Serum Iodine Levels and 8-Year Survival in Patients After Kidney Cancer Diagnosis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Sample Collection and Storage
2.3. Measurement Methodology
2.4. Quality Control
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Bahadoram, S.; Davoodi, M.; Hassanzadeh, S.; Bahadoram, M.; Barahman, M.; Mafakher, L. Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G. Ital. Nefrol. 2022, 39, 2022-vol3. [Google Scholar] [PubMed]
- Sá, I.; Semedo, M.; Cunha, M.E. Kidney cancer. Heavy metals as a risk factor. Porto Biomed. J. 2016, 1, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Złowocka-Perłowska, E.; Baszuk, P.; Marciniak, W.; Derkacz, R.; Tołoczko-Grabarek, A.; Słojewski, M.; Lemiński, A.; Soczawa, M.; Matuszczak, M.; Kiljańczyk, A.; et al. Blood and Serum Se and Zn Levels and 10-Year Survival of Patients after a Diagnosis of Kidney Cancer. Biomedicines 2024, 12, 1775. [Google Scholar] [CrossRef] [PubMed]
- Złowocka-Perłowska, E.; Baszuk, P.; Marciniak, W.; Derkacz, R.; Tołoczko-Grabarek, A.; Gołębiewska, K.; Słojewski, M.; Gołąb, A.; Lemiński, A.; Soczawa, M.; et al. Blood and Serum Copper and Zinc Levels and 10-Year Survival of Patients After Kidney Cancer Diagnosis. Nutrients 2025, 17, 944. [Google Scholar] [CrossRef]
- Nieboer, E.; Tsuji, L.J.S.; Martin, I.D.; Liberda, E.N. Human biomonitoring issues related to lead exposure. Environ. Sci. Process. Impacts 2013, 15, 1824–1829. [Google Scholar] [CrossRef]
- Clarkson, T.W. The three modern faces of mercury. Environ. Health Perspect. 2002, 110, 11–23. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Pesch, B.; Haerting, J.; Ranft, U.; Klimpel, A.; Oelschlägel, B.; Schill, W. Occupational risk factors for renal cell carcinoma: Agent-specific results from a case-control study in Germany. Leuk. Res. 2000, 29, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Koedrith, P.; Kim, H.; Weon, J.-I.; Seo, Y.R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 2013, 216, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Galetti, V. Iodine intake as a risk factor for thyroid cancer: A comprehensive review of animal and human studies. Thyroid Res. 2015, 18, 8. [Google Scholar] [CrossRef]
- Hwang, Y.; Oh, H.K.; Chung, J.H.; Wook, K.S.; Kim, J.-H.; Soo Kim, J.; Shin, M.-H. Association between urinary iodine concentration and the risk of papillary thyroid cancer by sex and age: A case–control study. Sci. Rep. 2023, 13, 2041. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Hye-Sun, L.; Sang-Wook, K.; Ji-Won, L. Association between Consumption of Iodine-Rich Foods and Thyroid Cancer Prevalence: Findings from a Large Population-Based Study. Nutrients 2024, 16, 1041. [Google Scholar] [CrossRef]
- Kiljańczyk, A.; Matuszczak, M.; Marciniak, W.; Derkacz, R.; Stempa, K.; Baszuk, P.; Bryśkiewicz, M.; Cybulski, C.; Dębniak, T.; Gronwald, J.; et al. Blood Iodine as a Potential Marker of the Risk of Cancer in BRCA1 Carriers. Nutrients 2024, 16, 1788. [Google Scholar] [CrossRef]
- Stadel, B. Dietary iodine and risk of breast, endometrial, and ovarian cancer. Lancet 1976, 307, 890–891. [Google Scholar] [CrossRef]
- Smyth, P.P. The thyroid, iodine and breast cancer. Breast Cancer Res. 2003, 5, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Cann, S.A.; van Netten, J.P.; van Netten, C. Hypothesis: Iodine, selenium and the development of breast cancer. Cancer Causes Control. 2000, 11, 121–127. [Google Scholar] [CrossRef]
- Gołkowski, F.; Szybiński, Z.; Rachtan, J.; Sokołowski, A.; Buziak-Bereza, M.; Trofimiuk, M.; Hubalewska-Dydejczyk, A.; Przybylik-Mazurek, E.; Huszno, B. Iodine prophylaxis—The protective factor against stomach cancer in iodine deficient areas. Eur. J. Nutr. 2007, 46, 251–256. [Google Scholar] [CrossRef]
- Venturi, S.; Venturi, A.; Cimini, D.; Arduini, C.; Venturi, M.; Guidi, A. A new hypothesis: Iodine and gastric cancer. Eur. J. Cancer Prev. 1993, 2, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Eskin, B.A.; Anjum, W.; Abraham, G.E.; Stoddard, F.; Prestrud, A.A.; Brooks, A.D. Identification of breast cancer by differences in urinary iodine. Cancer Res. 2005, 65, 504. [Google Scholar]
- Behrouzian, R.; Aghdami, N. Urinary iodine/creatinine ratio in patients with stomach cancer in Urmia, Islamic Republic of Iran. East. Mediterr. Health J. 2004, 10, 921–924. [Google Scholar] [CrossRef]
- Rappaport, J. Changes in Dietary Iodine Explains Increasing Incidence of Breast Cancer with Distant Involvement in Young Women. J. Cancer 2017, 8, 174–177. [Google Scholar] [CrossRef]
- Abnet, C.C.; Fan, J.H.; Kamangar, F.; Sun, X.D.; Taylor, P.R.; Ren, J.S.; Mark, S.D.; Zhao, P.; Fraumeni, J.F., Jr.; Qiao, Y.L.; et al. Self-reported goiter is associated with a significantly increased risk of gastric noncardia adenocarcinoma in a large popula-tion-based Chinese cohort. Int. J. Cancer 2006, 119, 1508–1510. [Google Scholar] [CrossRef]
- Cann, S.A.H.; Qiu, Z.; van Netten, C. A prospective study of iodine status, thyroid function, and prostate cancer risk: Follow-up of the First National Health and Nutrition Examination Survey. Nutr. Cancer 2007, 58, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Silcocks, P.B.; Davey, G.K.; Appleby, P.N.; Bishop, D.T. A case-control study of diet and prostate cancer. Br. J. Cancer 1997, 76, 678–687. [Google Scholar] [CrossRef]
- Koutras, D.; Marketos, S.; Rigopoulos, G.; Malamos, B. Iodine Metabolism in Chronic Renal Insufficiency. Nephron 1972, 9, 55–65. [Google Scholar] [CrossRef]
- Karbownik-Lewińska, M.; Stępniak, J.; Iwan, P.; Lewiński, A. Iodine as a potential endocrine disruptor—A role of oxidative stress. Endocrine 2022, 78, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Ganesamoni, R.; Bhattacharyya, S.; Kumar, S.; Chauhan, A.; Mete, U.K.; Agarwal, M.M.; Mavuduru, R.; Kaushik, G.; Mandal, A.K.; Singh, S.K. Status of Oxidative Stress in Patients With Renal Cell Carcinoma. J. Urol. 2012, 187, 1172–1176. [Google Scholar] [CrossRef] [PubMed]
- Giray, B.; Hincal, F. Oxidative DNA Base Damage, Antioxidant Enzyme Activities and Selenium Status in Highly Iodine-deficient Goitrous Children. Free. Radic. Res. 2002, 36, 55–62. [Google Scholar] [CrossRef]
- Xu, J.; Yang, X.-F.; Guo, H.-L.; Hou, X.-H.; Liu, L.-G.; Sun, X.-F. Selenium supplement alleviated the toxic effects of excessive iodine in mice. Biol. Trace Element Res. 2006, 111, 229–238. [Google Scholar] [CrossRef]
- Shimoda, S.; GreerIodine, M.A. Metabolism: Preferential renal excretion of iodide derived from triiodothyronine deiodination. Science 1972, 175, 1266–1267. [Google Scholar] [CrossRef]
- Lévay, B.; Lantos, A.; Sinkovics, I.; Slezák, A.; Tóth, E.; Dohán, O. The master role of polarized NIS expression in regulating iodine metabolism in the human body. Arq. Bras. Endocrinol. Metabol. 2023, 67, 256–261. [Google Scholar] [CrossRef]
- Khudair, A.; Khudair, A.; Niinuma, S.A.; Habib, H.; Butler, A.E. Beyond thyroid dysfunction: The systemic impact of iodine excess. Front. Endocrinol. 2025, 16, 1568807. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, A.; Czepczyński, R.; Ruchała, M. False-positive radioiodine whole-body scan due to a renal cyst. Endokrynol. Polska 2018, 69, 736–739. [Google Scholar] [CrossRef]
- Rashid, H.O.; Asai, M.; Sun, X.-Y.; Hayashi, Y.; Sakamoto, J.; Murata, Y. Effect of thyroid statuses on sodium/iodide symporter (NIS) gene expression in the extrathyroidal tissues in mice. Thyroid. Res. 2010, 3, 3. [Google Scholar] [CrossRef]
- Winder, M.; Kosztyła, Z.; Boral, A.; Kocełak, P.; Chudek, J. The Impact of Iodine Concentration Disorders on Health and Cancer. Nutrients 2022, 14, 2209. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Castro, M.R.; Morris, J.C.; Young, P.R.; Reynolds, J.C.; Merino, M.J.; Sarlis, N.J. Renal Metastases from Thyroid Papillary Carcinoma: Study of Sodium Iodide Symporter Expression. Thyroid® 2001, 11, 795–804. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, M. Induction of Sodium/Iodide Symporter (NIS) Expression and Radioiodine Uptake in Non-Thyroid Cancer Cells. PLoS ONE 2012, 7, e31729. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Li, J.; Hu, X.J.; Ye, J.; Cai, W.Q. SLC26A4 Mutation Promotes Cell Apoptosis by Inducing Pendrin Transfer, Reducing Cl- Transport, and Inhibiting PI3K/Akt/mTOR Pathway. BioMed Res. Int. 2022, 2022, 6496799. [Google Scholar] [CrossRef]
- Wiley, N.; Zecevic, M.; Ho, V.; Stolzberg, M.J.; Cox, D.; Soloff, E.V.; Hall, E.; Wang, C.L. Dual-energy CT iodine concentration as a biomarker for immunotherapy treatment response in metastatic melanoma and renal cell carcinoma patients. Eur. Radiol. 2025, 35, 4417–4428. [Google Scholar] [CrossRef]
- Mileto, A.; Marin, D.; Alfaro-Cordoba, M.; Ramirez-Giraldo, J.C.; Eusemann, C.D.; Scribano, E.; Blandino, A.; Mazziotti, S.; Ascenti, G. Iodine Quantification to Distinguish Clear Cell from Papillary Renal Cell Carcinoma at Dual-Energy Multidetector CT: A Multireader Diagnostic Performance Study. Radiology 2014, 273, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Aceves, C.; Mendieta, I.; Anguiano, B.; Delgado-González, E. Molecular Iodine Has Extrathyroidal Effects as an Antioxidant, Differentiator, and Immunomodulator. Int. J. Mol. Sci. 2021, 22, 1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.; Yuan, F.; Zhang, B.; Ding, B.; Zhang, H. Prognostic role of iodine values for gastric cancer after neoadjuvant chemotherapy: A strong independent prognostic factor. Diagn. Interv. Radiol. 2022, 28, 388–395. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Li, Q.; Aihaiti, R.; Feng, C.; Chen, D.; Zhao, X.; Teng, W. The relationship between urinary iodine concentration and papillary thyroid cancer: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 1049423. [Google Scholar] [CrossRef]
- Lv, C.; Gao, Y.; Yao, J.; Li, Y.; Lou, Q.; Zhang, M.; Tian, Q.; Yang, Y.; Sun, D. High Iodine Induces the Proliferation of Papillary and Anaplastic Thyroid Cancer Cells via AKT/Wee1/CDK1 Axis. Front. Oncol. 2021, 11, 622085. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, P.; Shang, L.; Sullivan, K.M.; Van Der Haar, F.; Maberly, G. Endemic goiter associated with high iodine intake. Am. J. Public Health 2000, 90, 1633–1635. [Google Scholar] [CrossRef]
- Knudsen, N.; Bulow, I.; Jorgensen, T.; Laurberg, P.; Ovesen, L.; Perrild, H. Comparative study of thyroid function and types of thyroid dysfunction in two areas in Denmark with slightly different iodine status. Eur. J. Endocrinol. 2000, 143, 485–491. [Google Scholar] [CrossRef]
- Bednarczuk, T.; Brix, T.H.; Schima, W.; Zettinig, G.; Kahaly, G.J. 2021 European Thyroid Association Guidelines for the Management of Iodine-Based Contrast Media-Induced Thyroid Dysfunction. Eur. Thyroid. J. 2021, 10, 269–284. [Google Scholar] [CrossRef]
- Zhao, D.; Lim, C.-P.; Miyanaga, K.; Tanji, Y. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria. Appl. Microbiol. Biotechnol. 2013, 97, 2173–2182. [Google Scholar] [CrossRef]
- Beukelman, C.; Berg, A.v.D.; Hoekstra, M.; Uhl, R.; Reimer, K.; Mueller, S. Anti-inflammatory properties of a liposomal hydrogel with povidone-iodine (Repithel®) for wound healing in vitro. Burns 2008, 34, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Kobat, S.G.; Gül, F.C.; Turgut, B. Iodine-Induced Retinopathy: A Case Report. Turk. J. Ophthalmol. 2020, 50, 255–257. [Google Scholar] [CrossRef]
- Monaghan, A.M.; Mulhern, M.S.; McSorley, E.M.; Strain, J.J.; Dyer, M.; van Wijngaarden, E.; Yeates, A.J. Associations between maternal urinary iodine assessment, dietary iodine intakes and neurodevelopmental outcomes in the child: A systematic review. Thyroid Res. 2021, 14, 14. [Google Scholar] [CrossRef]
- de Escobar, G.M.; Obregon, M.; del Rey, F.E. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 2004, 151, U25–U37. [Google Scholar] [CrossRef]
- Delange, F.; Hetzel, B. The iodine deficiency disorders. In The Thyroid and Its Diseases; DeGroot, L.E., Hannemann, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Panaiyadiyan, S.; Quadri, J.A.; Nayak, B.; Pandit, S.; Singh, P.; Seth, A.; Shariff, A. Association of heavy metals and trace elements in renal cell carcinoma: A case-controlled study. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 111.e11–111.e18. [Google Scholar] [CrossRef]
- Caron, P. Neurocognitive outcomes of children secondary to mild iodine deficiency in pregnant women. Ann. d’Endocrinologie 2015, 76, 248–252. [Google Scholar] [CrossRef]
- Institute of Medicine, Academy of Sciences. Iodine. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Feldt-Rasmussen, U. Iodine and cancer. Thyroid 2001, 11, 483–486. [Google Scholar] [CrossRef]
- Nettore, I.C.; Colao, A.; Macchia, P.E. Nutritional and Environmental Factors in Thyroid Carcinogenesis. Int. J. Environ. Res. Public Health 2018, 15, 1735. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.M.; Ohshima, M. The role of iodine in carcinogenesis. Adv. Exp. Med. Biol. 1986, 206, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, D.C.; Stanciu, M.M.; Zamfirescu, A.; Stanciu, A.E. TNF-α May Exert Different Antitumor Effects in Response to Radioactive Iodine Therapy in Papillary Thyroid Cancer with/without Autoimmune Thyroiditis. Cancers 2021, 13, 3609. [Google Scholar] [CrossRef] [PubMed]
- Eskin, B.A. Iodine and mammary cancer. Adv. Exp. Med. Biol. 1977, 91, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Ghent, W.R.; A Eskin, B.; A Low, D.; Hill, L.P. Iodine replacement in fibrocystic disease of the breast. Can. J. Surg. 1993, 36, 453–460. [Google Scholar] [PubMed]
- Ii, F.R.S.; Brooks, A.D.; Eskin, B.A.; Johannes, G.J. Iodine Alters Gene Expression in the MCF7 Breast Cancer Cell Line: Evidence for an Anti-Estrogen Effect of Iodine. Int. J. Med. Sci. 2008, 5, 189–196. [Google Scholar] [CrossRef]
- Mendieta, I.; Nuñez-Anita, R.E.; Nava-Villalba, M.; Zambrano-Estrada, X.; Delgado-González, E.; Anguiano, B.; Aceves, C. Molecular iodine exerts antineoplastic effects by diminishing proliferation and invasive potential and activating the immune response in mammary cancer xenografts. BMC Cancer 2019, 19, 261. [Google Scholar] [CrossRef]
- Maldonado-Araque, C.; Valdes, S.; Badiá-Guillén, R.; Lago-Sampedro, A.; Colomo, N.; García-Fuentes, E.; Gutierrez-Repiso, C.; Goday, A.; Calle-Pascual, A.; Castaño, L.; et al. Iodine deficiency and mortality in spanish adults. Di@bet.es study. Thyroid 2021, 31, 106–114. [Google Scholar] [CrossRef]
- Inoue, K.; Leung, A.M.; Sugiyama, T.; Tsujimoto, T.; Makita, N.; Nangaku, M.; Ritz, B.R. Urinary Iodine Concentration and Mortality Among U.S. Adults. Thyroid 2018, 28, 913–920. [Google Scholar] [CrossRef]
- Du, Y.; Liu, B.; Sun, Y.; Wu, Y.; Snetselaar, L.; Wallace, R.; Bao, W. Association of Urinary Iodine Status With All-Cause and Cause-Specific Mortality Among US Adults. Curr. Dev. Nutr. 2021, 5, 12. [Google Scholar] [CrossRef]
- Riis, J.; Pedersen, K.M.; Danielsen, M.B.; Sørensen, G.V.B.; Jørgensen, M.G.; Andersen, S.L.; Carlé, A.; Pedersen, I.B.; Torp-Pedersen, C.; Andersen, S. Long-term iodine nutrition is associated with longevity in older adults: A 20 years’ follow-up of the Randers–Skagen study. Br. J. Nutr. 2020, 125, 260–265. [Google Scholar] [CrossRef]
- Lima, L.P.; Barros, I.A.; Lisbôa, P.C.; Araújo, R.L.; Silva, A.C.; Rosenthal, D.; Ferreira, A.C.; Carvalho, D.P. Estrogen effects on thyroid iodide uptake and thyroperoxidase activity in normal and ovariectomized rats. Steroids 2006, 71, 653–659. [Google Scholar] [CrossRef]
- Ha, J.; Lee, J.; Jo, K.; Lim, D.-J.; Kang, M.I.; Cha, B.Y.; Kim, M.-H. Sex differences in risk factors for subclinical hypothyroidism. Endocr. Connect. 2018, 7, 511–522. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall n = 284 | Living Individuals n = 204 | Deceased Individuals n = 80 |
---|---|---|---|
Age of diagnosis (mean) | |||
≤60 (50.12) | 121 (43%) | 98 (48%) | 23 (29%) |
>61 (67.66) | 163 (57%) | 106 (52%) | 57 (71%) |
Sex | |||
Female | 118 (42%) | 91 (45%) | 27 (34%) |
Male | 166 (58%) | 113 (55%) | 53 (66%) |
Smoking status | |||
No | 95 (33%) | 77 (38%) | 18 (23%) |
Current/Former smoker | 189 (67%) | 127 (62%) | 62 (78%) |
Kind of operation | |||
Nephrectomy | 126 (44%) | 84 (41%) | 42 (53%) |
Tumorectomy | 158 (56%) | 120 (59%) | 38 (48%) |
Histological features | |||
* GI | 75 (26%) | 64 (31%) | 11 (14%) |
GII | 125 (44%) | 96 (47%) | 29 (36%) |
GIII | 63 (22%) | 39 (19%) | 24 (30%) |
GIV | 21 (7.4%) | 5 (2.5%) | 16 (20%) |
Clear cell carcinoma | 245 (86%) | 169 (83%) | 76 (95%) |
Papillary/Chromophobe | 39 (14%) | 35 (17%) | 4 (5.0%) |
Death due to cancer | |||
No | – | – | 19 (29%) |
Yes | – | – | 46 (71%) |
Unknown | – | – | 15 |
Vital Status | Univariable COX Regression | Multivariable COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Overall n = 284 | Alive n = 204 | Dead n = 80 | HR 1 | 95% CI | p- Value | HR 1 | 95% CI | p- Value |
II (reference): 63.42–71.96 | 71 (25%) | 61 (30%) | 10 (13%) | — | — | — | — | ||
III: 72.02–81.76 | 71 (25%) | 48 (24%) | 23 (29%) | 2.63 | 1.25–5.52 | 0.011 | 2.83 | 1.26–6.34 | 0.012 |
IV: 81.85–169 | 71 (25%) | 40 (20%) | 31 (39%) | 3.68 | 1.80–7.50 | <0.001 | 2.64 | 1.19–5.88 | 0.017 |
Vital Status | Univariable COX Regression | Multivariable COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Overall n = 250 | Alive n = 204 | Dead n = 46 | HR 1 | 95% CI | p-Value | HR 1 | 95% CI | p-Value |
II (reference): 63.54–71.87 | 62 (25%) | 58 (28%) | 4 (8.7%) | — | — | — | — | ||
I: 34.45–63.51 | 63 (25%) | 57 (28%) | 6(13%) | 1.55 | 0.44–5.50 | 0.5 | 1.24 | 0.31–5.06 | 0.8 |
III: 71.96–81.67 | 62 (25%) | 48 (24%) | 14 (30%) | 3.91 | 1.29–11.9 | 0.016 | 4.17 | 1.14–15.3 | 0.031 |
IV: 81.76–169 | 63 (25%) | 41 (20%) | 22 (48%) | 6.26 | 2.16–18.2 | <0.001 | 3.94 | 1.08–14.4 | 0.038 |
Vital Status | Univariable COX Regression | Multivariable COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Overall n = 140 | Alive n = 113 | Dead n = 27 | HR 1 | 95% CI | p-Value | HR 1 | 95% CI | p-Value |
II (reference): 62.43–68.79 | 35 (25%) | 34 (30%) | 1 (3.7%) | — | — | — | — | ||
I: 34.45–62.06 | 35 (25%) | 31 (27%) | 4 (15%) | 4.20 | 0.47–37.6 | 0.2 | 1.06 | 0.08–14.4 | >0.9 |
III: 68.80–79.94 | 35 (25%) | 28 (25%) | 7 (26%) | 7.81 | 0.96–63.5 | 0.055 | 3.41 | 0.31–37.7 | 0.3 |
IV: 79.98–169 | 35 (25%) | 20 (18%) | 15 (56%) | 19.6 | 2.58–148 | 0.004 | 16.5 | 1.38–196 | 0.027 |
Vital Status | Univariable COX Regression | Multivariable COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Overall n = 223 | Alive n = 204 | Dead n = 19 | HR 1 | 95% CI | p- Value | HR 1 | 95% CI | p- Value |
III (reference): 70.02–79.55 | 56 (25%) | 54 (26%) | 2 (11%) | — | — | — | — | ||
I: 0.00–62.86 | 56 (25%) | 50 (25%) | 6 (32%) | 3.49 | 0.70–17.3 | 0.13 | 2.10 | 0.38–11.8 | 0.4 |
II: 62.91–69.97 | 55 (25%) | 52 (25%) | 3 (16%) | 1.40 | 0.23–8.38 | 0.7 | 1.35 | 0.20–8.86 | 0.8 |
IV: 79.64–6262.94 | 56 (25%) | 48 (24%) | 8 (42%) | 3.86 | 0.81–18.3 | 0.089 | 5.41 | 1.00–29.1 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Złowocka-Perłowska, E.; Baszuk, P.; Kiljańczyk, A.; Marciniak, W.; Derkacz, R.; Tołoczko-Grabarek, A.; Sikorski, A.; Słojewski, M.; Gołąb, A.; Lemiński, A.; et al. Serum Iodine Levels and 8-Year Survival in Patients After Kidney Cancer Diagnosis. Cancers 2025, 17, 3400. https://doi.org/10.3390/cancers17213400
Złowocka-Perłowska E, Baszuk P, Kiljańczyk A, Marciniak W, Derkacz R, Tołoczko-Grabarek A, Sikorski A, Słojewski M, Gołąb A, Lemiński A, et al. Serum Iodine Levels and 8-Year Survival in Patients After Kidney Cancer Diagnosis. Cancers. 2025; 17(21):3400. https://doi.org/10.3390/cancers17213400
Chicago/Turabian StyleZłowocka-Perłowska, Elżbieta, Piotr Baszuk, Adam Kiljańczyk, Wojciech Marciniak, Róża Derkacz, Aleksandra Tołoczko-Grabarek, Andrzej Sikorski, Marcin Słojewski, Adam Gołąb, Artur Lemiński, and et al. 2025. "Serum Iodine Levels and 8-Year Survival in Patients After Kidney Cancer Diagnosis" Cancers 17, no. 21: 3400. https://doi.org/10.3390/cancers17213400
APA StyleZłowocka-Perłowska, E., Baszuk, P., Kiljańczyk, A., Marciniak, W., Derkacz, R., Tołoczko-Grabarek, A., Sikorski, A., Słojewski, M., Gołąb, A., Lemiński, A., Soczawa, M., Marciniak, M., Scott, R. J., Gronwald, J., & Lubiński, J. (2025). Serum Iodine Levels and 8-Year Survival in Patients After Kidney Cancer Diagnosis. Cancers, 17(21), 3400. https://doi.org/10.3390/cancers17213400