Natural killer T cells | 
| NSCLC | Non-small-cell lung carcinoma | 
| SCC | Squamous cell carcinoma | 
| SSC | Side Scatter | 
| TGF-β | Transforming growth factor beta | 
| TNM | Tumor, lymph node, metastasis | 
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R.L. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef]
- Kaprin, A.D.; Starinskiy, V.V.; Shakhzadova, A.O. The State of Oncological Care for the Population of Russia in 2023; P. Hertzen Moscow Oncology Research Institute—Branch of the National Medical Research Radiology Center, Ministry of Health of Russia: Moscow, Russia, 2024; 262p. (In Russian) [Google Scholar]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Kim, S.Y.; Cheng, H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung 2020, 198, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.-L.; Fitzgerald, B.G.; Paz-Ares, L.; Cappuzzo, F.; Jänne, A.P.; Peters, S.; Hirsch, F.R. New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 2024, 404, 803–822. [Google Scholar] [CrossRef]
- Reck, M.; Remon, J.; Hellmann, M.D. First-Line Immunotherapy for Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Mayekar, M.K.; Bivona, T.G. Current Landscape of Targeted Therapy in Lung Cancer. Clin. Pharmacol. Ther. 2017, 102, 757–764. [Google Scholar] [CrossRef]
- Curran, W.J., Jr.; Paulus, R.; Langer, C.J.; Komaki, R.; Lee, J.S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S.A.; Gore, E.; et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011, 103, 1452–1460. [Google Scholar] [CrossRef]
- Dengina, N.V.; Mitin, T.V.; Chernykh, M.V. Chemotherapy of Non-Small Cell Lung Cancer: Most Frequent Complications of Treatment and Methods of Dealing with them. Med. Alph. 2019, 2, 43–48. [Google Scholar] [CrossRef]
- Zinchenko, S.V. Immunomodulators in complex therapy of oncological patients (review of the literature). Povolzhsky Oncol. Vestn. 2014, 1, 57–64. (In Russian) [Google Scholar]
- Myers, J.A.; Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021, 2, 85–100. [Google Scholar] [CrossRef]
- Bi, J.; Tian, Z. NK Cell Exhaustion. Front. Immunol. 2017, 8, 760. [Google Scholar] [CrossRef]
- Thommen, D.S.; Schumacher, T.N. T Cell Dysfunction in Cancer. Cancer Cell 2018, 33, 547–562. [Google Scholar] [CrossRef]
- Safi, S.; Messner, L.; Kliebisch, M.; Eggert, L.; Ceylangil, C.; Lennartz, P.; Jefferies, B.; Klein, H.; Schirren, M.; Dommasch, M.; et al. Circulating Hsp70 Levels and the Immunophenotype of Peripheral Blood Lymphocytes as Potential Biomarkers for Advanced Lung Cancer and Therapy Failure after Surgery. Biomolecules 2023, 13, 874. [Google Scholar] [CrossRef]
- Palade, J.; Alsop, E.; Tang, N.; Antone, J.; Paredes, D.M.; Halder, T.G.; Soldi, R.; Bargenquast, T.; Schwartz, G.; Finholt, J.; et al. NK cell-derived extracellular vesicles enhance cytotoxicity and immune cell recruitment in non-small cell lung cancer. Front. Immunol. 2025, 16, 1633010. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, D.; Lu, C.; Liu, X.; Wu, G.; Zhang, Y. Advanced Lung Cancer Is Associated with Decreased Expression of Perforin, CD95, CD38 by Circulating CD3+CD8+ T Lymphocytes. Ann. Clin. Lab. Sci. 2015, 45, 528–532. [Google Scholar] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Muenst, S.; Läubli, H.; Soysal, S.D.; Zippelius, A.; Tzankov, A.; Hoeller, S. The immune system and cancer evasion strategies: Therapeutic concepts. J. Intern. Med. 2016, 279, 541–562. [Google Scholar] [CrossRef]
- Cristiani, C.M.; Palella, E.; Sottile, R.; Tallerico, R.; Garofalo, C.; Carbone, E. Human NK Cell Subsets in Pregnancy and Disease: Toward a New Biological Complexity. Front. Immunol. 2016, 7, 656. [Google Scholar] [CrossRef] [PubMed]
- 16Waggoner, S.N.; Cornberg, M.; Selin, L.K.; Welsh, R.M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 2011, 481, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Cassioli, C.; Baldari, C.T. A Ciliary View of the Immunological Synapse. Cells 2019, 8, 789. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Melo, N.; Baumjohann, D. T follicular helper cells in cancer. Trends Cancer 2023, 9, 309–325. [Google Scholar] [CrossRef]
- Elkoshi, Z. Cancer and Autoimmune Diseases: A Tale of Two Immunological Opposites? Front. Immunol. 2022, 13, 821598. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Cheng, X.; Yi, X.; Ye, F.; Li, X.; Hu, Z.; Zhang, L.; Nie, J.; Li, X. Association of the tissue infiltrated and peripheral blood immune cell subsets with response to radiotherapy for rectal cancer. BMC Med. Genom. 2022, 15, 107. [Google Scholar] [CrossRef]
- Cachot, A.; Bilous, M.; Liu, Y.-C.; Li, X.; Saillard, M.; Cenerenti, M.; Rockinger, G.A.; Wyss, T.; Guillaume, P.; Schmidt, J.; et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 2021, 7, eabe3348. [Google Scholar] [CrossRef]
- Hanada, K.-I.; Zhao, C.; Gil-Hoyos, R.; Gartner, J.J.; Chow-Parmer, C.; Lowery, F.J.; Krishna, S.; Prickett, T.D.; Kivitz, S.; Parkhurst, M.R.; et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 2022, 40, 479–493.e6. [Google Scholar] [CrossRef]
- Overgaard, N.H.; Jung, J.-W.; Steptoe, R.J.; Wells, J.W. CD4+/CD8+ double-positive T cells: More than just a developmental stage? J. Leukoc. Biol. 2014, 97, 31–38. [Google Scholar] [CrossRef]
- Ghia, P.; Prato, G.; Stella, S.; Scielzo, C.; Geuna, M.; Caligaris-Cappio, F. Age-dependent accumulation of monoclonal CD4+CD8+ double positive T lymphocytes in the peripheral blood of the elderly. Br. J. Haematol. 2007, 139, 780–790. [Google Scholar] [CrossRef]
- Alam, R.; Akinyemi, A.O.; Wang, J.; Howlader, M.; Farahani, M.E.; Nur, M.; Zhang, M.; Gu, L.; Li, Z. CD4+CD8+ double-positive T cells in immune disorders and cancer: Prospects and hurdles in immunotherapy. Autoimmun. Rev. 2025, 24, 103757. [Google Scholar] [CrossRef] [PubMed]
- Mazzaschi, G.; Facchinetti, F.; Missale, G.; Canetti, D.; Madeddu, D.; Zecca, A.; Veneziani, M.; Gelsomino, F.; Goldoni, M.; Buti, S.; et al. The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer 2019, 127, 153–163. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Si, F.; Huang, L.; Zhao, Y.; Zhang, C.; Hoft, D.F.; Peng, G. NK and NKT cells have distinct properties and functions in cancer. Oncogene 2021, 40, 4521–4537. [Google Scholar] [CrossRef]
- Nair, S.; Dhodapkar, M.V. Natural Killer T Cells in Cancer Immunotherapy. Front. Immunol. 2017, 8, 1178. [Google Scholar] [CrossRef] [PubMed]
- Crough, T.; Purdie, D.M.; Okai, M.; Maksoud, A.; Nieda, M.; Nicol, A.J. Modulation of human Valpha24(+)Vbeta11(+) NKT cells by age, malignancy and conventional anticancer therapies. Br. J. Cancer 2004, 91, 1880–1886. [Google Scholar] [CrossRef]
- Molling, J.W.; Langius, J.A.; Langendijk, J.A.; Leemans, C.R.; Bontkes, H.J.; van der Vliet, H.J.; von Blomberg, B.M.; Scheper, R.J.; van den Eertwegh, A.J. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J. Clin. Oncol. 2007, 25, 862–868. [Google Scholar] [CrossRef]
- Zdrazilova-Dubska, L.; Valik, D.; Budinska, E.; Frgala, T.; Bacikova, L.; Demlova, R. NKT-like cells are expanded in solid tumour patients. Klin. Onkol. 2012, 25 (Suppl. S2), 2S21–2S25. [Google Scholar] [PubMed]
- Tabakov, D.V.; Zabotina, T.N.; Zakharova, E.N.; Borunova, A.A.; Korotkova, O.V.; Chertkova, A.I.; Panchuk, I.O.; Kadagidze, Z.G. The subpopulation balance of effector cells in the peripheral blood of cancer patients. Immunologiya 2019, 40, 20–27. (In Russian) [Google Scholar] [CrossRef]
- Shubina, I.Z.; Gritsay, A.N.; Mamedova, L.T.; Sergeev, A.V.; Kuznetsov, S.A.; Pogosyan, N.R.; Lazareva, N.I.; Kiselevsky, M.V. Characteristics of lymphocyte subpopulations in the peripheral blood and lymph nodes of patients with ovarian cancer. Tumors Female Reprod. Syst. 2014, 3, 58–63. (In Russian) [Google Scholar]
- Ishikawa, A.; Motohashi, S.; Ishikawa, E.; Fuchida, H.; Higashino, K.; Otsuji, M.; Iizasa, T.; Nakayama, T.; Taniguchi, M.; Fujisawa, T. A Phase I Study of α-Galactosylceramide (KRN7000)–Pulsed Dendritic Cells in Patients with Advanced and Recurrent Non–Small Cell Lung Cancer. Clin. Cancer Res. 2005, 11, 1910–1917. [Google Scholar] [CrossRef]
- Motohashi, S.; Nagato, K.; Kunii, N.; Yamamoto, H.; Yamasaki, K.; Okita, K.; Hanaoka, H.; Shimizu, N.; Suzuki, M.; Yoshino, I.; et al. A Phase I-II Study of α-Galactosylceramide-Pulsed IL-2/GM-CSF-Cultured Peripheral Blood Mononuclear Cells in Patients with Advanced and Recurrent Non-Small Cell Lung Cancer. J. Immunol. 2009, 182, 2492–2501. [Google Scholar] [CrossRef]
- Bae, E.-A.; Seo, H.; Kim, I.-K.; Jeon, I.; Kang, C.-Y. Roles of NKT cells in cancer immunotherapy. Arch. Pharm. Res. 2019, 42, 543–548. [Google Scholar] [CrossRef]
- Lin, M.; Luo, H.; Liang, S.; Chen, J.; Liu, A.; Niu, L.; Jiang, Y. Pembrolizumab plus allogeneic NK cells in advanced non–small cell lung cancer patients. J. Clin. Investig. 2020, 130, 2560–2569. [Google Scholar] [CrossRef]
- Pioli, P.D. Plasma Cells, the Next Generation: Beyond Antibody Secretion. Front. Immunol. 2019, 10, 2768. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, Z.; Liu, H.; Tian, M.; Zhu, X.; Zhang, Z.; Wang, W.; Zhou, X.; Zhang, F.; Ge, Q.; et al. B Cells Are the Dominant Antigen-Presenting Cells that Activate Naive CD4+ T Cells upon Immunization with a Virus-Derived Nanoparticle Antigen. Immunity 2018, 49, 695–708.e4. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.; Ozawa, T.; Hamana, H.; Shitaoka, K.; Jin, A.; Kishi, H.; Muraguchi, A. TRAIL-receptor 1 IgM antibodies strongly induce apoptosis in human cancer cells in vitro and in vivo. OncoImmunology 2016, 5, e1131380. [Google Scholar] [CrossRef]
- Baumgarth, N. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2010, 11, 34–46. [Google Scholar] [CrossRef]
- Chiaruttini, G.; Mele, S.; Opzoomer, J.; Crescioli, S.; Ilieva, K.M.; Lacy, K.E.; Karagiannis, S.N. B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment. OncoImmunology 2017, 6, e1294296. [Google Scholar] [CrossRef]
- Dennis, K.L.; Blatner, N.R.; Gounari, F.; Khazaie, K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr. Opin. Oncol. 2013, 25, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Chulkova, S.V.; Sholokhova, E.N.; Grishchenko, N.V.; Ryabchikov, D.A.; Grivtsova, L.Y.; Bazin, I.S.; Tupitsyn, N.N.; Grivtsova, L.Y. The role of B-1 lymphocytes in antitumor immunity in patients with gastric cancer. Russ. J. Biotherapy 2019, 17, 64–70. [Google Scholar] [CrossRef]
- Grivtsova, L.Y.; Glukhov, E.V.; Chulkova, S.V.; Beznos, O.A.; Fomina, A.V.; Nered, S.N.; Stilidy, I.S.; Tupitsyn, N.N. Role of splenectomy in peculiarities of peripheral blood b-cell subpopulations in patients with gastric cancer. Immunologiya 2014, 35, 279–286. (In Russian) [Google Scholar]





| Criteria | Indicator | 
|---|---|
| Age | 39–82 years (the median -60 years) | 
| Gender | male -68 pts female -12 pts | 
| ECOG status | 1 (all patient) | 
| Histological subtype of the tumor | SCC—52 pts AC—27 pts pleomorphic—1 pts | 
| Stage of the disease | IIIB—48 pts IIIC—32 pts | 
| Chemotherapy | SCC-paclitaxel 175 mg/m2 on Day 1 + carboplatin AUC 5 on Day 1; cycle 21 days AC-pemetrexed 500 mg/m2 on Day 1 + cisplatin 75 mg/m2 on Day 1; cycle 21 days | 
| Smoking experience | 10–60 years | 
| Concomitant pathology | Hypertension—30 pts History of hepatitis B—3 pts Gastric ulcer in remission—5 pts Chronic heart failure—23 pts Diabetes mellitus—11 pts Atherosclerosis of the aorta and blood vessels—8 pts | 
| Follow-up (median observation for February 2025) | 19.2 months | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grivtsova, L.; Glukhareva, A.; Melnikova, A.; Mushkarina, T.; Afonin, G.; Efremova, A.; Ivanov, S.; Goldshtein, D.; Kaprin, A. Characteristics of Peripheral Blood Lymphocyte Populations in Patients with Locally Advanced Unresectable Non-Small Cell Lung Cancer. Cancers 2025, 17, 3504. https://doi.org/10.3390/cancers17213504
Grivtsova L, Glukhareva A, Melnikova A, Mushkarina T, Afonin G, Efremova A, Ivanov S, Goldshtein D, Kaprin A. Characteristics of Peripheral Blood Lymphocyte Populations in Patients with Locally Advanced Unresectable Non-Small Cell Lung Cancer. Cancers. 2025; 17(21):3504. https://doi.org/10.3390/cancers17213504
Chicago/Turabian StyleGrivtsova, Lyudmila, Anastasia Glukhareva, Anzhelika Melnikova, Tatiana Mushkarina, Grigoriy Afonin, Anna Efremova, Sergey Ivanov, Dmitry Goldshtein, and Andrey Kaprin. 2025. "Characteristics of Peripheral Blood Lymphocyte Populations in Patients with Locally Advanced Unresectable Non-Small Cell Lung Cancer" Cancers 17, no. 21: 3504. https://doi.org/10.3390/cancers17213504
APA StyleGrivtsova, L., Glukhareva, A., Melnikova, A., Mushkarina, T., Afonin, G., Efremova, A., Ivanov, S., Goldshtein, D., & Kaprin, A. (2025). Characteristics of Peripheral Blood Lymphocyte Populations in Patients with Locally Advanced Unresectable Non-Small Cell Lung Cancer. Cancers, 17(21), 3504. https://doi.org/10.3390/cancers17213504
 
        



 
                         
       