Immunotherapy Plus Surgery Improves Survival in Microsatellite Instability-High Colon Cancer with Isolated Peritoneal Metastases
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Survival Analysis
3.2. Utilization Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MSI-H | Microsatellite Instability-High |
| iPM | Isolated Peritoneal Metastases |
| IO | Immunotherapy Alone |
| CT | Chemotherapy Alone |
| CT + IO | Chemotherapy + Immunotherapy |
| HIPEC | Heated Intraperitoneal Chemotherapy |
| CRS-HIPEC | Cytoreductive Surgery with Heated Intraperitoneal Chemotherapy |
| OS | Overall Survival |
| HR | Hazard Ratio |
| CI | Confidence Interval |
| PD-1 | Programmed Death-1 |
| PD-L1 | Programmed Death-Ligand 1 |
| CTLA-4 | Cytotoxic T-Lymphocyte Antigen 4 |
| EGFR | Epidermal Growth Factor Receptor |
| VEGF | Vascular Endothelial Growth Factor |
References
- Segelman, J.; Granath, F.; Holm, T.; MacHado, M.; Mahteme, H.; Martling, A. Incidence, prevalence and risk factors for peritoneal carcinomatosis from colorectal cancer. Br. J. Surg. 2012, 99, 699–705. [Google Scholar] [CrossRef]
- Quénet, F.; Elias, D.; Roca, L.; Goéré, D.; Ghouti, L.; Pocard, M.; Facy, O.; Arvieux, C.; Lorimier, G.; Pezet, D.; et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 256–266. [Google Scholar] [CrossRef]
- Koopman, M.; Kortman, G.A.M.; Mekenkamp, L.; Ligtenberg, M.J.L.; Hoogerbrugge, N.; Antonini, N.F.; Punt, C.J.A.; Van Krieken, J.H.J.M. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 2009, 100, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Zucchini, V.; D’Acapito, F.; Rapposelli, I.G.; Framarini, M.; Di Pietrantonio, D.; Turrini, R.; Pozzi, E.; Ercolani, G. Impact of RAS, BRAF mutations and microsatellite status in peritoneal metastases from colorectal cancer treated with cytoreduction + HIPEC: Scoping review. Int. J. Hyperth. 2025, 42, 2479527. [Google Scholar] [CrossRef] [PubMed]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [PubMed]
- Mosalem, O.M.; Elhariri, A.; Wiest, N.; Imperial, R.J.L.; Sonbol, M.B.; Jin, Z.; Jones, J.C.; Starr, J.S. Outcomes of peritoneal metastases in mismatch repair deficient (dMMR) cancers treated with immune checkpoint inhibitors and variables associated with response. J. Clin. Oncol. 2023, 41, e14576. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network Colon Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 8 March 2024).
- Franko, J. Therapeutic efficacy of systemic therapy for colorectal peritoneal carcinomatosis: Surgeon’s perspective. Pleura Peritoneum 2018, 3, 20180102. [Google Scholar] [CrossRef]
- Jacquet, P.; Sugarbaker, P.H. Peritoneal-Plasma Barrier. Cancer Treat. Res. 1996, 82, 53–63. [Google Scholar]
- Rietveld, P.C.S.; Guchelaar, N.A.D.; van Eerden, R.A.G.; de Boer, N.L.; de Bruijn, P.; Sassen, S.D.T.; Madsen, E.V.E.; Koch, B.C.P.; Verhoef, C.; Burger, J.W.A.; et al. Intraperitoneal pharmacokinetics of systemic oxaliplatin, 5-fluorouracil and bevacizumab in patients with colorectal peritoneal metastases. Biomed. Pharmacother. 2024, 176, 116820. [Google Scholar] [CrossRef]
- Joyce, J.A.; Fearon, D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015, 348, 74–80. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Sherman, S.K.; Schuitevoerder, D.; Chan, C.H.F.; Turaga, K.K. Metastatic Colorectal Cancers with Mismatch Repair Deficiency Result in Worse Survival Regardless of Peritoneal Metastases. Ann. Surg. Oncol. 2020, 27, 5074. [Google Scholar] [CrossRef]
- Saberzadeh-Ardestani, B.; Jones, J.C.; Hubbard, J.M.; Mcwilliams, R.R.; Halfdanarson, T.R.; Shi, Q.; Sonbol, M.B.; Ticku, J.; Jin, Z.; Sinicrope, F.A. Association Between Survival and Metastatic Site in Mismatch Repair-Deficient Metastatic Colorectal Cancer Treated With First-line Pembrolizumab + Supplemental content. JAMA Netw. Open 2023, 6, 230400. [Google Scholar] [CrossRef]
- Barraud, S.; Tougeron, D.; Villeneuve, L.; Eveno, C.; Bayle, A.; Parc, Y.; Pocard, M.; André, T.; Cohen, R. Immune checkpoint inhibitors for patients with isolated peritoneal carcinomatosis from dMMR/MSI-H colorectal cancer, a BIG-RENAPE collaboration. Dig. Liver Dis. 2023, 55, 673–678. [Google Scholar] [CrossRef]
- Hallam, S.; Stockton, J.; Bryer, C.; Whalley, C.; Pestinger, V.; Youssef, H.; Beggs, A.D. The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with an increased tumour mutational burden. Sci. Rep. 2020, 10, 18900. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Miyazaki, M. Cell Biology of Cancer Peritoneal Metastasis: Multiclonal Seeding and Peritoneal Tumor Microenvironment. Cancer Sci. 2025, 116, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Guchelaar, N.A.D.; Noordman, B.J.; Koolen, S.L.W.; Mostert, B.; Madsen, E.V.E.; Burger, J.W.A.; Brandt-Kerkhof, A.R.M.; Creemers, G.-J.; de Hingh, I.H.J.T.; Luyer, M.; et al. Intraperitoneal Chemotherapy for Unresectable Peritoneal Surface Malignancies. Drugs 2023, 83, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]
- Liu, J.; Blake, S.J.; Yong, M.C.R.; Harjunpää, H.; Ngiow, S.F.; Takeda, K.; Young, A.; O’Donnell, J.S.; Allen, S.; Smyth, M.J.; et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016, 6, 1382–1399. [Google Scholar] [CrossRef]
- Geva, R.; Alon, G.; Nathanson, M.; Bar-David, S.; Nevo, N.; Aizic, A.; Peles-Avraham, S.; Lahat, G.; Nizri, E. PD-1 Blockade Combined with Heated Intraperitoneal Chemotherapy Improves Outcome in Experimental Peritoneal Metastases from Colonic Origin in a Murine Model. Ann. Surg. Oncol. 2023, 30, 2657–2663. [Google Scholar] [CrossRef]
- Xia, W.; Geng, Y.; Hu, W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers 2023, 15, 5641. [Google Scholar] [CrossRef]
- Rovers, K.P.; Bakkers, C.; Nienhuijs, S.W.; Burger, J.W.A.; Creemers, G.J.M.; Thijs, A.M.J.; Brandt-Kerkhof, A.R.M.; Madsen, E.V.E.; Van Meerten, E.; Tuynman, J.B.; et al. Perioperative Systemic Therapy vs Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Alone for Resectable Colorectal Peritoneal Metastases: A Phase 2 Randomized Clinical Trial. JAMA Surg. 2021, 156, 710–720. [Google Scholar]
- Bakkers, C.; Rovers, K.P.; Rijken, A.; Simkens, G.A.A.M.; Bonhof, C.S.; Nienhuijs, S.W.; Burger, J.W.A.; Creemers, G.J.M.; Brandt-Kerkhof, A.R.M.; Tuynman, J.B.; et al. Perioperative Systemic Therapy Versus Cytoreductive Surgery and HIPEC Alone for Resectable Colorectal Peritoneal Metastases: Patient-Reported Outcomes of a Randomized Phase II Trial. Ann. Surg. Oncol. 2023, 30, 2678–2688. [Google Scholar] [CrossRef]
- Larsen, S.G.; Goscinski, M.A.; Dueland, S.; Steigen, S.E.; Hofsli, E.; Torgunrud, A.; Lund-Iversen, M.; Dagenborg, V.J.; Flatmark, K.; Sorbye, H. Impact of KRAS, BRAF and microsatellite instability status after cytoreductive surgery and HIPEC in a national cohort of colorectal peritoneal metastasis patients. Br. J. Cancer 2022, 126, 726–735. [Google Scholar] [PubMed]
- Ruff, S.M.; Hall, L.B.; Choudry, M.H.; Pingpank, J.; Holtzman, M.; Bartlett, D.L.; Kim, A.C.; Ongchin, M. Microsatellite instability should not determine candidacy for cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion in patients with peritoneal metastases from colorectal cancer. J. Gastrointest. Surg. 2024, 28, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Kasi, P.M.; Jafari, M.D.; Yeo, H.; Lowenfeld, L.; Khan, U.; Nguyen, A.; Siolas, D.; Swed, B.; Khan, S.; Wood, M.; et al. Neoadjuvant botensilimab plus balstilimab in resectable mismatch repair proficient and deficient colorectal cancer: NEST-1 clinical trial. J. Clin. Oncol. 2024, 42, 117. [Google Scholar] [CrossRef]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Van Lent, A.U.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair–Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar]
- Sinicrope, F.A.; Ou, S.; Arnold, D.; Peters, W.; Behrens, R.J.; Lieu, C.H.; Matin, K.; Cohen, D.J.; Potter, S.L.; Frankel, W.L.; et al. Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III deficient DNA mismatch repair (dMMR) colon cancer (Alliance A021502; ATOMIC). J. Clin. Oncol. 2025, 43, LBA1. [Google Scholar] [CrossRef]
- Quintanilha, J.C.F.; Graf, R.P.; Fisher, V.A.; Oxnard, G.R.; Ellis, H.; Panarelli, N.; Lin, D.I.; Li, G.; Huang, R.S.P.; Ross, J.S.; et al. Comparative Effectiveness of Immune Checkpoint Inhibitors vs Chemotherapy in Patients with Metastatic Colorectal Cancer with Measures of Microsatellite Instability, Mismatch Repair, or Tumor Mutational Burden. JAMA Netw. Open 2023, 6, e2252244. [Google Scholar] [CrossRef]




| Characteristic | Overall N = 598 1 | CT N = 258 1 | CT + IO N = 208 1 | IO N = 132 1 | p-Value 2 |
|---|---|---|---|---|---|
| Age | 67 (55, 76) | 67 (56, 77) | 61 (52, 71) | 75 (63, 81) | <0.001 |
| Male | 259 (43%) | 103 (40%) | 108 (52%) | 48 (36%) | 0.006 |
| Race | 0.003 | ||||
| White | 493 (84%) | 218 (85%) | 162 (80%) | 113 (87%) | |
| Black | 61 (10%) | 28 (11%) | 27 (13%) | 6 (4.6%) | |
| Asian/Pacific Islander | 26 (4.4%) | 10 (3.9%) | 7 (3.4%) | 9 (6.9%) | |
| Other | 9 (1.5%) | 0 (0%) | 7 (3.4%) | 2 (1.5%) | |
| Unknown | 9 | 2 | 5 | 2 | |
| Grade | 0.004 | ||||
| 1 | 16 (4.0%) | 11 (5.8%) | 1 (0.8%) | 4 (4.9%) | |
| 2 | 159 (39%) | 62 (33%) | 59 (45%) | 38 (46%) | |
| 3 | 214 (53%) | 105 (55%) | 70 (53%) | 39 (48%) | |
| 4 | 14 (3.5%) | 12 (6.3%) | 1 (0.8%) | 1 (1.2%) | |
| Unknown | 195 | 68 | 77 | 50 | |
| Histology | 0.2 | ||||
| Adenocarcinoma | 434 (73%) | 183 (71%) | 154 (74%) | 97 (73%) | |
| Mucinous Adenocarcinoma | 98 (16%) | 40 (16%) | 30 (14%) | 28 (21%) | |
| Signet Ring Cell Carcinoma | 36 (6.0%) | 18 (7.0%) | 15 (7.2%) | 3 (2.3%) | |
| Other | 30 (5.0%) | 17 (6.6%) | 9 (4.3%) | 4 (3.0%) | |
| Charlson–Deyo Score | 0.003 | ||||
| 1 | 410 (69%) | 196 (76%) | 140 (67%) | 74 (56%) | |
| 2 | 111 (19%) | 39 (15%) | 42 (20%) | 30 (23%) | |
| 3 | 43 (7.2%) | 11 (4.3%) | 17 (8.2%) | 15 (11%) | |
| 4 | 34 (5.7%) | 12 (4.7%) | 9 (4.3%) | 13 (9.8%) | |
| Facility Type | 0.13 | ||||
| Community | 35 (6.3%) | 19 (7.9%) | 10 (5.2%) | 6 (4.9%) | |
| Comprehensive | 207 (37%) | 84 (35%) | 84 (44%) | 39 (32%) | |
| Academic | 316 (57%) | 139 (57%) | 99 (51%) | 78 (63%) | |
| Unknown | 40 | 16 | 15 | 9 | |
| Surgery | 0.2 | ||||
| No Surgery | 145 (24%) | 54 (21%) | 53 (25%) | 38 (29%) | |
| Primary Tumor Resection | 285 (48%) | 131 (51%) | 99 (48%) | 55 (42%) | |
| Metastatectomy | 16 (2.7%) | 3 (1.2%) | 7 (3.4%) | 6 (4.5%) | |
| Primary Tumor Resection + Metastatectomy | 152 (25%) | 70 (27%) | 49 (24%) | 33 (25%) | |
| Systemic/Surgery Timing | 0.2 | ||||
| Adjuvant | 382 (91%) | 178 (92%) | 123 (87%) | >90% * | |
| Neoadjuvant | 39 (9.3%) | 15 (7.8%) | 18 (13%) | <10% * | |
| Unknown | 177 | 65 | 67 | 45 | |
| Margin Status | 0.018 | ||||
| No Surgery | 145 (25%) | 54 (21%) | 53 (26%) | 38 (30%) | |
| R+ | 104 (18%) | 48 (19%) | 45 (22%) | 11 (8.7%) | |
| R0 | 324 (56%) | 147 (58%) | 101 (50%) | 76 (60%) | |
| Surgery Performed, Margins Unknown | 9 (1.5%) | 6 (2.4%) | 2 (1.0%) | 1 (0.8%) | |
| Surgical Approach | 0.10 | ||||
| No Surgery | 142 (24%) | 51 (20%) | 53 (25%) | 38 (29%) | |
| Minimally Invasive Approach | 138 (23%) | 54 (21%) | 52 (25%) | 32 (24%) | |
| Minimally Invasive Converted to Open | 33 (5.5%) | 21 (8.1%) | 5 (2.4%) | 7 (5.3%) | |
| Open | 197 (33%) | 93 (36%) | 66 (32%) | 38 (29%) | |
| Surgery Performed, Approach Unknown | 88 (15%) | 39 (15%) | 32 (15%) | 17 (13%) | |
| Follow-Up (Months) | 24 (9, 40) | 24 (7, 41) | 23 (10, 42) | 24 (13, 35) | 0.8 |
| Variable | Univariable | Multivariable | ||||
|---|---|---|---|---|---|---|
| HR | 95% CI | p-Value | HR 1 | 95% CI | p-Value | |
| Age | 1.02 | 1.01, 1.03 | <0.001 | 1.02 | 1.01, 1.03 | <0.001 |
| Sex | ||||||
| Male | — | — | — | — | ||
| Female | 0.94 | 0.75, 1.17 | 0.6 | 0.92 | 0.73, 1.17 | 0.5 |
| Charlson–Deyo Score | 1.23 | 1.10, 1.39 | <0.001 | 1.17 | 1.04, 1.32 | 0.012 |
| Facility Type | ||||||
| Community | — | — | ||||
| Comprehensive | 0.88 | 0.56, 1.38 | 0.6 | |||
| Academic | 0.73 | 0.46, 1.13 | 0.2 | |||
| Histology | ||||||
| Adenocarcinoma | — | — | — | — | ||
| Mucinous Adenocarcinoma | 0.94 | 0.69, 1.29 | 0.7 | 1.11 | 0.81, 1.54 | 0.5 |
| Signet Ring Cell Carcinoma | 1.99 | 1.35, 2.94 | <0.001 | 2.00 | 1.35, 2.96 | <0.001 |
| Other | 1.52 | 0.96, 2.39 | 0.075 | 1.38 | 0.87, 2.20 | 0.2 |
| Grade | ||||||
| 1 | — | — | ||||
| 2 | 1.11 | 0.54, 2.31 | 0.8 | |||
| 3 | 1.33 | 0.65, 2.72 | 0.4 | |||
| 4 | 1.03 | 0.39, 2.74 | >0.9 | |||
| Surgery | ||||||
| No Surgery | — | — | — | — | ||
| Primary Tumor Resection | 0.42 | 0.33, 0.55 | <0.001 | 0.40 | 0.31, 0.52 | <0.001 |
| Metastatectomy | 0.44 | 0.20, 0.94 | 0.035 | 0.59 | 0.27, 1.28 | 0.2 |
| Primary Tumor Resection + Metastatectomy | 0.41 | 0.30, 0.55 | <0.001 | 0.41 | 0.30, 0.57 | <0.001 |
| Systemic Therapies | ||||||
| CT | — | — | — | — | ||
| CT + IO | 1.01 | 0.80, 1.29 | >0.9 | 0.97 | 0.76, 1.24 | 0.8 |
| IO | 0.64 | 0.46, 0.88 | 0.006 | 0.46 | 0.33, 0.65 | <0.001 |
| Immunotherapy/Surgery Timing | ||||||
| Neo-Adjuvant | — | — | ||||
| Adjuvant | 2.15 | 0.29, 15.8 | 0.5 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metzger, D.A.; Chahal, Y.; Watman, O.; Li, Y.; Pigazzi, A.; Siolas, D.; Jafari, M.D. Immunotherapy Plus Surgery Improves Survival in Microsatellite Instability-High Colon Cancer with Isolated Peritoneal Metastases. Cancers 2025, 17, 3496. https://doi.org/10.3390/cancers17213496
Metzger DA, Chahal Y, Watman O, Li Y, Pigazzi A, Siolas D, Jafari MD. Immunotherapy Plus Surgery Improves Survival in Microsatellite Instability-High Colon Cancer with Isolated Peritoneal Metastases. Cancers. 2025; 17(21):3496. https://doi.org/10.3390/cancers17213496
Chicago/Turabian StyleMetzger, Daniel Aryeh, Yasmeen Chahal, Olivia Watman, Ying Li, Alessio Pigazzi, Despina Siolas, and Mehraneh D. Jafari. 2025. "Immunotherapy Plus Surgery Improves Survival in Microsatellite Instability-High Colon Cancer with Isolated Peritoneal Metastases" Cancers 17, no. 21: 3496. https://doi.org/10.3390/cancers17213496
APA StyleMetzger, D. A., Chahal, Y., Watman, O., Li, Y., Pigazzi, A., Siolas, D., & Jafari, M. D. (2025). Immunotherapy Plus Surgery Improves Survival in Microsatellite Instability-High Colon Cancer with Isolated Peritoneal Metastases. Cancers, 17(21), 3496. https://doi.org/10.3390/cancers17213496

