Potential of Proteases in the Diagnosis of Bladder Cancer
Simple Summary
Abstract
1. Introduction
2. Cathepsins
3. Metalloproteins
4. Ubiquitin-Specific Proteases
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://worldbladdercancer.org/news_events/globocan-2022-bladder-cancer-is-the-9th-most-commonly-diagnosed-worldwide/ (accessed on 14 February 2024).
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmstrom, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 388, 2796–2810. [Google Scholar] [CrossRef]
- Matuszczak, M.; Kiljanczyk, A.; Salagierski, M. A Liquid Biopsy in Bladder Cancer—The Current Landscape in Urinary Biomarkers. Int. J. Mol. Sci. 2022, 23, 8597. [Google Scholar] [CrossRef]
- Shi, Y.; Mathis, B.J.; He, Y.; Yang, X. The Current Progress and Future Options of Multiple Therapy and Potential Biomarkers for Muscle-Invasive Bladder Cancer. Biomedicines 2023, 11, 539. [Google Scholar] [CrossRef]
- Bastos, P.; Magalhães, S.; Santos, L.L.; Ferreira, R.; Vitorino, R. The Role of Urinary Proteases in Bladder Cancer. In Pathophysiological Aspects of Proteases; Chakraborti, S., Dhalla, N.S., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 89–119. [Google Scholar] [CrossRef]
- Rosser, C.J.; Chang, M.; Dai, Y.; Ross, S.; Mengual, L.; Alcaraz, A.; Goodison, S. Urinary protein biomarker panel for the detection of recurrent bladder cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1340–1345. [Google Scholar]
- Lam, T.; Nabi, G. Potential of urinary biomarkers in early bladder cancer diagnosis. Expert Rev. Anticancer Ther. 2007, 7, 1105–1115. [Google Scholar]
- Yang, N.; Feng, S.; Shedden, K.; Yang, N.; Feng, S.; Shedden, K.; Xie, X.; Liu, Y.; Rosser, C.J.; Lubman, D.M.; et al. Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clin. Cancer Res. 2011, 17, 3349–3359. [Google Scholar] [PubMed]
- Craik, C.S.; Page, M.J.; Madison, E.L. Proteases as therapeutics. Biochem. J. 2011, 435, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Stoka, V.; Vasiljeva, O.; Nakanishi, H.; Turk, V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int. J. Mol. Sci. 2023, 24, 15613. [Google Scholar] [CrossRef]
- López-Otín, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 2007, 7, 800–808. [Google Scholar] [CrossRef]
- Rossi, A.; Deveraux, Q.; Turk, B.; Sali, A. Comprehensive search for cysteine cathepsins in the human genome. Biol. Chem. 2004, 385, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef]
- Schwartz, M.K. Tissue cathepsins as tumor markers. Clin. Chim. Acta 1995, 237, 67–78. [Google Scholar] [CrossRef]
- Salman, T.; El-Ahmady, O.; El-Shafee, M.; Omar, S.; Salman, I. Cathepsin-D and TNF-alpha in bladder cancer. Dis. Markers 1996, 12, 253–259. [Google Scholar] [CrossRef]
- Salman, T.; El-Ahmady, O.; El-Shafee, M.; Omar, S.; Salman, I. The clinical value of cathepsin D and TNF-α in bladder cancer patients. Anticancer Res. 1997, 17, 3087–3090. [Google Scholar] [PubMed]
- Dickinson, A.J.; Fox, S.B.; Newcomb, P.V.; Persad, R.A.; Sibley, G.N.; Harris, A.L. An immunohistochemical and prognostic evaluation of cathepsin D expression in 105 bladder carcinomas. J. Urol. 1995, 154, 237–241. [Google Scholar] [CrossRef]
- Tokyol, C.; Köken, T.; Demirbas, M.; Dilek, F.H.; Yörükoglu, K.; Mungan, U.; Kirkali, Z. Expression of cathepsin D in bladder carcinoma: Correlation with pathological features and serum cystatin C levels. Tumori J. 2006, 92, 230–235. [Google Scholar] [CrossRef]
- Lloret, C.C.; Mira, A.C.; Sanchis, M.S.; Guanter, V.R.; Armada, J.B.; Aznar, A.S.; Córdova, R.V.; Sánchez, B.C.; Blanch, F.C.; Planes, M.T.; et al. Estudio de los niveles de catepsina D en el tumor vesical infiltrante y en su estroma, y de su correlación con el estadio tumoral, grado citológico, afectación ganglionar y supervivencia [Study of cathepsin D levels in invasive bladder cancer and its stroma. Correlation with tumor stage, cytological grade, lymph node metastasis and survival]. Actas Urol. Esp. 2002, 26, 335–338. [Google Scholar] [CrossRef]
- Ozer, E.; Mungan, U.; Tuna, B.; Kazimoglu, H.; Yorukoglu, K.; Kirkali, Z. Prognostic significance of angiogenesis and immunoreactivity of Cathepsin D and type IV Collagen in high-grade stage T1 primary Bladder Cancer. Urology 1999, 54, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Gorodkiewicz, E.; Guszcz, T.; Roszkowska-Jakimiec, W.; Kozłowski, R. Cathepsin D serum and urine concentration in superficial and invasive transitional bladder cancer as determined by surface plasmon resonance imaging. Oncol. Let. 2014, 8, 1323–1327. [Google Scholar] [CrossRef]
- Guszcz, T.; Swieczkowska, M.; Milewska, E.; Gorodkiewicz, E.; Kozłowski, R.; Roszkowska-Jakimiec, W. Aktywność katepsyn D i B w osoczu chorych na raka przejściowokomórkowego pecherza moczowego [Cathepsin D and B activity in the serum of patients with urothelial bladder cancer]. Pol. Merkur. Lek. 2014, 36, 386–388. [Google Scholar]
- Eijan, A.M.; Sandes, E.O.; Riveros, M.D.; Thompson, S.; Pasik, L.; Mallagrino, H.; Celeste, F.; Casabe, A.R. High Expression of Cathepsin B in Transitional Bladder Carcinoma Correlates with Tumor Invasion. Cancer 2003, 98, 262–268. [Google Scholar] [CrossRef]
- Weiss, R.E.; Liu, B.C.S.; Ahlering, T.; Dubeau, L.; Droller, M.J. Mechanisms of Human Bladder Tumor Invasion: Role of Protease Cathepsin B. J. Urol. 1990, 144, 798–804. [Google Scholar] [CrossRef]
- Staack, A.; Koenig, F.; Daniltchenko, D.; Hauptmann, S.; Loening, S.A.; Schnorr, D.; Jung, K. Cathepsins B, H, and L activities in urine of Patients with Transitional Cell Carcinoma of the bladder. Urology 2002, 59, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Lodillinsky, C.; Rodriguez, V.; Vauthay, L.; Sandes, E.; Casabé, A.; Eiján, A.M. Novel Invasive Orthotopic Bladder Cancer Model with High Cathepsin B Activity Resembling Human Bladder Cancer. J. Urol. 2009, 182, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Svatek, R.S.; Karam, J.; Karakiewicz, P.I.; Gallina, A.; Casella, R.; Roehrborn, C.G.; Shariat, S.F. Role of Urinary Cathepsin B and L in the Detection of Bladder Urothelial Cell Carcinoma. J. Urol. 2008, 179, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Kotaska, K.; Dusek, P.; Prusa, R.; Vesely, S.; Babjuk, M. Urine and Serum Cathepsin B Concentrations in the Transitional Cell Carcinoma of the Bladder. J. Clin. Lab. Anal. 2012, 26, 61–65. [Google Scholar] [CrossRef]
- Dusek, P.; Kotaska, K.; Vesely, S.; Prusa, R.; Babjuk, M. Diagnostic efficiency of serum and urine procathepsin B and cathepsin B in patients with carcinoma of the urinary bladder. Clin. Lab. 2016, 62, 1709–1715. [Google Scholar] [CrossRef]
- Kirschke, H.; Barrett, A.J. Cathepsin L—A lysosomal cysteine proteinase. Prog. Clin. Biol. Res. 1985, 180, 61–69. [Google Scholar]
- Yan, J.-A.; Xiao, H.; Ji, H.-X.; Shen, W.-H.; Zhou, Z.-S.; Song, B.; Chen, Z.-W.; Li, W.-B. Cathepsin L is Associated with Proliferation and Clinical Outcome of Urothelial Carcinoma of the Bladder. J. Int. Med. Res. 2010, 38, 1913–1922. [Google Scholar] [CrossRef]
- Staack, A.; Tolic, D.; Kristiansen, G.; Schnorr, D.; Loening, S.A.; Jung, K. Expression of cathepsins B, H, and L and their inhibitors as markers of transitional cell carcinoma of the bladder. Urology 2004, 63, 1089–1094. [Google Scholar] [CrossRef]
- Tokarzewicz, A.; Romanowicz, L.; Sankiewicz, A.; Hermanowicz, A.; Sobolewski, K.; Gorodkiewicz, E. A New Analytical Method for Determination of Cathepsin L Based on the Surface Plasmon Resonance Imaging Biosensor. Int. J. Mol. Sci. 2019, 20, 2166. [Google Scholar] [CrossRef]
- Lecaille, F.; Chazeirat, T.; Saidi, A.; Lalmanach, G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol. Asp. Med. 2022, 88, 101086. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Ge, M.; Xia, L.; Shan, G.; Qian, H. CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity. Bioengineered 2022, 13, 10180–10190. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; Wang, D. Cathepsin C Promotes Tumorigenesis in Bladder Cancer by Activating the Wnt/β-catenin Signalling Pathway. Front. Biosci. 2024, 29, 327. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Kudelski, J.; Tokarzewicz, A.; Gudowska-Sawczuk, M.; Mroczko, B.; Chłosta, P.; Bruczko-Goralewska, M.; Mitura, P.; Młynarczyk, G. The Significance of Matrix Metalloproteinase 9 (MMP-9) and Metalloproteinase 2 (MMP-2) in Urinary Bladder Cancer. Biomedicines 2023, 11, 956. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Da, L.; Wu, Z.; Wang, Y.; Gao, S.; Tian, D.; Hu, H. Expression and Prognostic Significance of the MMP Family Molecules in Bladder Cancer. Comb. Chem. High. Throughput Screen. 2021, 24, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef]
- Watroba, S.; Wisniowski, T.; Bryda, J.; Kurzepa, J. The role of matrix metalloproteinases in pathogenesis of human bladder cancer. Acta Biochim. Pol. 2021, 68, 547–555. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhou, F.J.; Shen, P.F.; Zhou, C.; Wei, J.X. Significance of activated matrix metalloproteinase 2 (MMP2) in progression of bladder transitional cell carcinoma. Chin. J. Cancer 2003, 22, 637–639. [Google Scholar]
- Gerhards, S.; Jung, K.; Koenig, F.; Daniltchenko, D.; Hauptmann, S.; Schnorr, D.; Loening, S.A. Excretion of matrix metalloproteinases 2 and 9 in urine is associated with a high stage and grade of bladder carcinoma. Urology 2001, 57, 675–679. [Google Scholar] [CrossRef]
- Staack, A.; Badendieck, S.; Schnorr, D.; Loening, S.A.; Jung, K. Combined determination of plasma MMP2, MMP9, and TIMP1 improves the non-invasive detection of transitional cell carcinoma of the bladder. BMC Urol. 2006, 6, 19. [Google Scholar] [CrossRef]
- Peres, R.; Furuya, H.; Pagano, I.; Shimizu, Y.; Hokutan, K.; Rosser, C.J. Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation. Oncotarget 2016, 28, 43109–43123. [Google Scholar] [CrossRef]
- Xu, J.; Hua, X.; Yang, R.; Jin, H.; Li, J.; Zhu, J.; Tian, Z.; Huang, M.; Jiang, G.; Huang, H.; et al. XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion. Oncogenesis 2019, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Hua, X.; Huang, C.; Liao, X.; Tian, Z.; Xu, J.; Zhao, Y.; Jiang, G.; Huang, H.; Huang, C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int. J. Mol. Sci. 2022, 23, 12532. [Google Scholar] [CrossRef] [PubMed]
- Alkanli, N.; Ay, A.; Cevik, G. Investigation of roles of IL-8 (+781 C/T) and MMP-2 (−735 C/T) gene variations in early diagnosis of bladder cancer and progression. Mol. Biol. Rep. 2023, 50, 443–451. [Google Scholar] [CrossRef]
- Winerdal, M.E.; Krantz, D.; Hartana, C.A.; Zirakzadeh, A.A.; Linton, L.; Bergman, E.A.; Rosenblatt, R.; Vasko, J.; Alamdari, F.; Hansson, J.; et al. Urinary Bladder Cancer Tregs Suppress MMP2 and Potentially Regulate Invasiveness. Cancer Immunol. Res. 2018, 6, 528–538. [Google Scholar] [CrossRef]
- Kudelski, J.; Młynarczyk, G.; Gudowska-Sawczuk, M.; Mroczko, B.; Darewicz, B.; Bruczko-Goralewska, M.; Sobolewski, K.; Romanowicz, L. Enhanced Expression but Decreased Specific Activity of Matrix Metalloproteinase 10 (MMP-10) in Comparison with Matrix Metalloproteinase 3 (MMP-3) in Human Urinary Bladder Carcinoma. J. Clin. Med. 2021, 10, 3683. [Google Scholar] [CrossRef]
- Tokarzewicz, A.; Romanowicz, L.; Sveklo, I.; Matuszczak, E.; Hermanowicz, A.; Gorodkiewicz, E. SPRI biosensors for quantitative determination of matrix metalloproteinase-2. Anal. Methods 2017, 9, 2407–2414. [Google Scholar] [CrossRef]
- Zajkowska, M.; Zbucka-Kretowska, M.; Sidorkiewicz, I.; Lubowicka, E.; Bedkowska, G.E.; Gacuta, E.; Szmitkowski, M.; Lawicki, S. Human Plasma Levels of Vascular Endothelial Growth Factor, Matrix Metalloproteinase 9, and Tissue Inhibitor of Matrix Metalloproteinase 1 and Their Applicability as Tumor Markers in Diagnoses of Cervical Cancer Based on ROC Analysis. Cancer Control J. Moffitt Cancer Cent. 2018, 25, 1073274818789357. [Google Scholar] [CrossRef]
- Aguirre Ghiso, J.A.; Kovalski, K.; Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 1999, 147, 89–103. [Google Scholar] [CrossRef]
- Guntarno, N.C.; Rahaju, A.S.; Kurniasari, N. Role of VEGF and MMP-9 in Bladder Carcinoma. Indones. Biomed. J. 2021, 13, 61–67. [Google Scholar] [CrossRef]
- Kudelski, J.; Młynarczyk, G.; Darewicz, B.; Bruczko-Goralewska, M.; Romanowicz, L. Dominative role of MMP-14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity. Medicine 2020, 99, 7. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Yana, I.; Matsuura, N. MMP15 (matrix metallopeptidase 15 (membrane-inserted)). Atlas Genet. Cytogenet. Oncol. Haematol 2012, 17, 193–198. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wei, N.; Sun, Y.; Pan, W.; Chen, Y. Silencing LINC00482 inhibits tumor-associated inflammation and angiogenesis through down-regulation of MMP-15 via FOXA1 in bladder cancer. Aging 2021, 13, 2264–2278. [Google Scholar] [CrossRef]
- Iida, J.; Wilhelmson, K.L.; Price, M.A.; Wilson, C.M.; Pei, D.; Furcht, L.T.; Mccarthy, J.B. Membrane Type-1 Matrix Metalloproteinase Promotes Human Melanoma Invasion and Growth. J. Investig. Dermat. 2004, 122, 167–176. [Google Scholar] [CrossRef]
- Wallard, M.J.; Pennington, C.J.; Veerakumarasivam, A.; Burtt, G.; Mills, I.G.; Warren, A.; Leung, H.Y.; Murphy, G.; Ewards, D.R.; Neal, D.E.; et al. Comprehensive profiling and localisation of the matrix metalloproteinases in urotelial carcinoma. Br. J. Cancer 2006, 94, 569–577. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Ismael, N.R.; Shaarawy, S.M.; El-Merzabani, M.M. Prognostic value of membrane type 1 and 2 matrix metalloproteinase expression and gelatinase A activity in bladder cancer. Int. J. Biol. Markers 2010, 25, 69–74. [Google Scholar] [CrossRef]
- Castro-Castro, A.; Marchesin, V.; Monteiro, P.; Lodillinsky, C.; Rossé, C.; Chavrier, P. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu. Rev. Cell Dev. Biol. 2016, 32, 555–576. [Google Scholar] [PubMed]
- Seargent, J.M.; Loadman, P.; Martin, S.W.; Naylor, B.; Bibby, M.C.; Gill, J. Expression of matrix metalloproteinase-10 in human bladder transitional cell carcinoma. Urology 2005, 65, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tan, R.J.; Liu, Y. The many faces of matrix metalloproteinase-7 in kidney diseases. Biomolecules 2020, 10, 960. [Google Scholar] [CrossRef]
- Avello, A.; Guerrero-Mauvecin, J.; Belen Sanz, A. Urine MMP7 as a kidney injury biomarker. Clin. Kidney J. 2024, 17, sfad233. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Wu, P.; Xiang, W.; Xie, D.; Wang, N.; Deng, M.; Cao, K.; Zeng, H.; Xu, Z.; et al. SLC12A5 interacts and enhances SOX18 activity to promote bladder urothelial carcinoma progression via upregulating MMP7. Cancer Sci. 2020, 111, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Raffetto, J.D.; Khalil, R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 2008, 75, 346–359. [Google Scholar] [CrossRef]
- Bode, W.; Maskos, K. Structural Basis of the Matrix Metalloproteinases and Their Physiological Inhibitors, the Tissue Inhibitors of Metalloproteinases. Biol. Chem. 2003, 384, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Manolescu, M.B.S.; Lazar, A.M.; Tiplica, G.; Zurac, S.A.; Reboşapcă, A.; Andreescu, B.; Popp, C.G. MMP1, MMP9, MMP11 and MMP13 in melanoma and its metastasis—Key points in understanding the mechanisms and celerity of tumor dissemination. Rom. J. Morphol. Embryol. 2024, 65, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Tokarzewicz, A.; Romanowicz, L.; Sveklo, I.; Gorodkiewicz, E. The development of a matrix metalloproteinase-1 biosensor based on the surface plasmon resonance imaging technique. Anal. Meth. 2016, 8, 6428–6435. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, P.; Bao, L.-W.; Zhang, A.-Q.; Yu, B.; Li, T.; Lei, J.; Zhang, H.-H.; Li, S.-Z. Ubiquitin-Specific Protease 1 Promotes Bladder Cancer Progression by Stabilizing c-MYC. Cells 2024, 13, 1798. [Google Scholar] [CrossRef]
- Jeong, P.; Ha, Y.-S.; Yun, S.-J.; Yoon, H.-Y.; Freeman, M.R.; Kim, J.; Kim, W.-J. Asses the expression of ubiquitin specific protease USP2a for bladder cancer diagnosis. BMC Urol. 2015, 15, 80. [Google Scholar] [CrossRef]
- Cai, H.; Ke, Z.-B.; Chen, J.-Y.; Li, X.-D.; Zhu, J.-M.; Xue, Y.-T.; Ruan, Z.-T.; Wang, Z.; Lin, F.; Zheng, Q.-S.; et al. Ubiquitin-specific protease 5 promotes bladder cancer progression through stabilizing Twist 1. Oncogene 2024, 43, 703–713. [Google Scholar] [CrossRef]
- Nowak, Ł.; Krajewski, W.; Dejnaka, E.; Małkiewicz, B.; Szydełko, T.; Pawlak, A. Ubiquitin-Specific Proteases as Potential Therapeutic Targets in Bladder Cancer—In Vitro Evaluation of Degrasyn and PR-619 Activity Using Human and Canine Models. Biomedicines 2023, 11, 759. [Google Scholar] [CrossRef]
- Song, G.; Zeng, C.; Li, J.; Liu, J.; Zhao, J.; Liu, B.; Fan, J.; Xie, H. Exosome-based nanomedicines for digestive system tumors therapy. Nanomedicine 2025, 20, 1167–1180. [Google Scholar] [CrossRef]
- Chen, S.; Long, S.; Liu, Y.; Wang, S.; Hu, Q.; Fu, L.; Luo, D. Evaluation of a three-gene methylation model for correlating lymph node metastasis in postoperative early gastric cancer adjacent samples. Front. Oncol. 2024, 14, 1432869. [Google Scholar] [CrossRef]
- Maliszewska, M.; Mader, M.; Scholl, U.; Azeh, I.; Hardeland, R.; Felgenhauer, K.; Beuche, W.; Weber, F. Development of an ultrasensitive enzyme immunoassay for the determination of matrix metalloproteinase-9 (MMP-9) levels in normal human cerebrospinal fluid. J. Neuroimmunol. 2001, 116, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Gorodkiewicz, E.; Regulska, E.; Wojtulewski, K. Development of an SPR imaging biosensor for determination of cathepsin G in saliva and white blood cells. Microchim. Acta 2011, 173, 407–413. [Google Scholar] [CrossRef]
- Oldak, L.; Sankiewicz, A.; Zelazowska-Rutkowska, B.; Cylwik, B.; Lukaszewski, Z.; Skoczylas, M.; Gorodkiewicz, E. Two SPRi biosensors for the determination of cathepsin S in blood plasma. Talanta 2021, 225, 121900. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tang, Z.; Zhu, X.; Wang, B.; Zhang, X.; Ji, Z.; Cheng, S. Ultrasensitive detection of MMP-2 via T7 RNA polymerase and CRISPR/Cas13a-Enhanced electrochemiluminescence biosensor for COPD diagnosis. Methods 2025, 242, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Wang, J.; Zhang, J.; Zeng, H.; Su, Z.; Zhu, X.; Wei, J.; Gong, Y.; Tang, Q.; Zhang, K.; et al. Electrochemiluminescence biosensor for MMP-2 determination using CRISPR/Cas13a and EXPAR amplification: A novel approach for anti-aging research. Microchim. Acta 2024, 191, 665. [Google Scholar] [CrossRef]
- Nisiewicz, M.K.; Gajda, A.; Kowalczyk, A.; Cupriak, A.; Kasprzak, A.; Bamburowicz-Klimkowska, M.P.; Grudzinski, I.P.; Nowicka, A.M. Novel electrogravimetric biosensors for the ultrasensitive detection of plasma matrix metalloproteinase-2 considered a potential tumor biomarker. Anal. Chim. Acta 2022, 1191, 339290. [Google Scholar] [CrossRef]
- Lou, Y.; Cheng, M.; Cao, Q.; Li, K.; Qin, H.; Bao, M.; Zhang, Y.; Lin, S.; Zhang, Y. Simultaneous quantification of mirabegron and vibegron in human plasma by HPLC-MS/MS and its application in the clinical determination in patients with tumors associated with overactive bladder. J. Pharm. Biomed. Anal. 2024, 240, 115937. [Google Scholar] [CrossRef]
| Biomarker | Medium | Tumour vs. Control | Technique | Reference |
|---|---|---|---|---|
| Cath D | tissue | + | immunohistochemical | [19] |
| Cath D | tissue | + | immunoradiometric assay | [15] |
| Cath D | serum; urine | + | Array SPRi | [21] |
| Cath B | tissue | + | Western blot ELISA | [22,23,31] |
| Cath B | urine | + | Western blot | [22] |
| Cath B | urine | ± | [27] | |
| Cath B | serum | + | ELISA | [28] |
| Cath L | urine | + | spectrofluorimetric | [24] |
| Cath L | tissue | d | immunohistochemical | [31] |
| Cath L | Tumour cells cytoplasm | + | immunohistochemical | [30] |
| Cath L | urine | + | spectrofluorimetric | [24] |
| Cath H | tissue | + | immunohistochemical | [31] |
| Cath V | tissue | + | Western blot | [34] |
| MMP2 | tissue | + | gelatine zymography | [40] |
| MMP2 | plasma | + | ELISA | [44] |
| MMP9 | tissue | + | immunohistochemical | [5,52,53] |
| MMP15 | tissue | ± | ELISA | [55] |
| MMP14 | tissue | + | ELISA | [55] |
| MMP10 | tissue | d | Western blot ELISA | [50] |
| MMP3 | tissue | ± | Western blot ELISA | [50] |
| MMP3 | plasma | + | ELISA | [44] |
| Biomarker | Control | Bladder Cancer: Stages | Reference | ||
|---|---|---|---|---|---|
| I | II | III | |||
| MMP2 | n.d. | 88,896 ± 1655 * | 18,355 ± 5307 * | 26,465 ± 4705 * | [42] |
| MMP3 | 1.75 ± 0.20 ** | 0.25 ± 0.20 ** | 1.2 ± 0.10 ** | [50] | |
| MMP10 | 2.75 ± 0.25 ** | 4.0 ± 0.50 ** | 4.2 ± 0.50 ** | [50] | |
| MMP14 | 7.50 ± 1.18 ** | 10.1 ± 1.41 ** | 81.8 ± 9.88 | [55] | |
| MMP15 | 27.8 ± 3.98 ** | 36.6 ± 4.90 ** | 23.0 ± 2.94 ** | [55] | |
| Biomarker | Medium | Control [ng/mL] | Bladder Cancer [ng/mL] | Reference |
|---|---|---|---|---|
| CathD | serum | 0.28–0.52 | 1.3–5.59 | [21] |
| MMP9 | plasma | 19.4 | 56.3 | [44] |
| MMP3 | plasma | 11.9 | 17.7 | [44] |
| MMP2 | plasma | 550–1300 | 410–3750 | [44] |
| MMP1 | plasma | 5.6 | 2.8 | [44] |
| CathB | serum | 4.3–102 | [28] | |
| CathB | urine | 1.35 | 3.87 | [28] |
| CathD | urine | 0.32–0.68 | 1.35–7.14 | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guszcz, T.; Lukaszewski, Z.; Gorodkiewicz, E.; Hermanowicz, A. Potential of Proteases in the Diagnosis of Bladder Cancer. Cancers 2025, 17, 3460. https://doi.org/10.3390/cancers17213460
Guszcz T, Lukaszewski Z, Gorodkiewicz E, Hermanowicz A. Potential of Proteases in the Diagnosis of Bladder Cancer. Cancers. 2025; 17(21):3460. https://doi.org/10.3390/cancers17213460
Chicago/Turabian StyleGuszcz, Tomasz, Zenon Lukaszewski, Ewa Gorodkiewicz, and Adam Hermanowicz. 2025. "Potential of Proteases in the Diagnosis of Bladder Cancer" Cancers 17, no. 21: 3460. https://doi.org/10.3390/cancers17213460
APA StyleGuszcz, T., Lukaszewski, Z., Gorodkiewicz, E., & Hermanowicz, A. (2025). Potential of Proteases in the Diagnosis of Bladder Cancer. Cancers, 17(21), 3460. https://doi.org/10.3390/cancers17213460

