Dual-Target Therapeutic Strategies in Triple-Negative Breast Cancer: Mechanistic Insights and Clinical Potential
Simple Summary
Abstract
1. Introduction
2. Limitations of Single-Agent Therapies for TNBC
2.1. Chemotherapy
2.2. Targeted Therapy: PARP Inhibitors and Antibody–Drug Conjugates
2.3. Immunotherapy
3. Dual-Target Therapeutic Strategies for TNBC
3.1. Overcoming PARP Inhibitor Resistance via DNA Damage Repair Co-Targeting
3.2. Targeting CDKs and Cooperative Pathways for TNBC Therapy
3.3. Dual-Targeting Epigenetic Regulators: DNMT, HDAC, and Beyond
3.4. Synergistic Targeting of PI3K/AKT/mTOR and MAPK Pathways in TNBC
4. Other Potential Dual-Target Inhibition Strategies
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primer 2019, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-K.; Yang, H.-J.; Lee, M.-S.; Liu, D.-W.; Chen, L.-C.; Chew, C.-H.; Lin, C.-H.; Lee, C.-H.; Li, S.-C.; Hong, C.-L.; et al. Molecular Subtypes of Breast Cancer Predicting Clinical Benefits of Radiotherapy after Breast-Conserving Surgery: A Propensity-Score-Matched Cohort Study. Breast Cancer Res. 2023, 25, 149. [Google Scholar] [CrossRef] [PubMed]
- Zagami, P.; Carey, L.A. Triple Negative Breast Cancer: Pitfalls and Progress. NPJ Breast Cancer 2022, 8, 95. [Google Scholar] [CrossRef]
- Hong, R.; Xu, B. Breast Cancer: An Up-to-date Review and Future Perspectives. Cancer Commun. 2022, 42, 913–936. [Google Scholar] [CrossRef]
- Nunnery, S.E.; Mayer, I.A.; Balko, J.M. Triple-Negative Breast Cancer: Breast Tumors with an Identity Crisis. Cancer J. 2021, 27, 2–7. [Google Scholar] [CrossRef]
- Leeha, M.; Kanokwiroon, K.; Laohawiriyakamol, S.; Thongsuksai, P. Immunohistochemistry-Based Molecular Subtyping of Triple-Negative Breast Cancer and Its Prognostic Significance. Pathol. Oncol. Res. 2023, 29, 1611162. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bautista, R.; Caro-Sánchez, C.H.; Cabrera-Galeana, P.; Alanis-Funes, G.J.; Gutierrez-Millán, E.; Ávila-Ríos, S.; Matías-Florentino, M.; Reyes-Terán, G.; Díaz-Chávez, J.; Villarreal-Garza, C.; et al. Immune Milieu and Genomic Alterations Set the Triple-Negative Breast Cancer Immunomodulatory Subtype Tumor Behavior. Cancers 2021, 13, 6256, Erratum in Cancers 2025, 17, 3212. [Google Scholar] [CrossRef]
- Hu, H.; Tong, K.; Tsang, J.Y.; Ko, C.W.; Tam, F.; Loong, T.C.; Tse, G.M. Subtyping of Triple-Negative Breast Cancers: Its Prognostication and Implications in Diagnosis of Breast Origin. ESMO Open 2024, 9, 102993. [Google Scholar] [CrossRef]
- Azari, M.; Bahreini, F.; Uversky, V.N.; Rezaei, N. Current Therapeutic Approaches and Promising Perspectives of Using Bioengineered Peptides in Fighting Chemoresistance in Triple-Negative Breast Cancer. Biochem. Pharmacol. 2023, 210, 115459. [Google Scholar] [CrossRef]
- Chen, A.-X.; Chen, X.; Li, X.-X.; Guo, Z.-Y.; Cao, X.-C.; Wang, X.; Zhang, B. Impacts of Tumor Stage at Diagnosis and Adjuvant Therapy on Long-Term Survival Outcomes in Patients with Triple-Negative Breast Cancer Achieving Pathologic Complete Response After Neoadjuvant Chemotherapy. Clin. Breast Cancer 2025, 25, e30–e39. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, M.; Wang, M.; Yu, X.; Guo, J.; Sun, T.; Li, X.; Yao, L.; Dong, H.; Xu, Y. Metabolic Reprogramming in Triple-Negative Breast Cancer. Front. Oncol. 2020, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.-S.; Kumar, A.; Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in Clinical Aspects of Targeted Therapy and Immunotherapy in Breast Cancer. Mol. Cancer 2023, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Dulaney, C.; Marcrom, S.; Stanley, J.; Yang, E.S. Poly(ADP-Ribose) Polymerase Activity and Inhibition in Cancer. Semin. Cell Dev. Biol. 2017, 63, 144–153. [Google Scholar] [CrossRef]
- Roy, R.; Ria, T.; RoyMahaPatra, D.; Sk, U.H. Single Inhibitors versus Dual Inhibitors: Role of HDAC in Cancer. ACS Omega 2023, 8, 16532–16544. [Google Scholar] [CrossRef]
- Xie, X.-F.; Wu, N.-Q.; Wu, J.-F.; Zhang, G.-L.; Guo, J.-F.; Chen, X.-L.; Du, C.-W. CXCR4 Inhibitor, AMD3100, down-Regulates PARP1 Expression and Synergizes with Olaparib Causing Severe DNA Damage in BRCA-Proficient Triple-Negative Breast Cancer. Cancer Lett. 2022, 551, 215944. [Google Scholar] [CrossRef]
- Pavese, F.; Capoluongo, E.D.; Muratore, M.; Minucci, A.; Santonocito, C.; Fuso, P.; Concolino, P.; Di Stasio, E.; Carbognin, L.; Tiberi, G.; et al. BRCA Mutation Status in Triple-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: A Pivotal Role for Treatment Decision-Making. Cancers 2022, 14, 4571. [Google Scholar] [CrossRef]
- O’Shaughnessy, J.; Koeppen, H.; Xiao, Y.; Lackner, M.R.; Paul, D.; Stokoe, C.; Pippen, J.; Krekow, L.; Holmes, F.A.; Vukelja, S.; et al. Patients with Slowly Proliferative Early Breast Cancer Have Low Five-Year Recurrence Rates in a Phase III Adjuvant Trial of Capecitabine. Clin. Cancer Res. 2015, 21, 4305–4311. [Google Scholar] [CrossRef]
- Leichsenring, J.; Vladimirova, V.; Solbach, C.; Karn, T.; Ataseven, B.; Sinn, B.V.; Barinoff, J.; Müller, V.; Blohmer, J.-U.; Schem, C.; et al. EVI1 Expression in Early-Stage Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. BMC Cancer 2022, 22, 1040. [Google Scholar] [CrossRef]
- Rediti, M.; Fernandez-Martinez, A.; Venet, D.; Rothé, F.; Hoadley, K.A.; Parker, J.S.; Singh, B.; Campbell, J.D.; Ballman, K.V.; Hillman, D.W.; et al. Immunological and Clinicopathological Features Predict HER2-Positive Breast Cancer Prognosis in the Neoadjuvant NeoALTTO and CALGB 40601 Randomized Trials. Nat. Commun. 2023, 14, 7053. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.; Cobb, A.N.; Lloren, J.I.C.; Chaudhary, L.N.; Johnson, M.K.; Huang, C.-C.; Teshome, M.; Kong, A.L.; Singh, P.; Cortina, C.S. National Trends in Neoadjuvant Chemotherapy Utilization in Patients with Early-Stage Node-Negative Triple-Negative Breast Cancer: The Impact of the CREATE-X Trial. Breast Cancer Res. Treat. 2024, 203, 317–328. [Google Scholar] [CrossRef]
- Connors, C.; Valente, S.A.; ElSherif, A.; Escobar, P.; Chichura, A.; Kopicky, L.; Roesch, E.; Ritner, J.; McIntire, P.; Wu, Y.; et al. Real-World Outcomes with the KEYNOTE-522 Regimen in Early-Stage Triple-Negative Breast Cancer. Ann. Surg. Oncol. 2025, 32, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Mitra, S.; Mistry, T.; Pal, R.; Nasare, V.D. Molecular Targets and Therapeutics in Chemoresistance of Triple-Negative Breast Cancer. Med. Oncol. 2022, 39, 14. [Google Scholar] [CrossRef]
- Garrido-Castro, A.C.; Lin, N.U.; Polyak, K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discov. 2019, 9, 176–198. [Google Scholar] [CrossRef] [PubMed]
- Vagia, E.; Mahalingam, D.; Cristofanilli, M. The Landscape of Targeted Therapies in TNBC. Cancers 2020, 12, 916. [Google Scholar] [CrossRef]
- Jackson, S.P.; Bartek, J. The DNA-Damage Response in Human Biology and Disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef]
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the Potential of Antibody–Drug Conjugates for Cancer Therapy. Nat. Rev. Clin. Oncol. 2021, 18, 327–344. [Google Scholar] [CrossRef]
- Dri, A.; Arpino, G.; Bianchini, G.; Curigliano, G.; Danesi, R.; De Laurentiis, M.; Del Mastro, L.; Fabi, A.; Generali, D.; Gennari, A.; et al. Breaking Barriers in Triple Negative Breast Cancer (TNBC)–Unleashing the Power of Antibody-Drug Conjugates (ADCs). Cancer Treat. Rev. 2024, 123, 102672. [Google Scholar] [CrossRef]
- Khan, S.; Jandrajupalli, S.B.; Bushara, N.Z.A.; Raja, R.D.P.; Mirza, S.; Sharma, K.; Verma, R.; Kumar, A.; Lohani, M. Targeting Refractory Triple-Negative Breast Cancer with Sacituzumab Govitecan: A New Era in Precision Medicine. Cells 2024, 13, 2126. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Shi, Y. Improving Efficacy of TNBC Immunotherapy: Based on Analysis and Subtyping of Immune Microenvironment. Front. Immunol. 2024, 15, 1441667. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Colleoni, M.; Bisagni, G.; Mansutti, M.; Zamagni, C.; Del Mastro, L.; Zambelli, S.; Bianchini, G.; Frassoldati, A.; Maffeis, I.; et al. Effects of Neoadjuvant Trastuzumab, Pertuzumab and Palbociclib on Ki67 in HER2 and ER-Positive Breast Cancer. NPJ Breast Cancer 2022, 8, 1. [Google Scholar] [CrossRef]
- Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment Landscape of Triple-Negative Breast Cancer—Expanded Options, Evolving Needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Nanda, R.; Chow, L.Q.M.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; et al. Pembrolizumab in Patients with Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J. Clin. Oncol. 2016, 34, 2460–2467. [Google Scholar] [CrossRef]
- Paluch-Shimon, S.; Evron, E. Targeting DNA Repair in Breast Cancer. Breast 2019, 47, 33–42. [Google Scholar] [CrossRef]
- Qu, Y.; Qin, S.; Yang, Z.; Li, Z.; Liang, Q.; Long, T.; Wang, W.; Zeng, D.; Zhao, Q.; Dai, Z.; et al. Targeting the DNA Repair Pathway for Breast Cancer Therapy: Beyond the Molecular Subtypes. Biomed. Pharmacother. 2023, 169, 115877. [Google Scholar] [CrossRef]
- Boerner, J.L.; Nechiporchik, N.; Mueller, K.L.; Polin, L.; Heilbrun, L.; Boerner, S.A.; Zoratti, G.L.; Stark, K.; LoRusso, P.M.; Burger, A. Protein Expression of DNA Damage Repair Proteins Dictates Response to Topoisomerase and PARP Inhibitors in Triple-Negative Breast Cancer. PLoS ONE 2015, 10, e0119614. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, J.; Wang, C.; Wang, Z.; Mao, N.; He, M.; Zhang, P.; Huang, P.; Ye, G.; Zhang, Y.; et al. Novel ATR/PARP1 Dual Inhibitors Demonstrate Synergistic Antitumor Efficacy in Triple-Negative Breast Cancer Models. Adv. Sci. 2025, 12, e01916. [Google Scholar] [CrossRef]
- Wang, C.-C.; Duan, J.; Mao, N.-D.; He, M.; Zhang, P.-P.; Yuan, Y.; Gao, Y.; He, X.; Shao, X.; Wang, S.; et al. A Novel PARP-ATR Dual Inhibitor Exhibits Anti-Triple-Negative Breast Cancer Activity by Inducing Excessive DNA Damage in the Mitotic Phase. Biochem. Pharmacol. 2025, 241, 117160. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Wang, K.; Tong, J.; Zhang, W.; Shen, G.; Wang, D.; Liao, Z.; Zhang, Z.; Miao, Q.; Jiang, S.; et al. Discovery of Dual PARP/NAMPT Inhibitors for the Treatment of BRCA Wild-Type Triple-Negative Breast Cancer. Bioorg. Med. Chem. Lett. 2025, 120, 130117. [Google Scholar] [CrossRef]
- Fried, W.; Tyagi, M.; Minakhin, L.; Chandramouly, G.; Tredinnick, T.; Ramanjulu, M.; Auerbacher, W.; Calbert, M.; Rusanov, T.; Hoang, T.; et al. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors. Nat. Commun. 2024, 15, 2862. [Google Scholar] [CrossRef]
- Zatreanu, D.; Robinson, H.M.R.; Alkhatib, O.; Boursier, M.; Finch, H.; Geo, L.; Grande, D.; Grinkevich, V.; Heald, R.A.; Langdon, S.; et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 2021, 12, 3636. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pan, L.; Amano, S.; Wu, M.-Y.; Li, C.; Lin, J. Co-Inhibition of PARP and STAT3 as a Promising Approach for Triple-Negative Breast Cancer. Biomolecules 2025, 15, 1035. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, S.; Dai, L.; Huang, R.; Hu, W.; Yu, C.; Yang, Y.; Cao, G.; Huang, X. Discovery of Dual-Targeted Molecules Based on Olaparib and Rigosertib for Triple-Negative Breast Cancer with Wild-Type BRCA. Bioorg. Med. Chem. 2024, 113, 117936. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, G.; Xiao, Y.; Zhang, T.; Su, F.; Chang, R.; Ling, X.; Bai, Y. Upregulated Cyclins May Be Novel Genes for Triple-Negative Breast Cancer Based on Bioinformatic Analysis. Breast Cancer 2020, 27, 903–911. [Google Scholar] [CrossRef]
- Konecny, G.E. Cyclin-Dependent Kinase Pathways as Targets for Women’s Cancer Treatment. Curr. Opin. Obstet. Gynecol. 2016, 28, 42–48. [Google Scholar] [CrossRef]
- Nie, L.; Wei, Y.; Zhang, F.; Hsu, Y.-H.; Chan, L.-C.; Xia, W.; Ke, B.; Zhu, C.; Deng, R.; Tang, J.; et al. CDK2-Mediated Site-Specific Phosphorylation of EZH2 Drives and Maintains Triple-Negative Breast Cancer. Nat. Commun. 2019, 10, 5114. [Google Scholar] [CrossRef]
- Wang, R.; Xu, K.; Gao, F.; Huang, J.; Guan, X. Clinical Considerations of CDK4/6 Inhibitors in Triple-Negative Breast Cancer. Biochim. Biophys. Acta BBA—Rev. Cancer 2021, 1876, 188590. [Google Scholar] [CrossRef]
- Ge, J.Y.; Shu, S.; Kwon, M.; Jovanović, B.; Murphy, K.; Gulvady, A.; Fassl, A.; Trinh, A.; Kuang, Y.; Heavey, G.A.; et al. Acquired Resistance to Combined BET and CDK4/6 Inhibition in Triple-Negative Breast Cancer. Nat. Commun. 2020, 11, 2350. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, W.; Wang, X.; Lu, J.-J.; He, P.; Zhang, H.; Chen, X. Nifuroxazide Boosts the Anticancer Efficacy of Palbociclib-Induced Senescence by Dual Inhibition of STAT3 and CDK2 in Triple-Negative Breast Cancer. Cell Death Discov. 2023, 9, 355. [Google Scholar] [CrossRef] [PubMed]
- Satriyo, P.B.; Su, C.M.; Ong, J.R.; Huang, W.-C.; Fong, I.-H.; Lin, C.-C.; Aryandono, T.; Haryana, S.M.; Deng, L.; Huang, C.-C.; et al. 4-Acetylantroquinonol B Induced DNA Damage Response Signaling and Apoptosis via Suppressing CDK2/CDK4 Expression in Triple Negative Breast Cancer Cells. Toxicol. Appl. Pharmacol. 2021, 422, 115493. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Ma, L.; Yin, F.; Luo, Z.; Li, S.; Jiang, Y.; Kong, L.; Wang, X. Discovery of Dual CDK6/BRD4 Inhibitor Inducing Apoptosis and Increasing the Sensitivity of Ferroptosis in Triple-Negative Breast Cancer. J. Med. Chem. 2024, 67, 21186–21207. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, J.; Pan, Z.; Meng, J.; Zhang, L.; Shi, W.; Wang, X.; Zhang, X.; Zhou, Z.; Luo, J.; et al. Dual Inhibition of CDK4/6 and CDK7 Suppresses Triple-Negative Breast Cancer Progression via Epigenetic Modulation of SREBP1-Regulated Cholesterol Metabolism. Adv. Sci. 2025, 12, 2413103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yu, C.-W. Epigenetic Modulations in Triple-Negative Breast Cancer: Therapeutic Implications for Tumor Microenvironment. Pharmacol. Res. 2024, 204, 107205. [Google Scholar] [CrossRef]
- Yu, J.; Zayas, J.; Qin, B.; Wang, L. Targeting DNA Methylation for Treating Triple-Negative Breast Cancer. Pharmacogenomics 2019, 20, 1151–1157. [Google Scholar] [CrossRef]
- Bashir, Y.; Noor, F.; Ahmad, S.; Tariq, M.H.; Qasim, M.; Tahir ul Qamar, M.; Almatroudi, A.; Allemailem, K.S.; Alrumaihi, F.; Alshehri, F.F. Integrated Virtual Screening and Molecular Dynamics Simulation Approaches Revealed Potential Natural Inhibitors for DNMT1 as Therapeutic Solution for Triple Negative Breast Cancer. J. Biomol. Struct. Dyn. 2024, 42, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Adelman, K.; Lis, J.T. Promoter-Proximal Pausing of RNA Polymerase II: Emerging Roles in Metazoans. Nat. Rev. Genet. 2012, 13, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, K.A. Histone Deacetylases in Kidney Physiology and Acute Kidney Injury. Semin. Nephrol. 2020, 40, 138–147. [Google Scholar] [CrossRef]
- Fan, W.; Li, W.; Li, L.; Qin, M.; Mao, C.; Yuan, Z.; Wang, P.; Chu, B.; Jiang, Y. Bifunctional HDAC and DNMT Inhibitor Induces Viral Mimicry Activates the Innate Immune Response in Triple-Negative Breast Cancer. Eur. J. Pharm. Sci. 2024, 197, 106767. [Google Scholar] [CrossRef]
- Su, Y.; Hopfinger, N.R.; Nguyen, T.D.; Pogash, T.J.; Santucci-Pereira, J.; Russo, J. Epigenetic Reprogramming of Epithelial Mesenchymal Transition in Triple Negative Breast Cancer Cells with DNA Methyltransferase and Histone Deacetylase Inhibitors. J. Exp. Clin. Cancer Res. 2018, 37, 314. [Google Scholar] [CrossRef]
- Pang, Y.; Shi, R.; Chan, L.; Lu, Y.; Zhu, D.; Liu, T.; Yan, M.; Wang, Y.; Wang, W. The Combination of the HDAC1 Inhibitor SAHA and Doxorubicin Has Synergic Efficacy in Triple Negative Breast Cancer In Vivo. Pharmacol. Res. 2023, 196, 106926. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-C.; Tu, F.-H.; Wei, L.-Y.; Wang, B.-Z.; Yuan, H.; Yuan, J.-M.; Rao, Y.; Huang, S.-L.; Li, Q.-J.; Ou, T.-M.; et al. Discovery of a Novel G-Quadruplex and Histone Deacetylase (HDAC) Dual-Targeting Agent for the Treatment of Triple-Negative Breast Cancer. J. Med. Chem. 2022, 65, 12346–12366. [Google Scholar] [CrossRef]
- Sethy, B.; Upadhyay, R.; Narwanti, I.; Yu, Z.-Y.; Lee, S.-B.; Liou, J.-P. Novel Dual Inhibitor Targeting CDC25 and HDAC for Treating Triple-Negative Breast Cancer. Apoptosis 2024, 29, 2047–2073. [Google Scholar] [CrossRef]
- Mao, C.; Fang, J.; Zou, S.; Huang, Y.; Chen, X.; Ding, X.; Fang, Z.; Zhang, N.; Lou, Y.; Chen, Z.; et al. Discovery of the First-in-Class Dual-Target ROCK/HDAC Inhibitor with Potent Antitumor Efficacy in Vivo That Trigger Antitumor Immunity. J. Med. Chem. 2024, 67, 20619–20638. [Google Scholar] [CrossRef]
- Ge, G.; Guo, S.; Li, T.; Wang, Y.; Liu, L.; Yu, W.; Hu, H.; Zheng, Y.; Yan, J.; Sun, Y.; et al. Discovery and Structural-Activity Relationship of N-Benzyl-2-Fluorobenzamides as EGFR/HDAC3 Dual-Target Inhibitors for the Treatment of Triple-Negative Breast Cancer. Bioorg. Med. Chem. Lett. 2025, 128, 130362. [Google Scholar] [CrossRef] [PubMed]
- Munkácsy, G.; Santarpia, L.; Győrffy, B. Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 6945. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Ji, P.; Xiao, Y.; Ma, D.; Jin, M.-L.; Hu, X.; Jiang, Y.-Z.; Shao, Z.-M. Integrative Analysis of Metabolic Subtypes in Triple-Negative Breast Cancer Reveals New Therapeutic Strategies. Ann. Oncol. 2019, 30, ix2. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells 2022, 11, 2508. [Google Scholar] [CrossRef]
- Cretella, D.; Ravelli, A.; Fumarola, C.; La Monica, S.; Digiacomo, G.; Cavazzoni, A.; Alfieri, R.; Biondi, A.; Generali, D.; Bonelli, M.; et al. The Anti-Tumor Efficacy of CDK4/6 Inhibition is Enhanced by the Combination with PI3K/AKT/mTOR Inhibitors through Impairment of Glucose Metabolism in TNBC Cells. J. Exp. Clin. Cancer Res. 2018, 37, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Zou, X.; Wang, Y.; Qi, J.; Han, S.; Xin, J.; Zheng, Z.; Wei, L.; Zhang, T.; et al. Unraveling the Mechanisms of Intervertebral Disc Degeneration: An Exploration of the P38 MAPK Signaling Pathway. Front. Cell Dev. Biol. 2024, 11, 1324561. [Google Scholar] [CrossRef]
- Tang, X.; Gong, J.; Ren, L.; Wang, Z.; Yang, B.; Wang, W.; Wang, N. Tanshinone I Improves TNBC Chemosensitivity by Suppressing Late-Phase Autophagy through AKT/P38 MAPK Signaling Pathway. Biomed. Pharmacother. 2024, 177, 117037. [Google Scholar] [CrossRef]
- Wang, B.; Xing, A.-Y.; Li, G.-X.; Liu, L.; Xing, C. SNHG14 Promotes Triple-Negative Breast Cancer Cell Proliferation, Invasion, and Chemoresistance by Regulating the ERK/MAPK Signaling Pathway. IUBMB Life 2024, 76, 1295–1308. [Google Scholar] [CrossRef]
- Wright, T.D.; Raybuck, C.; Bhatt, A.; Monlish, D.; Chakrabarty, S.; Wendekier, K.; Gartland, N.; Gupta, M.; Burow, M.E.; Flaherty, P.T.; et al. Pharmacological Inhibition of the MEK5/ERK5 and PI3K/Akt Signaling Pathways Synergistically Reduces Viability in Triple-Negative Breast Cancer. J. Cell. Biochem. 2020, 121, 1156–1168. [Google Scholar] [CrossRef]
- Nagaria, T.S.; Shi, C.; Leduc, C.; Hoskin, V.; Sikdar, S.; Sangrar, W.; Greer, P.A. Combined Targeting of Raf and Mek Synergistically Inhibits Tumorigenesis in Triple Negative Breast Cancer Model Systems. Oncotarget 2017, 8, 80804–80819. [Google Scholar] [CrossRef]
- Yang, M.; Qin, C.; Tao, L.; Cheng, G.; Li, J.; Lv, F.; Yang, N.; Xing, Z.; Chu, X.; Han, X.; et al. Synchronous Targeted Delivery of TGF-β siRNA to Stromal and Tumor Cells Elicits Robust Antitumor Immunity Against Triple-Negative Breast Cancer by Comprehensively Remodeling the Tumor Microenvironment. Biomaterials 2023, 301, 122253. [Google Scholar] [CrossRef] [PubMed]
- Jalalirad, M.; Haddad, T.C.; Salisbury, J.L.; Radisky, D.; Zhang, M.; Schroeder, M.; Tuma, A.; Leof, E.; Carter, J.M.; Degnim, A.C.; et al. Aurora-A Kinase Oncogenic Signaling Mediates TGF-β-Induced Triple-Negative Breast Cancer Plasticity and Chemoresistance. Oncogene 2021, 40, 2509–2523. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Ji, H.-J.; Shin, S.-K.; Koo, J.; Kim, T.H.; Kim, C.-W.; Seong, Y.H.; Park, J.-E.; Choi, K.-C. Targeting Transforming Growth Factor-Β2 by Antisense Oligodeoxynucleotide Accelerates T Cell-Mediated Tumor Rejection in a Humanized Mouse Model of Triple-Negative Breast Cancer. Cancer Immunol. Immunother. 2022, 71, 2213–2226. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, L.; He, X.; Zhang, P.; Sun, C.; Xu, X.; Lu, Y.; Li, F. TGF-β Plays a Vital Role in Triple-Negative Breast Cancer (TNBC) Drug-Resistance through Regulating Stemness, EMT and Apoptosis. Biochem. Biophys. Res. Commun. 2018, 502, 160–165. [Google Scholar] [CrossRef]
- Yi, M.; Wu, Y.; Niu, M.; Zhu, S.; Zhang, J.; Yan, Y.; Zhou, P.; Dai, Z.; Wu, K. Anti-TGF-β/PD-L1 Bispecific Antibody Promotes T Cell Infiltration and Exhibits Enhanced Antitumor Activity in Triple-Negative Breast Cancer. J. Immunother. Cancer 2022, 10, e005543. [Google Scholar] [CrossRef]
- Shen, L.; Schaefer, A.M.; Tiruthani, K.; Wolf, W.; Lai, S.K. Siglec15/TGF-β Bispecific Antibody Mediates Synergistic Anti-Tumor Response Against 4T1 Triple Negative Breast Cancer in Mice. Bioeng. Transl. Med. 2024, 9, e10651. [Google Scholar] [CrossRef]
- Schreiber, A.R.; Kagihara, J.A.; Weiss, J.A.; Nicklawsky, A.; Gao, D.; Borges, V.F.; Kabos, P.; Diamond, J.R. Clinical Outcomes for Patients with Metastatic Breast Cancer Treated with Immunotherapy Agents in Phase I Clinical Trials. Front. Oncol. 2021, 11, 640690. [Google Scholar] [CrossRef]
- Bei, Y.; Cheng, N.; Chen, T.; Shu, Y.; Yang, Y.; Yang, N.; Zhou, X.; Liu, B.; Wei, J.; Liu, Q.; et al. CDK5 Inhibition Abrogates TNBC Stem-Cell Property and Enhances Anti-PD-1 Therapy. Adv. Sci. 2020, 7, 2001417. [Google Scholar] [CrossRef] [PubMed]
- Brockwell, N.K.; Owen, K.L.; Zanker, D.; Spurling, A.; Rautela, J.; Duivenvoorden, H.M.; Baschuk, N.; Caramia, F.; Loi, S.; Darcy, P.K.; et al. Neoadjuvant Interferons: Critical for Effective PD-1–Based Immunotherapy in TNBC. Cancer Immunol. Res. 2017, 5, 871–884. [Google Scholar] [CrossRef]
- Cheng, B.; Chen, J.; Katalina, V.; Long, G.; Wei, C.; Niu, Z.; Chen, C.; Wang, P.; Yu, Q.; Wang, W. Targeting PKC as a Therapeutic Strategy to Overcome Chemoresistance in TNBC by Restoring Aurora Kinase B Expression. J. Cell. Mol. Med. 2025, 29, e70464. [Google Scholar] [CrossRef] [PubMed]
- Zanini, E.; Forster-Gross, N.; Bachmann, F.; Brüngger, A.; McSheehy, P.; Litherland, K.; Burger, K.; Groner, A.C.; Roceri, M.; Bury, L.; et al. Dual TTK/PLK1 Inhibition Has Potent Anticancer Activity in TNBC as Monotherapy and in Combination. Front. Oncol. 2024, 14, 1447807. [Google Scholar] [CrossRef]
- Demeule, M.; Charfi, C.; Currie, J.; Larocque, A.; Zgheib, A.; Kozelko, S.; Béliveau, R.; Marsolais, C.; Annabi, B. TH1902, a New Docetaxel-Peptide Conjugate for the Treatment of Sortilin-Positive Triple-Negative Breast Cancer. Cancer Sci. 2021, 112, 4317–4334. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Assaf, Z.J.; Harbeck, N.; Zhang, H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; et al. Peri-operative atezolizumab in early-stage triple-negative breast cancer: Final results and ctDNA analyses from the randomized phase 3 IMpassion031 trial. Nat. Med. 2025, 31, 2397–2404. [Google Scholar] [CrossRef]
- Tolaney, S.M.; de Azambuja, E.; Kalinsky, K.; Loi, S.; Kim, S.-B.; Yam, C.; Rapoport, B.L.; Im, S.-A.; Pistilli, B.; McHayleh, W.; et al. Sacituzumab govitecan (SG) + pembrolizumab (pembro) vs. chemotherapy (chemo) + pembro in previously untreated PD-L1–positive advanced triple-negative breast cancer (TNBC): Primary results from the randomized phase 3 ASCENT-04/KEYNOTE-D19 study. J. Clin. Oncol. 2025, 43, 17. [Google Scholar] [CrossRef]
- Cheng, Y.; Shi, J.; Meng, X.; Sun, L.; Lv, D.; Li, X.; Pan, Y.; Fang, J.; Chen, J.; Qi, X.; et al. 302P: Phase II study of the efficacy and safety of BNT327/PM8002 plus systemic chemotherapy as first-line therapy for extensive-stage small-cell lung cancer (ES-SCLC). J. Thorac. Oncol. 2025, 20, S185. [Google Scholar] [CrossRef]

| Treatment Category | Key Agents | Mechanism | Clinical Benefits | Adverse Effects | 
|---|---|---|---|---|
| Chemotherapy | Anthracyclines (Doxorubicin, Epirubicin) | Inhibit topoisomerase II and disrupt DNA/RNA synthesis | Broad-spectrum efficacy, established clinical use, high response rates | Cardiotoxicity, myelosuppression, vomiting | 
| Taxanes (Paclitaxel, Docetaxel) | Stabilize microtubules and arrest mitosis | High efficacy, improves pCR, well-tolerated in patients | Peripheral neuropathy, hypersensitivity reactions, myelosuppression | |
| Platinum agents (Carboplatin, Cisplatin) | Form DNA adducts, induce DNA damage and apoptosis | BRCA-mutation effective, synergistic with other DNA-damaging agents | Nephrotoxicity, ototoxicity, myelosuppression | |
| Cyclophosphamide | Interfere with DNA synthesis, inhibit DNA replication, immunosuppression | Versatile, multiple combinations, oral option | Myelosuppression, hemorrhagic cystitis, nausea and vomiting | |
| Targeted Therapy | PARP inhibitors (Olaparib, Talazoparib) | Inhibit PARP, impair DNA damage repair, and induce “synthetic lethality” | BRCA-specific, better tolerability, oral administration | Limited to BRCA1/2 mutation carriers; anemia, nausea; drug resistance | 
| ADC drugs (Sacituzumab Govitecan) | Precisely deliver cytotoxins and directly kill tumor cells | Targeted delivery, improved efficacy, reduced toxicity | Hematological/neurotoxicity and liver damage | |
| PI3K/AKT/mTOR inhibitors (Everolimus) | Block PI3K/AKT/mTOR signaling, inhibit tumor proliferation and survival | Pathway-specific, biomarker-driven, precision therapy | Hyperglycemia, blood toxicity and gastrointestinal reactions | |
| Anti-angiogenic agents (Bevacizumab) | Target VEGF, inhibit tumor angiogenesis | Synergistic with chemotherapy, delays disease progression | Hypertension, proteinuria and thrombosis | |
| EGFR inhibitors (Cetuximab) | Block EGFR signaling, inhibit tumor growth/metastasis | EGFR-targeted, specific approach | Dermatological/liver toxicity, hypomagnesemia | |
| Immunotherapy | PD-1 or PD-L1 inhibitors (Pembrolizumab, Atezolizumab) | Block PD-1/PD-L1 axis, reverse T-cell inhibition and restore anti-tumor immune response | Durable responses, long-term control, multiple cancer types | Gastrointestinal reactions, flu-like symptoms and immune related adverse reactions | 
| CTLA-4 inhibitors (Ipilimumab) | Block CTLA-4 signaling, enhance T-cell activation and proliferation | Potent T-cell activation with anti-PD-1/PD-L1 agents, immune enhancement | Gastrointestinal symptoms, immune related adverse reactions, and endocrine disorders | 
| Dual-Target Strategy | Experimental Models Used | Key Agents | Key Outcomes | Proposed Mechanism | 
|---|---|---|---|---|
| PARP + Topoisomerase I | In vitro: SUM149, SUM159, SUM1315, HCC1937, MDA-MB-23, MX-1 In vivo: MX-1 xenografts | ABT-888 (PARP inhibitor) + CPT-11 (Topoisomerase I inhibitor) | CI values < 1, tumor free on d96 4/6, tumor growth delay 40.5 days, tumor volume decreased | Trigger DNA damage, block damage repair, induce DSBs and result in apoptosis | 
| PARP + ATR | In vitro: MDA-MB-231, MDA-MB-468, HCC1937, MDA-MB-436, MCF-7 In vivo: MD-MB-468 xenografts | PAB-13 (dual-target inhibitor) | Superior Cytotoxicity, γH2AX Increase: >2-fold, tumor growth inhibition ~80% (vs control) | Impair SSB repair and attenuate DDR/G2-M checkpoint, induce mitotic catastrophe | 
| PARP + NAMPT | In vitro: MDA-MB-231, MDA-MB-436 | 13j (dual-target inhibitor) | CI values < 1, apoptosis increased, cell migration inhibited | Downregulate NAD+/BRCA1/Rad51, promote DSB formation | 
| PARP + Polθ | In vitro: SUM149, CAL51, COV362, MDA-MB-436 In vivo: subcutaneous tumor | Olaparib (PARP inhibitor) + ART558 (Polθ inhibitor) | Enhanced apoptosis/growth inhibition, tumor growth inhibition ~80% | Unique “enzyme–DNA trapping” mechanism | 
| CDK2 + STAT3 | In vitro: MDA-MB-231, 4T1 | Nifuroxazide (dual-target inhibitor), Palbociclib (CDK4/6 inhibitor) | CI values < 1, cell proliferation inhibited, cellular senescence induced | Inhibit STAT3-SASP and CDK2-Cyclin E1, induce G1 arrest and senescence | 
| CDK2 + CDK4 | In vitro: MDA-MB-231, Hs578T In vivo: orthotopic MDA-MB-231/Hs578T | 4-AAQB (dual-target inhibitor) | cell proliferation inhibited, apoptosis increased, tumor volume decreased | Inhibit CDK2/4 and Cyclins D/E/A; suppress DDR, induce γH2AX and apoptosis | 
| CDK4/6 + BRD4 | In vitro: SUM159, SUM149, CAL-51, EMG3, MDA-MB-157, MDA-MB-436 In vivo: orthotopic SUM159 | Palbociclib (CDK4/6 inhibitor) + JQ1 (BET inhibitor) | Cell cycle arrest, tumor growth inhibited | Induce genomic instability, G1 arrest/senescence, G1-S reprogramming | 
| HDAC + DNMT | In vitro: BT-549, T-47D, 4T1, HCC1937, MDA-MB-231, MDA-MB-453 | J208 (dual-target inhibitor) | Proliferation/migration inhibited, apoptosis increased | Induce ERV/dsRNA and RIG-I–MAVS–IFN pathway activation, modulate EMT markers | 
| HDAC + Topoisomerase II | In vitro: MDA-MB-231, MDA-MB-468 In vivo: subcutaneous tumor | SAHA (HDAC inhibitor) + DOX (Topoisomerase II inhibitor) | CI values < 1, tumor volume/lung metastases decreased | Promote lymphocytes and B cells infiltration, restore antitumor immunity, inhibit tumor growth | 
| PI3K/AKT/mTOR + CDK4/6 | In vitro: MDA-MB-231, MDA-MB-468, HCC-38, MCF-7 | PI3K/AKT/mTOR inhibitors + Palbociclib (CDK4/6 inhibitor) | Enhanced growth inhibition, apoptosis increased to 31%, | Downregulate c-Myc, enhance G1 arrest, suppress glucose metabolism | 
| PI3K/AKT/mTOR + p38 MAPK | In vitro: MDA-MB-231, MCF-7, HBL-100, HCC1937, HCC1954, SK-BR-3 In vivo: orthotopic MDA-MB-231 | terpenoid tanshinone I + paclitaxel | Colony formation reduced, LC3-II/LC3-I ratio increased 1.72-fold, tumor growth inhibition | Block autophagosome-lysosome fusion | 
| MEK5/ERK5 + PI3K/AKT | In vitro: MDA-MB-231, BT-549, MDA-MB-468 | Ipatasertib (pan-AKT inhibitors) + SC-1–181 (MEK5 inhibitor) | CI values < 1, cell migration inhibited | Block survival signals, induce Bas dephosphorylation and Caspase-3 activation | 
| TGF-β + PD-L1 | In vitro: A549, MCF7, BT474, 4T1 In vivo: orthotopic EMT-6-hPDL1 and 4T1- hPDL1 | BiTP (a bispecific antibody targeting TGF-β and human PD-L1) | Treg differentiation inhibited, T cell activation enhanced, tumor volume decreased, survival extended | Suppress CAF activity, promote CD8+ T-cell/NK/DC infiltration and activation | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Lu, X. Dual-Target Therapeutic Strategies in Triple-Negative Breast Cancer: Mechanistic Insights and Clinical Potential. Cancers 2025, 17, 3455. https://doi.org/10.3390/cancers17213455
Yu M, Lu X. Dual-Target Therapeutic Strategies in Triple-Negative Breast Cancer: Mechanistic Insights and Clinical Potential. Cancers. 2025; 17(21):3455. https://doi.org/10.3390/cancers17213455
Chicago/Turabian StyleYu, Meng, and Xiaodong Lu. 2025. "Dual-Target Therapeutic Strategies in Triple-Negative Breast Cancer: Mechanistic Insights and Clinical Potential" Cancers 17, no. 21: 3455. https://doi.org/10.3390/cancers17213455
APA StyleYu, M., & Lu, X. (2025). Dual-Target Therapeutic Strategies in Triple-Negative Breast Cancer: Mechanistic Insights and Clinical Potential. Cancers, 17(21), 3455. https://doi.org/10.3390/cancers17213455
 
        


 
       