Index Cancer Density Is a Stronger Predictor of Pelvic Lymph Node Invasion than Percentage of Biopsy-Positive Cores in EAU High-Risk Prostate Cancer: Clinical Impact in 254 Patients Treated and Staged with Robot-Assisted Radical Prostatectomy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. EAU High-Risk PCa Treated with Robotic-Assisted Radical Prostatectomy (RARP): Patient Population and Evaluated Parameters
2.2. Model Description and Statistical Methods
3. Results
3.1. Demography of EAU High-Risk PCa and Associations with the Risk of PLNI
3.2. The Stronger Impact of Id-BPC than BPC on the Risk of PLNI in EAU High-Risk PCa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASA | American Society of Anesthesiologists score system |
AI | Artificial Intelligence |
BPC | Biopsy-Positive Cores |
ECE | Extracapsular Extension |
Id-BPC | Index Density of Biopsy-Positive Cores |
ISUP | International Society of Urological Pathologists Classification |
mpMRI | Multiparametric Magnetic Resonance Imaging |
PCa | Prostate Cancer |
PLNI | Pelvic Lymph Node Invasion |
PV | Prostate Volume |
PW | Prostate Weight |
RARP | Robot-Assisted Radical Prostatectomy |
R1 | Positive Surgical Margin |
SVI | Seminal Vesicle Invasion |
References
- Cornford, P.; Tilki, D.; Bergh, R.C.v.D.; Eberli, D.; De Meerleer, G.; De Santis, M.; Gillessen, S.; Henry, A.M.; van Leenders, G.J.L.H.; Oldenburg, J.; et al. Eau-Eanm-Estro-Esur-Isup-Siog Guidelines on Prostate Cancer—2025 Update. Available online: https://uroweb.org/guidelines/prostate-cancer (accessed on 1 August 2025).
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Bitting, R.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; Desai, N.; Dorff, T.; et al. NCCN Guidelines® Insights: Prostate Cancer, Version 3. 2024. J. Natl. Compr. Cancer Netw. 2024, 22, 141–150. [Google Scholar]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; I Walsh, E.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.J.D.; Zhao, Z.; Huang, L.-C.; Penson, D.F.; Koyama, T.; Kaplan, S.H.; Greenfield, S.; Luckenbaugh, A.N.; Klaassen, Z.; Conwill, R.; et al. Association of Treatment Modality, Functional Outcomes, and Baseline Characteristics With Treatment-Related Regret Among Men With Localized Prostate Cancer. JAMA Oncol. 2021, 8, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Oderda, M.; Diamand, R.; Albisinni, S.; Calleris, G.; Carbone, A.; Falcone, M.; Fiard, G.; Gandaglia, G.; Marquis, A.; Marra, G.; et al. Indications for and complications of pelvic lymph node dissection in prostate cancer: Accuracy of available nomograms for the prediction of lymph node invasion. BJU Int. 2021, 127, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, T.; Denisenko, A.; Mico, V.; McPartland, C.; Shah, Y.; Mark, J.R.; Lallas, C.D.; Fonshell, C.; Danella, J.; Jacobs, B.; et al. Multiparametric MRI is not sufficient for prostate cancer staging: A single institutional experience validated by a multi-institutional regional collaborative. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 355.e1–355.e8. [Google Scholar] [CrossRef]
- Lee, J.S.; Chung, B.H. Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol. Int. 2007, 78, 323–327. [Google Scholar] [CrossRef]
- Gnanapragasam, V.J.; Bratt, O.; Muir, K.; Lee, L.S.; Huang, H.H.; Stattin, P.; Lophatananon, A. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: A validation study. BMC Med. 2018, 16, 31. [Google Scholar] [CrossRef]
- Parry, M.G.; Cowling, T.E.; Sujenthiran, A.; Nossiter, J.; Berry, B.; Cathcart, P.; Aggarwal, A.; Payne, H.; van der Meulen, J.; Clarke, N.W.; et al. Risk stratification for prostate cancer management: Value of the Cambridge Prognostic Group classification for assessing treatment allocation. BMC Med. 2020, 18, 114. [Google Scholar] [CrossRef]
- Stephenson, A.J.; Kattan, M.W.; Eastham, J.A.; Bianco Jr, F.J.; Yossepowitch, O.; Vickers, A.J.; Klein, E.A.; Wood, D.P.; Scardino, P.T. Prostate Cancer–Specific Mortality After Radical Prostatectomy for Patients Treated in the Prostate-Specific Antigen Era. J. Clin. Oncol. 2009, 27, 4300–4305. [Google Scholar] [CrossRef]
- Broeck, T.V.D.; Bergh, R.C.v.D.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Tilki, D.; Preisser, F.; Graefen, M.; Huland, H.; Pompe, R.S. External Validation of the European Association of Urology Biochemical Recurrence Risk Groups to Predict Metastasis and Mortality After Radical Prostatectomy in a European Cohort. Eur. Urol. 2019, 75, 896–900. [Google Scholar] [CrossRef]
- Yamashiro, J.R.; de Riese, W.T.W. Any Correlation Between Prostate Volume and Incidence of Prostate Cancer: A Review of Reported Data for the Last Thirty Years. Res. Rep. Urol. 2021, 10, 749–757. [Google Scholar] [CrossRef]
- Pierorazio, P.M.; Walsh, P.C.; Partin, A.W.; Epstein, J.I. Prognostic Gleason grade grouping: Data based on the modified Gleason scoring system. BJU Int. 2013, 111, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Magi-Galluzzi, C.; Evans, A.J.; Delahunt, B.; I Epstein, J.; Griffiths, D.F.; van der Kwast, T.H.; Montironi, R.; Wheeler, T.M.; Srigley, J.R.; Egevad, L.L.; et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: Extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod. Pathol. 2011, 24, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Berney, D.M.; Wheeler, T.M.; Grignon, D.J.; Epstein, J.I.; Griffiths, D.F.; Humphrey, P.A.; van der Kwast, T.; Montironi, R.; Delahunt, B.; Egevad, L.; et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 4: Seminal vesicles and lymph nodes. Mod. Pathol. 2011, 24, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Delporte, G.; Henon, F.; Ploussard, G.; Briganti, A.; Rizk, J.; Rozet, F.; Touijer, K.; Ouzzane, A. Radical prostatectomy for locally advanced and high-risk prostate cancer: A systematic review of the literature. Progres En Urol. 2018, 28, 875–889. [Google Scholar] [CrossRef]
- McKay, R.R.; Feng, F.Y.; Wang, A.Y.; Wallis, C.J.D.; Moses, K.A. Recent Advances in the Management of High-Risk Localized Prostate Cancer: Local Therapy, Systemic Therapy, and Biomarkers to Guide Treatment Decisions. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e241–e252. [Google Scholar] [CrossRef]
- Motterle, G.; Ahmed, M.E.; Andrews, J.R.; Karnes, R.J. The Role of Radical Prostatectomy and Lymph Node Dissection in Clinically Node Positive Patients. Front. Oncol. 2019, 9, 1395. [Google Scholar] [CrossRef]
- Schmitges, J.; Trinh, Q.-D.; Walz, J.; Graefen, M. Surgery for high-risk localized prostate cancer. Ther. Adv. Urol. 2011, 3, 173–182. [Google Scholar] [CrossRef]
- Knipper, S.; Karakiewicz, P.I.; Heinze, A.; Preisser, F.; Steuber, T.; Huland, H.; Graefen, M.; Tilki, D. Definition of high-risk prostate cancer impacts oncological outcomes after radical prostatectomy. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 184–190. [Google Scholar] [CrossRef]
- Sundhi, D.; Tosian, J.J.; Nyame, Y.A.; Alam, R.; Achim, M.; Reichard, C.A.; Li, J.; Wilkins, L.; Schwen, Z.; Han, M.; et al. Outcomes of Very High-Risk Prostate Cancer After Radical Prostatectomy: Validation Study From 3 Centers. Cancer 2019, 125, 391–397. [Google Scholar] [CrossRef]
- Butler, S.S.; Dee, E.C.; Lamba, N.; Sha, S.T.; Mahal, B.A.; Whitbeck, A.; Makkar, R.; Wangoe, J.; Mouw, K.W.; Nguyen, P.L.; et al. Validation of a subclassification for high-risk prostate cancer in a pro-spective cohort. Cancer 2020, 126, 2132–2138. [Google Scholar] [CrossRef]
- Prendeville, S.; Van der Kwast, T.H. Lymph node staging in prostate cancer: Perspective for the pathologist. J. Clin. Pathol. 2016, 69, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Moris, L.; Broeck, T.V.D.; Tosco, L.; Van Baelen, A.; Gontero, P.; Karnes, R.J.; Everaerts, W.; Albersen, M.; Bastian, P.J.; Chlosta, P.; et al. Impact of Lymph Node Burden on Survival of High-risk Prostate Cancer Patients Following Radical Prostatectomy and Pelvic Lymph Node Dissection. Front. Surg. 2016, 3, 65. [Google Scholar] [CrossRef] [PubMed]
- Briganti, A.; Karnes, J.R.; Da Pozzo, L.F.; Cozzarini, C.; Gallina, A.; Suardi, N.; Bianchi, M.; Freschi, M.; Doglioni, C.; Fazio, F.; et al. Two Positive Nodes Represent a Significant Cut-off Value for Cancer Specific Survival in Patients with Node Positive Prostate Cancer. A New Proposal Based on a Two-Institution Experience on 703 Consecutive N+ Patients Treated with Radical Prostatectomy, Extended Pelvic Lymph Node Dissection and Adjuvant Therapy. Eur. Urol. 2009, 55, 261–270. [Google Scholar] [PubMed]
- Weingartner, K.; Ramaswamy, A.; Bittinger, A.; Gerharz, E.; Voge, D.; Riedmiller, H. Anatomical Basis for Pelvic Lymphadenectomy in Prostate Cancer: Results of an Autopsy Study and Implications for the Clinic. J. Urol. 1996, 156, 1969–1971. [Google Scholar] [CrossRef]
- Boscolo-Berto, R.; Siracusano, S.; Porzionato, A.; Polguj, M.; Porcaro, A.B.; Stecco, C.; Macchi, V.; De Caro, R. The underestimated posterior lymphatic drainage of the prostate: An historical overview and preliminary anatomical study on cadaver. Prostate 2019, 80, 153–161. [Google Scholar] [CrossRef]
- Di Pierro, G.B.; Salciccia, S.; Frisenda, M.; Tufano, A.; Sciarra, A.; Scarrone, E.; Del Giudice, F.; Asero, V.; Bevilacqua, G.; Moriconi, M.; et al. Comparison of Four Validated Nomograms (Memorial Sloan Kettering Cancer Center, Briganti 2012, 2017, and 2019) Predicting Lymph Node Invasion in Patients with High-Risk Prostate Cancer Candidates for Radical Prostatectomy and Extended Pelvic Lymph Node Dissection: Clinical Experience and Review of the Literature. Cancers 2023, 15, 1683. [Google Scholar] [CrossRef]
- Benson, M.C.; Whang, I.S.; Pantuck, A.; Ring, K.; Kaplan, S.A.; Olsson, C.A.; Cooner, W.H. Prostate Specific Antigen Density: A Means of Distinguishing Benign Prostatic Hypertrophy and Prostate Cancer. J. Urol. 1992, 147, 815–816. [Google Scholar] [CrossRef]
- Jiang, J.; Colli, J.; El-Galley, R. A Simple Method for Estimating the Optimum Number of Prostate Biopsy Cores Needed to Maintain High Cancer Detection Rates While Minimizing Unnecessary Biopsy Sampling. J. Endourol. 2010, 24, 143–147. [Google Scholar] [CrossRef]
- Porcaro, A.B.; Novella, G.; Molinari, A.; Terrin, A.; Minja, A.; De Marco, V.; Martignoni, G.; Brunelli, M.; Cerruto, M.A.; Curti, P.; et al. Prostate Volume Index and Chronic Inflammation of the Prostate Type IV with Respect to the Risk of Prostate Cancer. Urol. Int. 2014, 94, 270–285. [Google Scholar] [CrossRef]
- Porcaro, A.B.; Tafuri, A.; Sebben, M.; Novella, G.; Processali, T.; Pirozzi, M.; Amigoni, N.; Rizzetto, R.; Shakir, A.; Mariotto, A.; et al. Prostate volume index and prostatic chronic inflammation predicted low tumor load in 945 patients at baseline prostate biopsy. World J. Urol. 2019, 38, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Wieder, J.A.; Jack, G.S.; Dorey, F.; Dekernion, J.B.; Aronson, W.J. Improved Risk Stratification for Biochemical Recurrence after Radical Prostatectomy Using a Novel Risk Group System based on Prostate Specific Antigen Density and Biopsy Gleason Score. J. Urol. 2002, 168, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Isaacs, W.B.; Platz, E.A.; Terris, M.K.; Aronson, W.J.; Amling, C.L.; Presti, J.C.; Kane, C.J. Prostate Size and Risk of High-Grade, Advanced Prostate Cancer and Biochemical Progression After Radical Prostatectomy: A Search Database Study. J. Clin. Oncol. 2005, 23, 7546–7554. [Google Scholar] [CrossRef] [PubMed]
- Draulans, C.; Everaerts, W.; Isebaert, S.; Van Bruwaene, S.; Gevaert, T.; Oyer, R.; Joniau, S.; Lerut, E.; De Vever, L.; Laenen, A.; et al. Development and External Validation of a Multiparametric Magnetic Resonance Imaging and International Society of Urological Pathology Based Add-On Prediction Tool to Identify Prostate Cancer Candidates for Pelvic Lymph Node Dissection. J. Urol. 2020, 203, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Martini, A.; Ploussard, G.; Fossati, N.; Stabile, A.; De Visschere, P.; Borgmann, H.; Heidegger, I.; Steinkohl, F.; Kretschmer, A.; et al. External Validation of the 2019 Briganti Nomogram for the Identification of Prostate Cancer Patients Who Should Be Considered for an Extended Pelvic Lymph Node Dissection. Eur. Urol. 2020, 78, 138–142. [Google Scholar] [CrossRef]
- Lodeta, B.; Baric, H.; Hatz, D.; Jozipovic, D.; Augustin, H. Benefit and harm of lymphadenectomy in intermediate risk prostate cancer: Comparison of five nomograms. BMC Urol. 2023, 23, 190. [Google Scholar] [CrossRef]
- Gandaglia, G.; Barletta, F.; Robesti, D.; Scuderi, S.; Rajwa, P.; Rivas, J.G.; Ibanez, L.; Soeterik, T.F.W.; Bianchi, L.; Afferi, L.; et al. Identification of the Optimal Candidates for Nodal Staging with Extended Pelvic Lymph Node Dissection Among Prostate Cancer Patients Who Underwent Preoperative Prostate-specific Membrane Antigen Positron Emission Tomography. External Validation of the Memorial Sloan Kettering Cancer Center and Briganti Nomograms and Development of a Novel Tool. Eur. Urol. Oncol. 2023, 6, 543–552. [Google Scholar] [CrossRef]
Population | No PLNI | PLNI | Univariate Analysis OR (95% CI) | p-Value | |
---|---|---|---|---|---|
Numbers (%) | 254 | 195 (76.8) | 59 (23.2) | ||
Clinical factors | |||||
Age (years) | 66 (61–71) | 65 (60.2–70) | 68 (62–72) | 1.042 (0.993–1.094) | 0.095 |
BMI (kg/m2) | 25.8 (24.2–28.4) | 25.6 (24–28.1) | 26.3 (24.4–29.3) | 1.043 (0.958–1.137) | 0.33 |
ASA score 3 | 32 (12.6) | 21 (10.8) | 11 (18.6) | 1.899 (0.856–4.211) | 0.115 |
PV (mL) | 40 (30–55) | 40 (30–55) | 43 (32–56) | 1.006 (0.992–1.021) | 0.374 |
PSA > 20 (ng/mL) | 55 (21.7) | 32 (16.4) | 23 (39) | 3.254 (1.706–6.209) | <0.0001 |
ISUP 4–5 | 156 (61.4) | 112 (57.4) | 44 (74.6) | 2.174 (1.134–4.169) | 0.019 |
cT 2/3 | 169 (66.5) | 133 (68.2) | 36 (61) | 0.730 (0.399–1.335) | 0.306 |
cN1 | 65 (25.6) | 53 (27.2) | 12 (20.3) | 0.684 (0.337–1.389) | 0.293 |
BPC (%) | 42.8 (27–60) | 39.4 (25–57.1) | 53.8 (40–78.5) | 1.026 (1.014–1.038) | <0.0001 |
Id-BPC (%/mL) | 1.0 (0.5–1.7) | 0.9 (0.5–1.5) | 1.2 (0.8–2.0) | 1.444 (1.055–1.958) | 0.018 |
Surgical pathology | |||||
PW (gr) | 53 (45–66) | 51.6 (44.1–65) | 55 (50–70.8) | 1.013 (0.999–1.027) | 0.064 |
ISUP 4–5 | 154 (60.6) | 102 (52.3) | 52 (88.1) | 6.773 (2.931–15.652) | <0.0001 |
ECE | 37 (14.6) | 30 (15.4) | 7 (11.9) | 2.279 (0.837–6.204) | 0.107 |
SVI | 77 (30.3) | 38 (19.5) | 39 (66.1) | 10.026 (4.857–20.697) | <0.0001 |
R1 | 88 (34.6) | 56 (28.7) | 32 (54.2) | 2.942 (1.616–5.354) | <0.0001 |
Counted lymph nodes | 25 (10–32) | 25 (20–31) | 28 (20–34) | 1.024 (0.999–1.056) | 0.125 |
Model 1 (*) | Model 2 (*) | Model 3 (*) | ||||
---|---|---|---|---|---|---|
Statistics | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
PSA > 20 (ng/mL) | 4.988 (1.706–6.209) | <0.0001 | 5.386 (2.369–12.246) | <0.0001 | 5.260 (2.313–11.962) | <0.0001 |
ISUP 4–5 | 3.651 (1.560–8.543) | 0.003 | 3.906 (1.698–8.984) | 0.001 | 3.642 (1.582–8.304) | 0.002 |
BPC (%) | 1.028 (1.014–1.042) | <0.0001 | ||||
Id-BPC (%/mL) | 1.926 (1.246–2.977) | 0.003 | ||||
Id-BPC ≥ 1 (%/mL) | 3.535 (1.551–8.054) | 0.003 |
Variables | OR (95% CI) | p-Value |
---|---|---|
PW(gr) | 0.958 (0.942–0.974) | <0.0001 |
ISUP 4–5 | 1.333 (1.020–1.049) | 0.265 |
ECE | 2.585 (1.193–5.386) | 0.016 |
SVI | 3.432 (1.888–6.238) | <0.0001 |
R1 | 2.078 (1.216–3.551) | 0.007 |
PLNI | 2.301 (1.236–4.283) | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerruto, M.A.; Porcaro, A.B.; Bianchi, A.; Tafuri, A.; Panunzio, A.; Orlando, R.; Montanaro, F.; Baielli, A.; Artoni, F.; Franceschini, A.; et al. Index Cancer Density Is a Stronger Predictor of Pelvic Lymph Node Invasion than Percentage of Biopsy-Positive Cores in EAU High-Risk Prostate Cancer: Clinical Impact in 254 Patients Treated and Staged with Robot-Assisted Radical Prostatectomy. Cancers 2025, 17, 3385. https://doi.org/10.3390/cancers17203385
Cerruto MA, Porcaro AB, Bianchi A, Tafuri A, Panunzio A, Orlando R, Montanaro F, Baielli A, Artoni F, Franceschini A, et al. Index Cancer Density Is a Stronger Predictor of Pelvic Lymph Node Invasion than Percentage of Biopsy-Positive Cores in EAU High-Risk Prostate Cancer: Clinical Impact in 254 Patients Treated and Staged with Robot-Assisted Radical Prostatectomy. Cancers. 2025; 17(20):3385. https://doi.org/10.3390/cancers17203385
Chicago/Turabian StyleCerruto, Maria Angela, Antonio Benito Porcaro, Alberto Bianchi, Alessandro Tafuri, Andrea Panunzio, Rosella Orlando, Francesca Montanaro, Alberto Baielli, Francesco Artoni, Andrea Franceschini, and et al. 2025. "Index Cancer Density Is a Stronger Predictor of Pelvic Lymph Node Invasion than Percentage of Biopsy-Positive Cores in EAU High-Risk Prostate Cancer: Clinical Impact in 254 Patients Treated and Staged with Robot-Assisted Radical Prostatectomy" Cancers 17, no. 20: 3385. https://doi.org/10.3390/cancers17203385
APA StyleCerruto, M. A., Porcaro, A. B., Bianchi, A., Tafuri, A., Panunzio, A., Orlando, R., Montanaro, F., Baielli, A., Artoni, F., Franceschini, A., De Bon, L., Veccia, A., Rizzetto, R., Brunelli, M., De Marco, V., Migliorini, F., Siracusano, S., Bertolo, R. G., & Antonelli, A. (2025). Index Cancer Density Is a Stronger Predictor of Pelvic Lymph Node Invasion than Percentage of Biopsy-Positive Cores in EAU High-Risk Prostate Cancer: Clinical Impact in 254 Patients Treated and Staged with Robot-Assisted Radical Prostatectomy. Cancers, 17(20), 3385. https://doi.org/10.3390/cancers17203385