The Dual Role of Interferon Signaling in Myeloproliferative Neoplasms: Pathogenesis and Targeted Therapeutics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Interferon Families and Biological Functions
3.1. Families
3.2. Signaling and Regulation
Cell Specificity
4. Interferon and Inflammation
5. Rationale and Mechanisms of Action of Interferon in MPN
5.1. Exhaustion by Differentiation
5.2. Senescence and Apoptosis
5.3. Accumulation of DNA Damage and Reactive Oxygen Species
5.4. Anticlonogenic Effect
5.5. Other Mechanisms
6. Interferon Pharmacology
6.1. Pharmacodynamic Properties
6.2. Pharmacokinetic Properties
7. Clinical Studies of IFN Treatment in MPN (All Resumed in Table 2)
7.1. IFN in Polycythemia Vera
| Clinical Trials | Study Design | Treatment | Diseases | Results | References |
|---|---|---|---|---|---|
| MPD-RC 112 | Randomized phase III | Peg-INFα2a vs. HU | High-risk ET and PV | After 36 mo: increased CHR and MR in IFN-treated pts | [103] |
| DALIAH trial | Randomized phase III | Peg-INFα2a, Peg-INFα2b or HU | MPN | From 36 to 60 mo: increased CHR and MR | [104] |
| PROUD/CONTINUATION-PV Trial | Randomized phase III | Ropeg-IFNα vs. HU | Early stage PV | After 36 mo: increased CHR and MR in IFN treated pts | [69] |
| COMBI-I Study | Phase II | RUX and Peg-INFα2 | Active PV | After 6 mo: CHR in 80% of pts MR at all time points | [105] |
| COMBI-II Trial | Phase II | RUX and Peg-INFα2 combination | Newly diagnosed PV | After 1 mo: CHR After 24 mo: significant MR | [106] |
| Low-PV study | Randomized phase II | Ropeg-INFα and phlebotomy vs. phlebotomy alone | Low-risk PV | After 2 years: higher response rate and improvement of symptoms and blood counts with ropeg-INFα and phlebotomy | [107] |
| P1101MF trial | Phase II | Ropeg-INFα | Prefibrotic primary MF or low- or intermediate-1-risk MF | After 48 weeks: decreased symptoms, reduction in spleen size, CBC improvement, resolution of BM fibrosis (17.4%) and significant MR | [108] |
| COMBI I study | Phase II | Peg-INFα2 and RUX | MF | Rapid clinical, hematologic, and histological responses with MR | [105] |
| RUXOPEG | Phase I/II | Peg-INFα2 and RUX | MF | Rapid clinical, hematologic, and histological responses with MR | [68] |
| SURPASS-ET (NCT04285086) | Randomized Phase III | Ropeg-INFα2b vs. anagrelide | ET, intolerant or resistant to HU | Ongoing | unpublished |
| EXCEED-ET (NCT05482971) | Phase II | Ropeg-INFα2b | ET, intolerant or resistant to HU | Ongoing | unpublished |
7.2. IFN in Essential Thrombocythemia
7.3. IFN in Myelofibrosis (MF)
7.4. IFN in Chronic Myeloid Leukemia
7.5. IFN in Other Myeloid Malignancies
7.6. IFN During Pregnancy
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borden, E.C.; Sen, G.C.; Uze, G.; Silverman, R.H.; Ransohoff, R.M.; Foster, G.R.; Stark, G.R. Interferons at Age 50: Past, Current and Future Impact on Biomedicine. Nat. Rev. Drug Discov. 2007, 6, 975–990. [Google Scholar] [CrossRef]
- Saleiro, D.; Platanias, L.C. Interferon Signaling in Cancer. Non-Canonical Pathways and Control of Intracellular Immune Checkpoints. Semin. Immunol. 2019, 43, 101299. [Google Scholar] [CrossRef] [PubMed]
- Parmar, S.; Platanias, L.C. Interferons: Mechanisms of Action and Clinical Applications. Curr. Opin. Oncol. 2003, 15, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Vilcek, J. Fifty Years of Interferon Research: Aiming at a Moving Target. Immunity 2006, 25, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, G. Type I Interferon: Friend or Foe? J. Exp. Med. 2010, 207, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J.; et al. IL-28, IL-29 and Their Class II Cytokine Receptor IL-28R. Nat. Immunol. 2003, 4, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Frederick Wheelock, E. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science 1965, 149, 310–311. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, A.; Lindenmann, J. Virus Interference. I. The Interferon. Proc. R. Soc. London. Ser. B Biol. Sci. 1957, 147, 258–267. [Google Scholar] [CrossRef]
- Walter, M.R. The Role of Structure in the Biology of Interferon Signaling. Front. Immunol. 2020, 11, 606489. [Google Scholar] [CrossRef]
- Pestka, S. The Interferons: 50 Years after Their Discovery, There Is Much More to Learn. J. Biol. Chem. 2007, 282, 20047–20051. [Google Scholar] [CrossRef]
- Decker, T.; Müller, M.; Stockinger, S. The Yin and Yang of Type I Interferon Activity in Bacterial Infection. Nat. Rev. Immunol. 2005, 5, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Capobianchi, M.R.; Uleri, E.; Caglioti, C.; Dolei, A. Type I IFN Family Members: Similarity, Differences and Interaction. Cytokine Growth Factor Rev. 2015, 26, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, Interferon-like Cytokines, and Their Receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Gray, P.W.; Goeddel, D.V. Structure of the Human Immune Interferon Gene. Nature 1982, 298, 859–863. [Google Scholar] [CrossRef]
- Uzé, G.; Monneron, D. IL-28 and IL-29: Newcomers to the Interferon Family. Biochimie 2007, 89, 729–734. [Google Scholar] [CrossRef]
- Best, S.M. Is the Third Interferon a Charm? Sci. Transl. Med. 2015, 7, 284fs16. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Durbin, J.E. Contribution of Type III Interferons to Antiviral Immunity: Location, Location, Location. J. Biol. Chem. 2017, 292, 7295–7303. [Google Scholar] [CrossRef]
- Lavoie, T.B.; Kalie, E.; Crisafulli-Cabatu, S.; Abramovich, R.; DiGioia, G.; Moolchan, K.; Pestka, S.; Schreiber, G. Binding and Activity of All Human Alpha Interferon Subtypes. Cytokine 2011, 56, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Jaks, E.; Gavutis, M.; Uzé, G.; Martal, J.; Piehler, J. Differential Receptor Subunit Affinities of Type I Interferons Govern Differential Signal Activation. J. Mol. Biol. 2007, 366, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Roisman, L.C.; Jaitin, D.A.; Baker, D.P.; Schreiber, G. Mutational Analysis of the IFNAR1 Binding Site on IFNalpha2 Reveals the Architecture of a Weak Ligand-Receptor Binding-Site. J. Mol. Biol. 2005, 353, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.P.; Sheikh, F.; Kotenko, S.V.; Dickensheets, H. The Expanded Family of Class II Cytokines That Share the IL-10 Receptor-2 (IL-10R2) Chain. J. Leukoc. Biol. 2004, 76, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of Type I Interferon Responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Majoros, A.; Platanitis, E.; Kernbauer-Hölzl, E.; Rosebrock, F.; Müller, M.; Decker, T. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front. Immunol. 2017, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Farrar, M.A.; Schreiber, R.D. The Molecular Cell Biology of Interferon-Gamma and Its Receptor. Annu. Rev. Immunol. 1993, 11, 571–611. [Google Scholar] [CrossRef]
- Platanias, L.C. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Samuel, C.E. Antiviral Actions of Interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef]
- Huang, S.; Hendriks, W.; Althage, A.; Hemmi, S.; Bluethmann, H.; Kamijo, R.; Vilček, J.; Zinkernagel, R.M.; Aguet, M. Immune Response in Mice That Lack the Interferon-Gamma Receptor. Science 1993, 259, 1742–1745. [Google Scholar] [CrossRef]
- Taniguchi, T.; Takaoka, A. A Weak Signal for Strong Responses: Interferon-Alpha/Beta Revisited. Nat. Rev. Mol. Cell Biol. 2001, 2, 378–386. [Google Scholar] [CrossRef]
- Hida, S.; Ogasawara, K.; Sato, K.; Abe, M.; Takayanagi, H.; Yokochi, T.; Sato, T.; Hirose, S.; Shirai, T.; Taki, S.; et al. CD8(+) T Cell-Mediated Skin Disease in Mice Lacking IRF-2, the Transcriptional Attenuator of Interferon-Alpha/Beta Signaling. Immunity 2000, 13, 643–655. [Google Scholar] [CrossRef]
- Iversen, M.B.; Paludan, S.R. Mechanisms of Type III Interferon Expression. J. Interferon Cytokine Res. 2010, 30, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, L.H.; Townsend, M.J.; Sullivan, B.M.; Lord, G.M. Recent Developments in the Transcriptional Regulation of Cytolytic Effector Cells. Nat. Rev. Immunol. 2004, 4, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Schoenborn, J.R.; Wilson, C.B. Regulation of Interferon-Gamma during Innate and Adaptive Immune Responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, A.; Mitani, Y.; Suemori, H.; Sato, M.; Yokochi, T.; Noguchi, S.; Tanaka, N.; Taniguchi, T. Cross Talk between Interferon-Gamma and -Alpha/Beta Signaling Components in Caveolar Membrane Domains. Science 2000, 288, 2357–2360. [Google Scholar] [CrossRef] [PubMed]
- Ealick, S.; Cook, W.; Vijay-Kumar, S.; Carson, M.; Nagabhushan, T.; Trotta, P.; Bugg, C. Three-Dimensional Structure of Recombinant Human Interferon-Gamma. Science 1991, 252, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Landar, A.; Curry, B.; Parker, M.H.; DiGiacomo, R.; Indelicato, S.R.; Nagabhushan, T.L.; Rizzi, G.; Walter, M.R. Design, Characterization, and Structure of a Biologically Active Single-Chain Mutant of Human IFN-Gamma. J. Mol. Biol. 2000, 299, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Sommereyns, C.; Paul, S.; Staeheli, P.; Michiels, T. IFN-Lambda (IFN-Lambda) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells in Vivo. PLoS Pathog. 2008, 4, e1000017. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Rivera, A.; Parker, D.; Durbin, J.E. Type III IFNs: Beyond Antiviral Protection. Semin. Immunol. 2019, 43, 101303. [Google Scholar] [CrossRef]
- Fung, K.Y.; Mangan, N.E.; Cumming, H.; Horvat, J.C.; Mayall, J.R.; Stifter, S.A.; De Weerd, N.; Roisman, L.C.; Rossjohn, J.; Robertson, S.A.; et al. Interferon-ε Protects the Female Reproductive Tract from Viral and Bacterial Infection. Science 2013, 339, 1088–1092. [Google Scholar] [CrossRef]
- Stifter, S.A.; Matthews, A.Y.; Mangan, N.E.; Fung, K.Y.; Drew, A.; Tate, M.D.; Soares Da Costa, T.P.; Hampsey, D.; Mayall, J.; Hansbro, P.M.; et al. Defining the Distinct, Intrinsic Properties of the Novel Type I Interferon, IFNϵ. J. Biol. Chem. 2018, 293, 3168–3179. [Google Scholar] [CrossRef]
- Couret, J.; Tasker, C.; Kim, J.; Sihvonen, T.; Fruitwala, S.; Quayle, A.J.; Lespinasse, P.; Heller, D.S.; Chang, T.L. Differential Regulation of IFNα, IFNβ and IFNε Gene Expression in Human Cervical Epithelial Cells. Cell Biosci. 2017, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, B.; Zaritskaya, L.; Semenuk, M.; Cho, Y.H.; LaFleur, D.W.; Shah, D.; Ullrich, S.; Girolomoni, G.; Albanesi, C.; Moore, P.A. Regulatory Effect of IFN-Kappa, a Novel Type I IFN, on Cytokine Production by Cells of the Innate Immune System. J. Immunol. 2002, 169, 4822–4830. [Google Scholar] [CrossRef] [PubMed]
- Hermouet, S. Pathogenesis of Myeloproliferative Neoplasms: More than Mutations. Exp. Hematol. 2015, 43, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Hermouet, S.; Hasselbalch, H.C.; Čokić, V. Mediators of Inflammation in Myeloproliferative Neoplasms: State of the Art. Mediat. Inflamm. 2015, 2015, 964613. [Google Scholar] [CrossRef]
- Hasselbalch, H.C.; Bjørn, M.E. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives. Mediat. Inflamm 2015, 2015, 102476. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a Keystone Cytokine in Health and Disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Vaidya, R.; Gangat, N.; Jimma, T.; Finke, C.M.; Lasho, T.L.; Pardanani, A.; Tefferi, A. Plasma Cytokines in Polycythemia Vera: Phenotypic Correlates, Prognostic Relevance, and Comparison with Myelofibrosis. Am. J. Hematol. 2012, 87, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A.; Finke, C.; Abdelrahman, R.A.; Lasho, T.L.; Hanson, C.A.; Tefferi, A. Increased Circulating IL-2Rα (CD25) Predicts Poor Outcome in Both Indolent and Aggressive Forms of Mastocytosis: A Comprehensive Cytokine-Phenotype Study. Leukemia 2013, 27, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Allain-Maillet, S.; Bosseboeuf, A.; Mennesson, N.; Bostoën, M.; Dufeu, L.; Choi, E.H.; Cleyrat, C.; Mansier, O.; Lippert, E.; Le Bris, Y.; et al. Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent Cytokines in Myeloproliferative Neoplasms. Cancers 2020, 12, 2446. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. Cytokine Profiling as a Novel Complementary Tool to Predict Prognosis in MPNs? HemaSphere 2020, 4, e407. [Google Scholar] [CrossRef]
- Øbro, N.F.; Grinfeld, J.; Belmonte, M.; Irvine, M.; Shepherd, M.S.; Rao, T.N.; Karow, A.; Riedel, L.M.; Harris, O.B.; Baxter, E.J.; et al. Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. HemaSphere 2020, 4, e371. [Google Scholar] [CrossRef] [PubMed]
- Perner, F.; Perner, C.; Ernst, T.; Heidel, F.H. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019, 8, 854. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C. Perspectives on Chronic Inflammation in Essential Thrombocythemia, Polycythemia Vera, and Myelofibrosis: Is Chronic Inflammation a Trigger and Driver of Clonal Evolution and Development of Accelerated Atherosclerosis and Second Cancer? Blood 2012, 119, 3219–3225. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, S.Y.; Björkholm, M.; Hultcrantz, M.; Derolf, Å.R.; Landgren, O.; Goldin, L.R. Chronic Immune Stimulation Might Act as a Trigger for the Development of Acute Myeloid Leukemia or Myelodysplastic Syndromes. J. Clin. Oncol. 2011, 29, 2897–2903. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Landgren, O.; Samuelsson, J.; Björkholm, M.; Goldin, L.R. Autoimmunity and the Risk of Myeloproliferative Neoplasms. Haematologica 2010, 95, 1216–1220. [Google Scholar] [CrossRef]
- Anderson, L.A.; Pfeiffer, R.M.; Landgren, O.; Gadalla, S.; Berndt, S.I.; Engels, E.A. Risks of Myeloid Malignancies in Patients with Autoimmune Conditions. Br. J. Cancer 2009, 100, 822–828. [Google Scholar] [CrossRef]
- Pedersen, K.M.; Bak, M.; Sørensen, A.L.; Zwisler, A.D.; Ellervik, C.; Larsen, M.K.; Hasselbalch, H.C.; Tolstrup, J.S. Smoking Is Associated with Increased Risk of Myeloproliferative Neoplasms: A General Population-Based Cohort Study. Cancer Med. 2018, 7, 5796–5802. [Google Scholar] [CrossRef]
- Arranz, L.; Arriero, M.d.M.; Villatoro, A. Interleukin-1β as Emerging Therapeutic Target in Hematological Malignancies and Potentially in Their Complications. Blood Rev. 2017, 31, 306–317. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the Interleukin-1 Family of Ligands and Receptors. Semin. Immunol. 2013, 25, 389–393. [Google Scholar] [CrossRef]
- Rao, T.N.; Hansen, N.; Hilfiker, J.; Rai, S.; Majewska, J.M.; Leković, D.; Gezer, D.; Andina, N.; Galli, S.; Cassel, T.; et al. JAK2-Mutant Hematopoietic Cells Display Metabolic Alterations That Can Be Targeted to Treat Myeloproliferative Neoplasms. Blood 2019, 134, 1832–1846. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Grockowiak, E.; Hansen, N.; Luque Paz, D.; Stoll, C.B.; Hao-Shen, H.; Mild-Schneider, G.; Dirnhofer, S.; Farady, C.J.; Méndez-Ferrer, S.; et al. Inhibition of Interleukin-1β Reduces Myelofibrosis and Osteosclerosis in Mice with JAK2-V617F Driven Myeloproliferative Neoplasm. Nat. Commun. 2022, 13, 5346. [Google Scholar] [CrossRef] [PubMed]
- Mussbacher, M.; Derler, M.; Basílio, J.; Schmid, J.A. NF-ΚB in Monocytes and Macrophages—An Inflammatory Master Regulator in Multitalented Immune Cells. Front. Immunol. 2023, 14, 1134661. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Grabek, J.; Straube, J.; Bywater, M.; Lane, S.W. MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and Their Effect on Treatment. Cells 2020, 9, 1901. [Google Scholar] [CrossRef]
- Boissinot, M.; Cleyrat, C.; Vilaine, M.; Jacques, Y.; Corre, I.; Hermouet, S. Anti-Inflammatory Cytokines Hepatocyte Growth Factor and Interleukin-11 Are over-Expressed in Polycythemia Vera and Contribute to the Growth of Clonal Erythroblasts Independently of JAK2V617F. Oncogene 2011, 30, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Verger, E.; Cassinat, B.; Chauveau, A.; Dosquet, C.; Giraudier, S.; Schlageter, M.H.; Ianotto, J.C.; Yassin, M.A.; Al-Dewik, N.; Carillo, S.; et al. Clinical and Molecular Response to Interferon-α Therapy in Essential Thrombocythemia Patients with CALR Mutations. Blood 2015, 126, 2585–2591. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, H.C.; Silver, R.T. New Perspectives of Interferon-Alpha2 and Inflammation in Treating Philadelphia-Negative Chronic Myeloproliferative Neoplasms. HemaSphere 2021, 5, E645. [Google Scholar] [CrossRef] [PubMed]
- Kiladjian, J.J.; Klade, C.; Georgiev, P.; Krochmalczyk, D.; Gercheva-Kyuchukova, L.; Egyed, M.; Dulicek, P.; Illes, A.; Pylypenko, H.; Sivcheva, L.; et al. Long-Term Outcomes of Polycythemia Vera Patients Treated with Ropeginterferon Alfa-2b. Leukemia 2022, 36, 1408–1411. [Google Scholar] [CrossRef]
- Gisslinger, H.; Klade, C.; Georgiev, P.; Krochmalczyk, D.; Gercheva-Kyuchukova, L.; Egyed, M.; Rossiev, V.; Dulicek, P.; Illes, A.; Pylypenko, H.; et al. Ropeginterferon Alfa-2b versus Standard Therapy for Polycythaemia Vera (PROUD-PV and CONTINUATION-PV): A Randomised, Non-Inferiority, Phase 3 Trial and Its Extension Study. Lancet Haematol. 2020, 7, e196–e208. [Google Scholar] [CrossRef]
- Essers, M.A.G.; Offner, S.; Blanco-Bose, W.E.; Waibler, Z.; Kalinke, U.; Duchosal, M.A.; Trumpp, A. IFNalpha Activates Dormant Haematopoietic Stem Cells in Vivo. Nature 2009, 458, 904–908. [Google Scholar] [CrossRef]
- Sato, T.; Onai, N.; Yoshihara, H.; Arai, F.; Suda, T.; Ohteki, T. Interferon Regulatory Factor-2 Protects Quiescent Hematopoietic Stem Cells from Type I Interferon-Dependent Exhaustion. Nat. Med. 2009, 15, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Mosca, M.; Hermange, G.; Tisserand, A.; Noble, R.; Marzac, C.; Marty, C.; Le Sueur, C.; Campario, H.; Vertenoeil, G.; El-Khoury, M.; et al. Inferring the Dynamics of Mutated Hematopoietic Stem and Progenitor Cells Induced by IFNα in Myeloproliferative Neoplasms. Blood 2021, 138, 2231–2243. [Google Scholar] [CrossRef] [PubMed]
- Austin, R.J.; Straube, J.; Bruedigam, C.; Pali, G.; Jacquelin, S.; Vu, T.; Green, J.; Gräsel, J.; Lansink, L.; Cooper, L.; et al. Distinct Effects of Ruxolitinib and Interferon-Alpha on Murine JAK2V617F Myeloproliferative Neoplasm Hematopoietic Stem Cell Populations. Leukemia 2020, 34, 1075. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Lacout, C.; Marty, C.; Cuingnet, M.; Solary, E.; Vainchenker, W.; Villeval, J.L. JAK2V617F Expression in Mice Amplifies Early Hematopoietic Cells and Gives Them a Competitive Advantage That Is Hampered by IFNα. Blood 2013, 122, 1464–1477. [Google Scholar] [CrossRef]
- Mullally, A.; Ebert, B.L. Sinister Symbiosis: Pathological Hematopoietic-Stromal Interactions in CML. Cell Stem Cell 2013, 13, 257–258. [Google Scholar] [CrossRef]
- Tong, J.; Sun, T.; Ma, S.; Zhao, Y.; Ju, M.; Gao, Y.; Zhu, P.; Tan, P.; Fu, R.; Zhang, A.; et al. Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell 2021, 28, 502–513.E6, Erratum in Cell Stem Cell 2021, 28, 780. https://doi.org/10.1016/j.stem.2021.02.026. [Google Scholar] [CrossRef]
- Hasselbalch, H.C.; Holmström, M.O. Perspectives on Interferon-Alpha in the Treatment of Polycythemia Vera and Related Myeloproliferative Neoplasms: Minimal Residual Disease and Cure? Semin. Immunopathol. 2019, 41, 5–19. [Google Scholar] [CrossRef]
- Ishii, T.; Xu, M.; Zhao, Y.; Hu, W.Y.; Ciurea, S.; Bruno, E.; Hoffman, R. Recurrence of Clonal Hematopoiesis after Discontinuing Pegylated Recombinant Interferon-Alpha 2a in a Patient with Polycythemia Vera. Leukemia 2007, 21, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Walter, D.; Lier, A.; Geiselhart, A.; Thalheimer, F.B.; Huntscha, S.; Sobotta, M.C.; Moehrle, B.; Brocks, D.; Bayindir, I.; Kaschutnig, P.; et al. Exit from Dormancy Provokes DNA-Damage-Induced Attrition in Haematopoietic Stem Cells. Nature 2015, 520, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Marty, C.; Lacout, C.; Droin, N.; Le Couédic, J.P.; Ribrag, V.; Solary, E.; Vainchenker, W.; Villeval, J.L.; Plo, I. A Role for Reactive Oxygen Species in JAK2 V617F Myeloproliferative Neoplasm Progression. Leukemia 2013, 27, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Plo, I.; Nakatake, M.; Malivert, L.; De Villartay, J.P.; Giraudier, S.; Villeval, J.L.; Wiesmuller, L.; Vainchenker, W. JAK2 Stimulates Homologous Recombination and Genetic Instability: Potential Implication in the Heterogeneity of Myeloproliferative Disorders. Blood 2008, 112, 1402–1412. [Google Scholar] [CrossRef]
- Pietras, E.M.; Lakshminarasimhan, R.; Techner, J.M.; Fong, S.; Flach, J.; Binnewies, M.; Passegué, E. Re-Entry into Quiescence Protects Hematopoietic Stem Cells from the Killing Effect of Chronic Exposure to Type I Interferons. J. Exp. Med. 2014, 211, 245–262. [Google Scholar] [CrossRef]
- Flach, J.; Bakker, S.T.; Mohrin, M.; Conroy, P.C.; Pietras, E.M.; Reynaud, D.; Alvarez, S.; Diolaiti, M.E.; Ugarte, F.; Forsberg, E.C.; et al. Replication Stress Is a Potent Driver of Functional Decline in Ageing Haematopoietic Stem Cells. Nature 2014, 512, 198–202. [Google Scholar] [CrossRef]
- Chen, E.; Sook Ahn, J.; Massie, C.E.; Clynes, D.; Godfrey, A.L.; Li, J.; Park, H.J.; Nangalia, J.; Silber, Y.; Mullally, A.; et al. JAK2V617F Promotes Replication Fork Stalling with Disease-Restricted Impairment of the Intra-S Checkpoint Response. Proc. Natl. Acad. Sci. USA 2014, 111, 15190–15195. [Google Scholar] [CrossRef]
- Saleiro, D.; Mehrotra, S.; Kroczynska, B.; Beauchamp, E.M.; Lisowski, P.; Majchrzak-Kita, B.; Bhagat, T.D.; Stein, B.L.; McMahon, B.; Altman, J.K.; et al. Central Role of ULK1 in Type I Interferon Signaling. Cell Rep. 2015, 11, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Saleiro, D.; Wen, J.Q.; Kosciuczuk, E.M.; Eckerdt, F.; Beauchamp, E.M.; Oku, C.V.; Blyth, G.T.; Fischietti, M.; Ilut, L.; Colamonici, M.; et al. Discovery of a Signaling Feedback Circuit That Defines Interferon Responses in Myeloproliferative Neoplasms. Nat. Commun. 2022, 13, 1750. [Google Scholar] [CrossRef] [PubMed]
- Olson, M.F. Rho-Associated Coiled-Coil Containing Kinases (ROCK): Structure, Regulation, and Functions. Small GTPases 2014, 5, e29846. [Google Scholar] [CrossRef]
- Massarenti, L.; Knudsen, T.A.; Enevold, C.; Skov, V.; Kjær, L.; Larsen, M.K.; Larsen, T.S.; Hansen, D.L.; Hasselbalch, H.C.; Nielsen, C.H. Interferon Alpha-2 Treatment Reduces Circulating Neutrophil Extracellular Trap Levels in Myeloproliferative Neoplasms. Br. J. Haematol. 2023, 202, 318–327. [Google Scholar] [CrossRef]
- Walter, M.R. Structural Analysis of IL-10 and Type I Interferon Family Members and Their Complexes with Receptor. Adv. Protein Chem. 2004, 68, 171–223. [Google Scholar] [CrossRef] [PubMed]
- Karpusas, M.; Nolte, M.; Benton, C.B.; Meier, W.; Lipscomb, W.N.; Goelz, S. The Crystal Structure of Human Interferon Beta at 2.2-A Resolution. Proc. Natl. Acad. Sci. USA 1997, 94, 11813–11818. [Google Scholar] [CrossRef] [PubMed]
- Mastrangeli, R.; Rossi, M.; Mascia, M.; Palinsky, W.; Datola, A.; Terlizzese, M.; Bierau, H. In Vitro Biological Characterization of IFN-β-1a Major Glycoforms. Glycobiology 2015, 25, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kotenko, S.V. The Family of IL-10-Related Cytokines and Their Receptors: Related, but to What Extent? Cytokine Growth Factor Rev. 2002, 13, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Aghemo, A.; Rumi, M.G.; Colombo, M. Pegylated Interferons Alpha2a and Alpha2b in the Treatment of Chronic Hepatitis C. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, P. Different Interferons: Pharmacology, Pharmacokinetics, Proposed Mechanisms, Safety and Side Effects. Rev. Med. Interne 2002, 23, 449S–458S. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.J. Clinical Pharmacokinetics of Interferons. Clin. Pharmacokinet. 1990, 19, 390–399. [Google Scholar] [CrossRef]
- Merck & Co., Inc. Cder Product Information INTRON ® A; Merck Co., Inc.: Whitehouse Station, NJ, USA, 2014. [Google Scholar]
- Bornemann, L.D.; Spiegel, H.E.; Dziewanowska, Z.E.; Krown, S.E.; Colburn, W.A. Intravenous and Intramuscular Pharmacokinetics of Recombinant Leukocyte a Interferon. Eur. J. Clin. Pharmacol. 1985, 28, 469–471. [Google Scholar] [CrossRef]
- Pegasys | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/pegasys (accessed on 23 April 2025).
- Caliceti, P. Pharmacokinetics of Pegylated Interferons: What Is Misleading? Dig. Liver Dis. 2004, 36 (Suppl. 3), S334–S339. [Google Scholar] [CrossRef]
- Verhoef, J.J.F.; Carpenter, J.F.; Anchordoquy, T.J.; Schellekens, H. Potential Induction of Anti-PEG Antibodies and Complement Activation toward PEGylated Therapeutics. Drug Discov. Today 2014, 19, 1945–1952. [Google Scholar] [CrossRef]
- Hobbs, G.; Bozkus, C.C.; Moshier, E.; Dougherty, M.; Bar-Natan, M.; Sandy, L.; Johnson, K.; Foster, J.E.; Som, T.; Macrae, M.; et al. PD-1 Inhibition in Advanced Myeloproliferative Neoplasms. Blood Adv. 2021, 5, 5086–5097. [Google Scholar] [CrossRef]
- Tefferi, A.; Barbui, T. Polycythemia Vera: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2023, 98, 1465–1487. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Kosiorek, H.E.; Prchal, J.T.; Rambaldi, A.; Berenzon, D.; Yacoub, A.; Harrison, C.N.; McMullin, M.F.; Vannucchi, A.M.; Ewing, J.; et al. A Randomized Phase 3 Trial of Interferon-α vs Hydroxyurea in Polycythemia Vera and Essential Thrombocythemia. Blood 2022, 139, 2931–2941. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, T.A.; Skov, V.; Stevenson, K.; Werner, L.; Duke, W.; Laurore, C.; Gibson, C.J.; Nag, A.; Thorner, A.R.; Wollison, B.; et al. Genomic Profiling of a Randomized Trial of Interferon-α vs Hydroxyurea in MPN Reveals Mutation-Specific Responses. Blood Adv. 2022, 6, 2107–2119. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.L.; Mikkelsen, S.U.; Knudsen, T.A.; Bjørn, M.E.; Andersen, C.L.; Bjerrum, O.W.; Brochmann, N.; Patel, D.A.; Rahbek Gjerdrum, L.M.; El Fassi, D.; et al. Ruxolitinib and Interferon-A2 Combination Therapy for Patients with Polycythemia Vera or Myelofibrosis: A Phase II Study. Haematologica 2020, 105, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.L.; Skov, V.; Kjær, L.; Bjørn, M.E.; Eickhardt-Dalbøge, C.S.; Larsen, M.K.; Nielsen, C.H.; Thomsen, C.; Gjerdrum, L.M.R.; Knudsen, T.A.; et al. Combination Therapy with Ruxolitinib and Pegylated Interferon Alfa-2a in Newly Diagnosed Patients with Polycythemia Vera. Blood Adv. 2024, 8, 5416–5425. [Google Scholar] [CrossRef]
- Barbui, T.; Vannucchi, A.M.; De Stefano, V.; Masciulli, A.; Carobbio, A.; Ferrari, A.; Ghirardi, A.; Rossi, E.; Ciceri, F.; Bonifacio, M.; et al. Ropeginterferon Alfa-2b versus Phlebotomy in Low-Risk Patients with Polycythaemia Vera (Low-PV Study): A Multicentre, Randomised Phase 2 Trial. Lancet Haematol. 2021, 8, e175–e184. [Google Scholar] [CrossRef]
- Gill, H.; Au, L.; Yim, R.; Chin, L.; Li, V.; Lee, P.; Leung, G.M.; Lee, C.; Wu, T.K.Y.; Ngai, C.; et al. Efficacy and Safety of Ropeginterferon Alfa-2b for Pre-Fibrotic Primary Myelofibrosis and DIPSS Low/Intermediate-1 Risk Myelofibrosis. Blood 2022, 140, 1522. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Mesa, R.A.; Hoffman, R. The Renaissance of Interferon Therapy for the Treatment of Myeloid Malignancies. Blood 2011, 117, 4706–4715. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, A.; Mascarenhas, J.; Kosiorek, H.; Prchal, J.T.; Berenzon, D.; Baer, M.R.; Ritchie, E.; Silver, R.T.; Kessler, C.; Winton, E.; et al. Pegylated Interferon Alfa-2a for Polycythemia Vera or Essential Thrombocythemia Resistant or Intolerant to Hydroxyurea. Blood 2019, 134, 1498–1509. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.K.; Andersen, M.; Knudsen, T.A.; Sajid, Z.; Gudmand-Hoeyer, J.; Dam, M.J.B.; Skov, V.; Kjær, L.; Ellervik, C.; Larsen, T.S.; et al. Data-Driven Analysis of JAK2V617F Kinetics during Interferon-Alpha2 Treatment of Patients with Polycythemia Vera and Related Neoplasms. Cancer Med. 2020, 9, 2039–2051. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Giri, S.; Wang, R.; Podoltsev, N.; Williams, R.T.; Tallman, M.S.; Rampal, R.K.; Zeidan, A.M.; Stahl, M. Interferon Alpha Therapy in Essential Thrombocythemia and Polycythemia Vera-a Systematic Review and Meta-Analysis. Leukemia 2021, 35, 1643–1660. [Google Scholar] [CrossRef]
- Mesa, R.A.; Jamieson, C.; Bhatia, R.; Deininger, M.W.; Fletcher, C.D.; Gerds, A.T.; Gojo, I.; Gotlib, J.; Gundabolu, K.; Hobbs, G.; et al. NCCN Guidelines Insights: Myeloproliferative Neoplasms, Version 2.2018. J. Natl. Compr. Cancer Netw. 2017, 15, 1193–1207. [Google Scholar] [CrossRef]
- Marchetti, M.; Vannucchi, A.M.; Griesshammer, M.; Harrison, C.; Koschmieder, S.; Gisslinger, H.; Álvarez-Larrán, A.; De Stefano, V.; Guglielmelli, P.; Palandri, F.; et al. Appropriate Management of Polycythaemia Vera with Cytoreductive Drug Therapy: European LeukemiaNet 2021 Recommendations. Lancet Haematol. 2022, 9, e301–e311. [Google Scholar] [CrossRef]
- Barbui, T.; Vannucchi, A.M.; De Stefano, V.; Carobbio, A.; Ghirardi, A.; Carioli, G.; Masciulli, A.; Rossi, E.; Ciceri, F.; Bonifacio, M.; et al. Ropeginterferon versus Standard Therapy for Low-Risk Patients with Polycythemia Vera. NEJM Evid. 2023, 2, EVIDoa2200335. [Google Scholar] [CrossRef]
- Vainchenker, W.; Kralovics, R. Genetic Basis and Molecular Pathophysiology of Classical Myeloproliferative Neoplasms. Blood 2017, 129, 667–679. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.T.; Barel, A.C.; Lascu, E.; Ritchie, E.K.; Roboz, G.J.; Christos, P.J.; Orazi, A.; Hassane, D.C.; Tam, W.; Cross, N.C.P. The Effect of Initial Molecular Profile on Response to Recombinant Interferon-α (RIFNα) Treatment in Early Myelofibrosis. Cancer 2017, 123, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Masarova, L.; Yin, C.C.; Cortes, J.E.; Konopleva, M.; Borthakur, G.; Newberry, K.J.; Kantarjian, H.M.; Bueso-Ramos, C.E.; Verstovsek, S. Histomorphological Responses after Therapy with Pegylated Interferon α-2a in Patients with Essential Thrombocythemia (ET) and Polycythemia Vera (PV). Exp. Hematol. Oncol. 2017, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Them, N.C.C.; Bagienski, K.; Berg, T.; Gisslinger, B.; Schalling, M.; Chen, D.; Buxhofer-Ausch, V.; Thaler, J.; Schloegl, E.; Gastl, G.A.; et al. Molecular Responses and Chromosomal Aberrations in Patients with Polycythemia Vera Treated with Peg-Proline-Interferon Alpha-2b. Am. J. Hematol. 2015, 90, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Quintás-Cardama, A.; Kantarjian, H.; Manshouri, T.; Luthra, R.; Estrov, Z.; Pierce, S.; Richie, M.A.; Borthakur, G.; Konopleva, M.; Cortes, J.; et al. Pegylated Interferon Alfa-2a Yields High Rates of Hematologic and Molecular Response in Patients with Advanced Essential Thrombocythemia and Polycythemia Vera. J. Clin. Oncol. 2009, 27, 5418–5424. [Google Scholar] [CrossRef] [PubMed]
- Cassinat, B.; Verger, E.; Kiladjian, J.-J. Interferon Alfa Therapy in CALR-Mutated Essential Thrombocythemia. N. Engl. J. Med. 2014, 371, 188–189. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Marin, F.F.; Al-Ali, H.K.; Alvarez-Larrán, A.; Beggiato, E.; Bieniaszewska, M.; Breccia, M.; Buxhofer-Ausch, V.; Cerna, O.; Crisan, A.M.; et al. ROP-ET: A Prospective Phase III Trial Investigating the Efficacy and Safety of Ropeginterferon Alfa-2b in Essential Thrombocythemia Patients with Limited Treatment Options. Ann. Hematol. 2024, 103, 2299–2310. [Google Scholar] [CrossRef]
- Beauverd, Y.; Ianotto, J.C.; Thaw, K.H.; Sobas, M.; Sadjadian, P.; Curto-Garcia, N.; Shih, L.Y.; Devos, T.; Krochmalczyk, D.; Galli, S.; et al. Impact of Treatment for Adolescent and Young Adults with Essential Thrombocythemia and Polycythemia Vera. Leukemia 2025, 39, 1135–1145. [Google Scholar] [CrossRef]
- Tefferi, A.; Pardanani, A. Essential Thrombocythemia. N. Engl. J. Med. 2019, 381, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Masarova, L.; Bose, P.; Verstovsek, S. The Rationale for Immunotherapy in Myeloproliferative Neoplasms. Curr. Hematol. Malig. Rep. 2019, 14, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F.; Vannucchi, A.M.; Kiladjian, J.-J.; Al-Ali, H.K.; Sirulnik, A.; Stalbovskaya, V.; McQuitty, M.; Hunter, D.S.; Levy, R.S.; Passamonti, F.; et al. Three-Year Efficacy, Safety, and Survival Findings from COMFORT-II, a Phase 3 Study Comparing Ruxolitinib with Best Available Therapy for Myelofibrosis. Blood 2013, 122, 4047–4053, Erratum in Blood 2016, 128, 3013. [Google Scholar] [CrossRef]
- Ciurea, S.O.; Merchant, D.; Mahmud, N.; Ishii, T.; Zhao, Y.; Hu, W.; Bruno, E.; Barosi, G.; Xu, M.; Hoffman, R. Pivotal Contributions of Megakaryocytes to the Biology of Idiopathic Myelofibrosis. Blood 2007, 110, 986–993. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Hoffman, R. Don’t Judge a JAK2 Inhibitor by Spleen Response Alone. Lancet Haematol. 2018, 5, e56–e57. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.W.N.; Miller, C.B.; Silver, R.T.; Talpaz, M.; et al. Long-Term Treatment with Ruxolitinib for Patients with Myelofibrosis: 5-Year Update from the Randomized, Double-Blind, Placebo-Controlled, Phase 3 COMFORT-I Trial. J. Hematol. Oncol. 2017, 10, 55. [Google Scholar] [CrossRef]
- Myeloproliferative Neoplasms—Guidelines Detail. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1477 (accessed on 23 April 2025).
- Hehlmann, R.; Heimpel, H.; Kolb, H.J.; Heinze, B.; Hochhaus, A.; Griesshammer, M.; Pralle, H.; Queisser, W.P.D.; Essers, U.; Falge, C.; et al. The German CML Study, Comparison of Busulfan vs. Hydroxyurea vs. Interferon Alpha and Establishment of Prognostic Score 1. Leuk. Lymphoma 1993, 11, 159–168. [Google Scholar] [CrossRef]
- Talpaz, M.; Hehlmann, R.; Quintás-Cardama, A.; Mercer, J.; Cortes, J. Re-Emergence of Interferon-α in the Treatment of Chronic Myeloid Leukemia. Leukemia 2013, 27, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, F.E.; Etienne, G.; Huguet, F.; Guerci-Bresler, A.; Charbonnier, A.; Escoffre-Barbe, M.; Dubruille, V.; Johnson-Ansah, H.; Legros, L.; Coiteux, V.; et al. Treatment-Free Remissions in Newly Diagnosed CP CML Patients Treated with the Combination of Nilotinib + Pegylated Interferon Alpha 2a Versus Nilotinib Alone in the National Phase III Petals Trial. Blood 2021, 138, 2553. [Google Scholar] [CrossRef]
- Roy, L.; Chomel, J.C.; Guilhot, J.; Guerci-Bresler, A.; Escoffre-Barbe, M.; Giraudier, S.; Charbonnier, A.; Dubruille, V.; Huguet, F.; Johnson-Ansah, H.; et al. Dasatinib plus Peg-Interferon Alpha 2b Combination in Newly Diagnosed Chronic Phase Chronic Myeloid Leukaemia: Results of a Multicenter Phase 2 Study (DASA-PegIFN Study). Br. J. Haematol. 2023, 200, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Burchert, A.; Saussele, S.; Baerlocher, G.M.; Mayer, J.; Brümmendorf, T.H.; La Rosée, P.; Heim, D.; Krause, S.W.; le Coutre, P.; et al. Treatment Free Remission after Nilotinib Plus Peg-Interferon Alpha Induction and Peg-Interferon Alpha Maintenance Therapy for Newly Diagnosed Chronic Myeloid Leukemia Patients; The Tiger Trial. Blood 2023, 142, 446. [Google Scholar] [CrossRef]
- Burchert, A.; Saussele, S.; Michel, C.; Metzelder, S.K.; Hochhaus, A.; Gattermann, N.; Crysandt, M.; Schafhausen, P.; Bormann, M.; Radsak, M.P.; et al. Efficacy of Ropeginterferon Alpha 2b in Inducing Treatment Free Remission in Chronic Myeloid Leukemia—An International, Randomized Phase III Trial (ENDURE, CML-IX) of the German CML-Study Group. Blood 2022, 140, 1501–1503. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Kirschner, K.; Copland, M. Improving Outcomes in Chronic Myeloid Leukemia through Harnessing the Immunological Landscape. Leukemia 2021, 35, 1229–1242. [Google Scholar] [CrossRef]
- Yeung, D.T.; Grigg, A.P.; Shanmuganathan, N.; Cunningham, I.; Shortt, J.; Rowling, P.; Reynolds, J.; Cushion, R.; Harrup, R.A.; Ross, D.M.; et al. Combination of Nilotinib and Pegylated Interferon Alfa-2b Results in High Molecular Response Rates in Chronic Phase CML: Interim Results of the ALLG CML 11 Pinnacle Study. Blood 2018, 132, 459. [Google Scholar] [CrossRef]
- Puzzolo, M.C.; Breccia, M.; Mariglia, P.; Colafigli, G.; Pepe, S.; Scalzulli, E.; Mariggiò, E.; Latagliata, R.; Guarini, A.; Foà, R. Immunomodulatory Effects of IFNα on T and NK Cells in Chronic Myeloid Leukemia Patients in Deep Molecular Response Preparing for Treatment Discontinuation. J. Clin. Med. 2022, 11, 5594. [Google Scholar] [CrossRef]
- Breccia, M.; Saglio, G. Interferon in Chronic Myeloid Leukaemia: Is It Useful for Treatment-Free Remission? Br. J. Haematol. 2023, 202, 1087–1088. [Google Scholar] [CrossRef]
- Costa, A.; Scalzulli, E.; Carmosino, I.; Ielo, C.; Bisegna, M.L.; Martelli, M.; Breccia, M. Pharmacotherapeutic Advances for Chronic Myelogenous Leukemia: Beyond Tyrosine Kinase Inhibitors. Expert Opin. Pharmacother. 2024, 25, 189–202. [Google Scholar] [CrossRef]
- Böhm, J.; Schaefer, H.E. Chronic Neutrophilic Leukaemia: 14 New Cases of an Uncommon Myeloproliferative Disease. J. Clin. Pathol. 2002, 55, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, J.; Guo, J. Presence of the JAK2 V617F Mutation in a Patient with Chronic Neutrophilic Leukemia and Effective Response to Interferon α-2b. Acta Haematol. 2013, 130, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Feremans, W.; Cantiniaux, B.; Capel, P.; Huygen, K.; Dicato, M. Successful Alpha-2b-Interferon Therapy for Chronic Neutrophilic Leukemia. Am. J. Hematol. 1993, 43, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Yassin, M.A.; Kohla, S.; Al-Sabbagh, A.; Soliman, A.T.; Yousif, A.; Moustafa, A.; Al Battah, A.; Nashwan, A.; Al-Dewik, N. A Case of Chronic Neutrophilic Leukemia Successfully Treated with Pegylated Interferon Alpha-2a. Clin. Med. Insights Case Rep. 2015, 8, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Szuber, N.; Orazi, A.; Tefferi, A. Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia: 2024 Update on Diagnosis, Genetics, Risk Stratification, and Management. Am. J. Hematol. 2024, 99, 1360–1387. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, J.H. Treatment of Hypereosinophilic Syndromes with Prednisone, Hydroxyurea, and Interferon. Immunol. Allergy Clin. N. Am. 2007, 27, 493–518. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.Y.; Ahn, G.B.; Chang, S.H. Complete Remission of Hypereosinophilic Syndrome after Interferon-α Therapy: Report of a Case and Literature Review. J. Dermatol. 2000, 27, 110–115. [Google Scholar] [CrossRef]
- Quiquandon, I.; Claisse, J.F.; Capiod, J.C.; Delobel, J.; Prin, L. α-Lnterferon and Hypereosinophilic Syndrome With Trisomy 8: Karyotypic Remission. Blood 1995, 85, 2284–2285. [Google Scholar] [CrossRef]
- Yamada, O.; Kitahara, K.; Imamura, K.; Ozasa, H.; Okada, M.; Mizoguchi, H. Clinical and Cytogenetic Remission Induced by Interferon-α in a Patient with Chronic Eosinophilic Leukemia Associated with a Unique t(3;9;5) Translocation. Am. J. Hematol. 1998, 58, 137–141. [Google Scholar] [CrossRef]
- Malbrain, M.L.N.G.; Van Den Bergh, H.; Zachée, P. Further Evidence for the Clonal Nature of the Idiopathic Hypereosinophilic Syndrome: Complete Haematological and Cytogenetic Remission Induced by Interferon-Alpha in a Case with a Unique Chromosomal Abnormality. Br. J. Haematol. 1996, 92, 176–183. [Google Scholar] [CrossRef]
- Butterfield, J.H.; Gleich, G.J. Response of Six Patients with Idiopathic Hypereosinophilic Syndrome to Interferon Alfa. J. Allergy Clin. Immunol. 1994, 94, 1318–1326. [Google Scholar] [CrossRef]
- Ceretelli, S.; Capochiani, E.; Petrini, M. Interferon-Alpha in the Idiopathic Hypereosinophilic Syndrome: Consideration of Five Cases. Ann. Hematol. 1998, 77, 161–164. [Google Scholar] [CrossRef]
- Shomali, W.; Gotlib, J. World Health Organization and International Consensus Classification of Eosinophilic Disorders: 2024 Update on Diagnosis, Risk Stratification, and Management. Am. J. Hematol. 2024, 99, 946–968. [Google Scholar] [CrossRef]
- Szuber, N.; Guglielmelli, P.; Gangat, N. Topics of Interest in Women with Myeloproliferative Neoplasms. Am. J. Hematol. 2025, 100, 74–87. [Google Scholar] [CrossRef]
- Robertson, H.F.; Milojkovic, D.; Butt, N.; Byrne, J.; Claudiani, S.; Copland, M.; Gallipoli, P.; Innes, A.J.; Knight, K.; Mahdi, A.J.; et al. Expectations and Outcomes of Varying Treatment Strategies for CML Presenting during Pregnancy. Br. J. Haematol. 2024, 205, 947–955. [Google Scholar] [CrossRef]
- Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda, MD, USA, 2006.

| Characteristic | INTRON-A (IFN-α-2b) | PEGASYS (PegIFN-α-2a) | BESREMI (RopegIFN-α-2b) |
|---|---|---|---|
| Type of Interferon | IFN-α-2b (Standard) | Pegylated IFN-α-2a | Pegylated IFN-α-2b |
| Modification | None | Pegylation (40 kDa, branched) | Pegylation (60 kDa, linear) |
| Molecular Weight | ~19 kDa | ~40 kDa | ~60 kDa |
| Half-life | Short (~4–8 h) | Intermediate (~50 h) | Long (~120–160 h) |
| Administration Frequency | 3 times per week | Once per week | Every 2–4 weeks |
| Route of Administration | SC or IM | SC | SC |
| Main Indications | Hepatitis B/C, Melanoma, MPN | Hepatitis B/C, MPN | PV, MPN |
| Mechanism of Action | Activates JAK-STAT pathway, induces antiviral, antiproliferative, and immunomodulatory effects | Prolonged activation of JAK-STAT pathway, enhanced immune modulation | Sustained immune activation, lower systemic toxicity |
| Main Adverse Effects | Flu-like symptoms, cytopenia, liver toxicity | bone marrow suppression, cytopenia | Lower hematological toxicity, better tolerability |
| Metabolism and Excretion | Renal and hepatic clearance | Primarily hepatic metabolism | Hepatic metabolism, prolonged systemic exposure |
| Biological Impact | Strong antiviral and antiproliferative effects | Sustained immune response due to pegylation | Prolonged biological activity with less frequent dosing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonuomo, V.; Dogliotti, I.; Masucci, S.; Grano, S.; Savi, A.; Frolli, A.; Cilloni, D.; Fava, C. The Dual Role of Interferon Signaling in Myeloproliferative Neoplasms: Pathogenesis and Targeted Therapeutics. Cancers 2025, 17, 3480. https://doi.org/10.3390/cancers17213480
Bonuomo V, Dogliotti I, Masucci S, Grano S, Savi A, Frolli A, Cilloni D, Fava C. The Dual Role of Interferon Signaling in Myeloproliferative Neoplasms: Pathogenesis and Targeted Therapeutics. Cancers. 2025; 17(21):3480. https://doi.org/10.3390/cancers17213480
Chicago/Turabian StyleBonuomo, Valentina, Irene Dogliotti, Simona Masucci, Selene Grano, Arianna Savi, Antonio Frolli, Daniela Cilloni, and Carmen Fava. 2025. "The Dual Role of Interferon Signaling in Myeloproliferative Neoplasms: Pathogenesis and Targeted Therapeutics" Cancers 17, no. 21: 3480. https://doi.org/10.3390/cancers17213480
APA StyleBonuomo, V., Dogliotti, I., Masucci, S., Grano, S., Savi, A., Frolli, A., Cilloni, D., & Fava, C. (2025). The Dual Role of Interferon Signaling in Myeloproliferative Neoplasms: Pathogenesis and Targeted Therapeutics. Cancers, 17(21), 3480. https://doi.org/10.3390/cancers17213480

