Repurposing Carfilzomib as a Promising Drug for Targeted Therapy in Gastric Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Human Participants
2.3. Xenograft Establishment
2.4. Treatment Regime
2.5. Animal Monitoring
2.6. RNA Extraction
2.7. cDNA Synthesis and Quantitative Real-Time RT-PCR
2.8. Paraffin Embedding of Tumor Tissue Samples
2.9. Immunohistochemistry (IHC)
2.10. TUNEL Assay
2.11. Statistical Analysis
3. Results
3.1. Elevated Expression of DEGs in the Accelerated Murine Gastric Cancer Model
3.2. Elevated PSMB8 Expression Observed in MKN45 Cells and Gastric Cancer Patient Biopsy Samples
3.3. Carfilzomib Treatment Significantly Slows Tumor Growth
3.4. Cell Proliferation Is Significantly Impeded by Treatment with Carfilzomib
3.5. Carfilzomib Induces Apoptosis in Tumor Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

| Gene | Forward Primer | Reverse Primer |
|---|---|---|
| PSMB8 | CCTTACCTGCTTGGCACCATGT | TTGGAGGCTGCCGACACTGAAA |
| PSMB9 | CGAGAGGACTTGTCTGCACATC | CACCAATGGCAAAAGGCTGTCG |
| PSMB10 | GGACAAGAGCTGCGAGAAGATC | ATCTTGGACGCCACCATCCGTG |
| CASP1 | TCCAATAATGGACAAGTCAAGCC | GCTGTACCCCAGATTTTGTAGCA |
| IDO1 | GCCTGATCTCATAGAGTCTGG | TGCATCCCAGAACTAGACGTG |
| MMP13 | TGACTATGCGTGGCTGGAA | AAGCTGAAATCTTGCCTTGGA |
| HPRT1 | CCTGGCGTCGTGATTAGTGAT | AGACGTTCAGTCCTGTCCATAA |

References
- Chen, Y.-C.; Malfertheiner, P.; Yu, H.-T.; Kuo, C.-L.; Chang, Y.-Y.; Meng, F.-T.; Wu, Y.-X.; Hsiao, J.-L.; Chen, M.-J.; Lin, K.-P.; et al. Global Prevalence of Helicobacter pylori Infection and Incidence of Gastric Cancer Between 1980 and 2022. Gastroenterology 2024, 166, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Shibata, D.; Weiss, L.M. Epstein-Barr virus-associated gastric adenocarcinoma. Am. J. Pathol. 1992, 140, 769–774. [Google Scholar] [PubMed]
- Fong, I.W. Current Trends and Concerns in Infectious Diseases; Emerging Infectious Diseases of the 21st Century; Springer International Publishing AG: Cham, Switzerland, 2020; p. 1. [Google Scholar]
- Yamaoka, Y.; Kato, M.; Asaka, M. Geographic Differences in Gastric Cancer Incidence Can be Explained by Differences between Helicobacter pylori Strains. Intern. Med. 2008, 47, 1077–1083. [Google Scholar] [CrossRef]
- Menon, G.; El-Nakeep, S.; Babiker, H.M. Gastric Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK459142/ (accessed on 11 August 2025).
- Plummer, M.; Franceschi, S.; Vignat, J.; Forman, D.; De Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori: Helicobacter pylori in gastric cancer. Int. J. Cancer 2015, 136, 487–490. [Google Scholar] [CrossRef]
- Cancers Attributable to Infections. Available online: https://gco.iarc.fr/causes/infections/tools-pie?mode=2&sex=0&population=who&continent=0&country=0&population_group=0&cancer=0&key=attr_cases&lock_scale=0&pie_mode=1&nb_results=5 (accessed on 13 August 2025).
- Maconi, G.; Manes, G.; Porro, G.B. Role of symptoms in diagnosis and outcome of gastric cancer. World J. Gastroenterol. WJG 2008, 14, 1149. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; Van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- SEER Cancer of the Stomach—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/stomach.html (accessed on 13 August 2025).
- Guan, W.L.; He, Y.; Xu, R.H. Gastric cancer treatment: Recent progress and future perspectives. J. Hematol.-Cology 2023, 16, 57. [Google Scholar] [CrossRef]
- Joshi, S.; Badgwell, B.D. Current Treatment and Recent Progress in Gastric Cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef]
- Mülküt, F.; Ofluoğlu, C.B.; Başdoğan, M.K.; Aydın, İ.C.; Akdoğan, O.; Gündoğdu, A.; Subaşı, İ.E. Prognostic value of prognostic nutritional index in patients undergoing surgery for gastric cancer. Front. Surg. 2025, 12, 1618111. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, K.H.; Kim, E.H.; Kim, H.; Woo, J.K.; Seong, J.K.; Nam, K.T.; Lee, Y.C.; Cho, S.Y. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. npj Precis. Oncol. 2022, 6, 9. [Google Scholar] [CrossRef]
- Russi, S.; Marano, L.; Laurino, S.; Calice, G.; Scala, D.; Marino, G.; Sgambato, A.; Mazzone, P.; Carbone, L.; Napolitano, G.; et al. Gene Regulatory Network Characterization of Gastric Cancer’s Histological Subtypes: Distinctive Biological and Clinically Relevant Master Regulators. Cancers 2022, 14, 4961. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhou, J.; Jia, K.; Song, H.; Zhang, T.; Yuan, W.; Ge, J. Molecular clustering and prognostic features based on integrated databases predict survival and immune status in patients with gastric cancer. Front. Oncol. 2025, 15, 1642911. [Google Scholar] [CrossRef] [PubMed]
- Bali, P.; Lozano-Pope, I.; Hernandez, J.; Estrada, M.V.; Corr, M.; Turner, M.A.; Bouvet, M.; Benner, C.; Obonyo, M. TRIF-IFN-I pathway in Helicobacter-induced gastric cancer in an accelerated murine disease model and patient biopsies. iScience 2024, 27, 109457. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Thamphiwatana, S.; Carmona, E.M.; Rickman, B.; Doran, K.S.; Obonyo, M. Deficiency of the Myeloid Differentiation Primary Response Molecule MyD88 Leads to an Early and Rapid Development of Helicobacter-Induced Gastric Malignancy. Blanke SR, editor. Infect. Immun. 2014, 82, 356–363. [Google Scholar] [CrossRef]
- Lozano-Pope, I.; Sharma, A.; Matthias, M.; Doran, K.S.; Obonyo, M. Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer. BMC Cancer 2017, 17, 133. [Google Scholar] [CrossRef]
- Johnston-Carey, H.K.; Pomatto, L.C.D.; Davies, K.J.A. The Immunoproteasome in oxidative stress, aging, and disease. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 268–281. [Google Scholar] [CrossRef]
- Cannon, M.; Stevenson, J.; Stahl, K.; Basu, R.; Coffman, A.; Kiwala, S.; McMichael, J.F.; Kuzma, K.; Morrissey, D.; Cotto, K.; et al. DGIdb 5.0: Rebuilding the drug–gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res. 2024, 52, D1227–D1235. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research; FDA. FDA Approves Carfilzomib and Daratu-Mumab with Dexamethasone for Multiple Myeloma. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-carfilzomib-and-daratumumab-dexamethasone-multiple-myeloma (accessed on 13 August 2025).
- Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; Strader, J.S.; Shenk, K.D.; Sun, C.M.; Demo, S.D.; Bennett, M.K.; van Leeuwen, F.W.B.; Chanan-Khan, A.A.; et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007, 110, 3281–3290. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Federspiel, J.D.; Codreanu, S.G.; Goyal, S.; Albertolle, M.E.; Lowe, E.; Teague, J.; Wong, H.; Guengerich, F.P.; Liebler, D.C. Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells. Mol. Cell. Proteom. 2016, 15, 3233–3242. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Yan, Z.; Huang, Z.; Fu, C. Peptide and peptide-based drugs. In Privileged Scaffolds in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 795–815. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780443186110000152 (accessed on 13 August 2025).
- Woodle, E.S.; Tremblay, S.; Brailey, P.; Girnita, A.; Alloway, R.R.; Aronow, B.; Dasgupta, N.; Ebstein, F.; Kloetzel, P.; Lee, M.J.; et al. Proteasomal adaptations underlying carfilzomib-resistance in human bone marrow plasma cells. Am. J. Transplant. 2020, 20, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Miyake, K.; Han, Q.; Igarashi, K.; Kawaguchi, K.; Barangi, M.; Kiyuna, T.; Sugisawa, N.; Higuchi, T.; Oshiro, H.; et al. Synergy of oral recombinant methioninase (rMETase) and 5-fluorouracil on poorly differentiated gastric cancer. Biochem. Biophys. Res. Commun. 2023, 643, 48–54. [Google Scholar] [CrossRef]
- Hurchla, M.A.; Garcia-Gomez, A.; Hornick, M.C.; Ocio, E.M.; Li, A.; Blanco, J.F.; Collins, L.; Kirk, C.J.; Piwnica-Worms, D.; Vij, R.; et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia 2013, 27, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.E.; Turner, M.A.; Lwin, T.M.; Amirfakhri, S.; Kelly, K.J.; Hosseini, M.; Ghosh, P.; Obonyo, M.; Hoffman, R.M.; Yazaki, P.J.; et al. Targeting Patient-Derived Orthotopic Gastric Cancers with a Fluorescent Humanized Anti-CEA Antibody. Ann. Surg. Oncol. 2024, 31, 6291–6299. [Google Scholar] [CrossRef]
- Duarte, D.; Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100110. [Google Scholar] [CrossRef]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417–433. [Google Scholar] [CrossRef]
- Basler, M.; Groettrup, M. On the Role of the Immunoproteasome in Protein Homeostasis. Cells 2021, 10, 3216. [Google Scholar] [CrossRef]
- Zanabria, D.; Galvez-Nino, M.; Araujo, J.M.; Alfaro, A.; Fajardo, W.; Saravia, L.; Quispe, L.; Velazque, G.; Carbajal, J.; López, M.J.; et al. Socioeconomic disparities and the genomic landscape of gastric cancer. Sci. Rep. 2024, 14, 15070. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Y.; Lin, Z.; Zhang, Y.; Zhang, N.; Zhao, Y.; Zhou, J.; Mao, A.; Wang, L.; Feng, Y.; et al. ZNF655 promotes the progression of hepatocellular carcinoma through PSMB8. Cell Biol. Int. 2023, 47, 1535–1546. [Google Scholar] [CrossRef]
- Chen, D.; Jin, C.; Dong, X.; Wen, J.; Xia, E.; Wang, Q.; Wang, O. Pan-cancer analysis of the prognostic and immunological role of PSMB8. Sci. Rep. 2021, 11, 20492. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, X.; Sun, H.; Zhang, J.; Yan, M.; Zhang, H. Autophagy Inhibition Promotes 5-Fluorouraci-Induced Apoptosis by Stimulating ROS Formation in Human Non-Small Cell Lung Cancer A549 Cells. PLoS ONE 2013, 8, e56679. [Google Scholar] [CrossRef]
- Wehenkel, M.; Ban, J.O.; Ho, Y.K.; Carmony, K.C.; Hong, J.T.; Kim, K.B. A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. Br. J. Cancer 2012, 107, 53–62. [Google Scholar] [CrossRef]
- Kwon, C.H.; Park, H.J.; Choi, Y.R.; Kim, A.; Kim, H.W.; Choi, J.H.; Hwang, C.S.; Lee, S.J.; Choi, C.I.; Jeon, T.Y.; et al. PSMB8 and PBK as potential gastric cancer subtype-specific biomarkers associated with prognosis. Oncotarget 2016, 7, 21454–21468. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, H.; Yang, B.; Cao, J. The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm. Sin. B 2023, 13, 1976–1989. [Google Scholar] [CrossRef]
- Focaccetti, C.; Bruno, A.; Magnani, E.; Bartolini, D.; Principi, E.; Dallaglio, K.; Bucci, E.O.; Finzi, G.; Sessa, F.; Noonan, D.M.; et al. Effects of 5-Fluorouracil on Morphology, Cell Cycle, Proliferation, Apoptosis, Autophagy and ROS Production in Endothelial Cells and Cardiomyocytes. PLoS ONE 2015, 10, e0115686. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, K.; Zhen, S.; Wang, R.; Luo, W. Carfilzomib induces G2/M cell cycle arrest in human endometrial cancer cells via upregulation of p21Waf1/Cip1 and p27Kip1. Taiwan J. Obstet. Gynecol. 2016, 55, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zha, Y.-L.; Wang, H.; Sun, B.; Qiang, W.-G.; Yuan, Y.; Shi, H.-B.; Hu, W.-W. Carfilzomib promotes Iodine-125 seed radiation-induced apoptosis, paraptosis, and ferroptosis in esophageal squamous cell carcinoma by aggravating endoplasmic reticulum stress. Transl. Oncol. 2025, 57, 102393. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liang, J.; Yang, T.; Liu, J.; Li, B.; Li, Y.; Fan, Z.; Wang, W.; Chen, W.; Yuan, S.; et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol. Med. 2022, 14, e14502. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resec-table gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [PubMed]
- Wu, A.; Jia, Y.; Dong, B.; Tang, L.; Liu, Y.; Du, H.; Yuan, P.; Dong, P.; Ji, J. Apoptosis and KI 67 index correlate with preoperative chemotherapy efficacy and better predict the survival of gastric cancer patients with combined therapy. Cancer Chemother. Pharmacol. 2014, 73, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Demirag, G.; Sullu, Y.; Yilmaz, A. Predictive Significance of Ki-67 and Platelet Lymphocyte Ratio in Patients with Gastric Cancer Receiving Neoadjuvant FLOT Chemotherapy. J. Coll. Physicians Surg. Pak. 2021, 31, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lv, J.; Guo, J.; Wang, S.; Liu, S.; Ma, Y.; Liang, Z.; Wang, Y.; Qi, W.; Qiu, W. 5-Fluorouracil enhances the chemosensitivity of gastric cancer to TRAIL via inhibition of the MAPK pathway. Biochem. Biophys. Res. Commun. 2021, 540, 108–115. [Google Scholar] [CrossRef]
- Jarauta, V.; Jaime, P.; Gonzalo, O.; de Miguel, D.; Ramírez-Labrada, A.; Martínez-Lostao, L.; Anel, A.; Pardo, J.; Marzo, I.; Naval, J. Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Lett. 2016, 382, 1–10. [Google Scholar] [CrossRef]
- Lamothe, B.; Wierda, W.G.; Keating, M.J.; Gandhi, V. Carfilzomib Triggers Cell Death in Chronic Lymphocytic Leukemia by In-ducing Proapoptotic and Endoplasmic Reticulum Stress Responses. Clin. Cancer Res. 2016, 22, 4712–4726. [Google Scholar] [CrossRef]
- Efentakis, P.; Kremastiotis, G.; Varela, A.; Nikolaou, P.E.; Papanagnou, E.D.; Davos, C.H.; Tsoumani, M.; Agrogiannis, G.; Konstantinidou, A.; Kastritis, E.; et al. Molecular mechanisms of carfil-zomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood 2019, 133, 710–723. [Google Scholar] [CrossRef]
- Mushtaq, A.; Kapoor, V.; Latif, A.; Iftikhar, A.; Zahid, U.; McBride, A.; Abraham, I.; Bin Riaz, I.; Anwer, F. Efficacy and toxicity profile of carfilzomib based regimens for treatment of multiple myeloma: A systematic review. Crit. Rev. Oncol./Hematol. 2018, 125, 1–11. [Google Scholar] [CrossRef]
- Burkhardt, A.M.; Zlotnik, A. Translating translational research: Mouse models of human disease. Cell Mol. Immunol. 2013, 10, 373–374. [Google Scholar] [CrossRef]
- Richmond, A.; Su, Y. Mouse xenograft models vs. GEM models for human cancer therapeutics. Dis. Model. Mech. 2008, 1, 78–82. [Google Scholar] [CrossRef]








| ID | Patient Sex | Patient Age | Patient Race/Ethnicity | Primary | Metastatic | Stage | Chemotherapy |
|---|---|---|---|---|---|---|---|
| 1T/1N | F | 53 | Asian | Adenocarcinoma, signet ring-cell | No | IIA (ypT3ypN0) | EOX |
| 2T | F | 25 | Hispanic | Adenocarcinoma, diffuse type | yes | IV (ypT4bypN3bypM1) | EOX/FOLFIRI |
| 3T | M | 51 | White | Adenocarcinoma | no | IIB (ypT4aN0) | Yes, unspecified |
| 4T | M | 78 | White | Invasive adenocarcinoma | yes | IIIC (pT4aN3a) | No |
| 5T | F | 49 | White | invasive adenocarcinoma, signet ring | yes | IIB (pT4aN0) | No |
| 6T | F | 48 | Asian | adenocarcinoma, diffuse type. Signet-ring | no | IIIC (pT4aN3a) | No |
| 7T | F | 77 | Asian | gastric adenocarcinoma | no | yT3N1 | FOLFOX (neo-adjuvant) |
| 8T | F | 81 | Vietnamese | gastric adenocarcinoma, intestinal type | invades serosa | pT4aN0 | No |
| 9T | M | 45 | White | signet ring gastric adenocarcinoma | yes | pT4aN3bM1 | No |
| 10T | F | 66 | Asian | gastric adenocarcinoma, diffuse type with signet ring | no | ypT4aN0 | FLOT |
| 11T | M | 81 | Asian | Gastric adenocarcinoma | yes | ypT3N3a | FOLFOX |
| 13T | M | 56 | Other Hispanic, Latino, or Spanish Origin | neoplastic | N/A | G3 mpT4a N3a M1 | No |
| 14T | M | 69 | Other Hispanic, Latino, or Spanish Origin | neoplastic | N/A | stage IV, ypT4b N3b M1 | Yes, unspecified. |
| 15T | M | 32 | Other Hispanic, Latino, or Spanish Origin | Neoplastic, mucinous adenocarcinoma with signet ring cell features | N/A | ypT4aN1 | Yes, unspecified. |
| 16T | F | 70 | Asian | adenocarcinoma | N/A | stage IIB, pT3N1 | No |
| 17T | M | 73 | Asian | Invasive poorly differentiated adenocarcinoma with focal signet ring cell features | N/A | Stage IIA, T3N0M0G3 | Yes, unspecified. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurstjens, E.M.; Cox, K.E.; Bali, P.; Amirfakhri, S.; Hernandez, J.; Lozano-Pope, I.; Benner, C.; Bouvet, M.; Obonyo, M. Repurposing Carfilzomib as a Promising Drug for Targeted Therapy in Gastric Cancer. Cancers 2025, 17, 3420. https://doi.org/10.3390/cancers17213420
Kurstjens EM, Cox KE, Bali P, Amirfakhri S, Hernandez J, Lozano-Pope I, Benner C, Bouvet M, Obonyo M. Repurposing Carfilzomib as a Promising Drug for Targeted Therapy in Gastric Cancer. Cancers. 2025; 17(21):3420. https://doi.org/10.3390/cancers17213420
Chicago/Turabian StyleKurstjens, Emma Mathilde, Kristin E. Cox, Prerna Bali, Siamak Amirfakhri, Jonathan Hernandez, Ivonne Lozano-Pope, Christopher Benner, Michael Bouvet, and Marygorret Obonyo. 2025. "Repurposing Carfilzomib as a Promising Drug for Targeted Therapy in Gastric Cancer" Cancers 17, no. 21: 3420. https://doi.org/10.3390/cancers17213420
APA StyleKurstjens, E. M., Cox, K. E., Bali, P., Amirfakhri, S., Hernandez, J., Lozano-Pope, I., Benner, C., Bouvet, M., & Obonyo, M. (2025). Repurposing Carfilzomib as a Promising Drug for Targeted Therapy in Gastric Cancer. Cancers, 17(21), 3420. https://doi.org/10.3390/cancers17213420

