Immune Checkpoint Therapy for Thymic Carcinoma
Abstract
Simple Summary
Abstract
1. Introduction
2. Immunological Landscape of Thymic Carcinoma
| Year | Author | N | PD-L1 Antibody | Cut-Off | PD-L1+ (%) | Survival Association (High vs. Low) |
|---|---|---|---|---|---|---|
| 2018 | Chen et al. [24] | 20 | SP142 | ≥3%, (% × intensity) | 70% | NS |
| 2018 | Sakane et al. [20] | 53 | SP142, SP263, 22C3, 28-8 | ≥1%/25%, (%) | 49.1~92.5% | Longer OS |
| 2018 | Funaki et al. [18] | 43 | SP142 | ≥50%, (TPS) | 60.5% | Worse prognosis |
| 2018 | Duan et al. [21] | 20 | ab58810 | median, (% × intensity) | 65% | Shorter mPFS |
| 2019 | Song et al. [17] | 60 | SP263 | ≥50%, (TPS) | 35% | NS |
| 2019 | Higuchi et al. [23] | 6 | 28-8 | ≥1%, (TPS) | 63% | NS |
| 2019 | Rouquette et al. [16] | 50 | E1L3N, SP142, 22C3, SP263 | ≥1%/50%, H-score | 20~24% (50%) 66~73% (1%) | NS |
| 2020 | Bedekovics et al. [25] | 7 | SP142 | TC ≥ 50% or IC ≥ 10%, (%) | 43% | NS |
| 2020 | Beradi et al. [26] | 4 | 28-8 | ≥1%, (TPS) | 50% | NS |
| 2020 | Ishihara et al. [14] | 11 | SP263 | ≥25%, (TPS) | 27% | Shorter RFS |
| 2021 | Wang et al. [15] | 15 | 22C3 or 28-8 | ≥1%, (%) | 54.6% | NS |
| 2022 | Kashima et al. [27] | 31 | E1L3N | ≥1%, (%) | 74% | NS |
| 2025 | Chubachi et al. [28] | 11 | SP142, SP263 | ≥1%, (%) | 73~82% | NS |
| 2025 | Lu et al. [29] | 34 | SP142 | ≥1%, (%) | 41.7% | Longer PFS |
3. Clinical Trials of ICI Monotherapy for TC Patients
3.1. Pembrolizumab
| Treatment | Pathological Type | Number of Patients | Median Age/y | Male/ Female | ORR (%) | DCR (%) | mPFS (Months) | mOS (Months) | Primary endpoint | Rate of Severe irAEs (%) | Reference |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Pembrolizumab | TC | 40 | 57 | 28/12 | 22.5 | 75 | 4.2 | 24.9 | ORR | 15 | Giaccone et al., 2018 [10] |
| Pembrolizumab | TC | 26 | 57 | 18/8 | 19.2 | 73.1 | 6.1 | 14.5 | ORR | 15.4 | Cho et al., 2019 [11] |
| Nivolumab | TC | 15 | 55 | 12/3 | 0 | 73.3 | 3.8 | 14.1 | ORR | 14.3 | Katsuya Y., 2019 [39] |
| Nivolumab | T and TC | 10/43 | 58 | 35/20 | 12 | 67 | 6.2 | 21.3 | PFS | 59 | N. Girard., 2023 [40] |
| Atezolizumab | TC | 34 | 55 | 26/8 | 14.7 | 58.8 | 3.2 | NA | ORR | 5.9 | Lu et al., 2025 [29] |
3.2. Nivolumab
3.3. Atezolizumab
4. Immune-Related Adverse Events (irAEs) in Thymic Carcinoma
4.1. Overview of irAE Profile in Thymic Carcinoma
4.2. Incidence and Clinical Spectrum
4.3. Contraindications and Special Populations
5. Novel ICIs and Targeted Therapies for Thymic Carcinoma
5.1. Next-Generation Immune Targets
5.2. Non-T-Cell Immunoregulators
5.3. Emerging Therapeutic Targets
6. Combination Therapies for Thymic Carcinoma
6.1. Combination Therapy with ICIs and Anti-Angiogenic Drugs
6.2. Combination Therapy with ICIs and Chemotherapy
6.3. Integration of ICIs with Surgical Management
6.4. Dual ICI Therapy
6.5. Neo-Adjuvant Therapy with ICIs
6.6. Future Combination Therapy
7. Conclusions and Clinical Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AD | Autoimmune Disease |
| ANA | Antinuclear Antibody |
| CR | Complete Response |
| CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
| DCR | Disease Control Rate |
| DLT | Dose-Limiting Toxicity |
| EMT | Epithelial–Mesenchymal Transition |
| ICIs | Immune Checkpoint Inhibitors |
| irAEs | Immune-related Adverse Events |
| mOS | Median Overall Survival |
| mPFS | Median Progression-Free Survival |
| MSI | Microsatellite Instability |
| MSS | Microsatellite Stable |
| MPR | Major Pathologic Response |
| NPR | Non-Progression Rate |
| ORR | Objective Response Rate |
| PD-1 | Programmed Cell Death Protein 1 |
| PD-L1 | Programmed Cell Death Protein Ligand 1 |
| PFS | Progression-Free Survival |
| PR | Partial Response |
| TC | Thymic Carcinoma |
| TET | Thymic Epithelial Tumor |
| TILs | Tumor-Infiltrating Lymphocytes |
| TMB | Tumor Mutational Burden |
| VEGFR | Vascular Endothelial Growth Factor Receptor |
References
- Tartarone, A.; Lerose, R.; Lettini, A.R.; Tartarone, M. Current Treatment Approaches for Thymic Epithelial Tumors. Life 2023, 13, 1170. [Google Scholar] [CrossRef]
- Cafaro, A.; Bongiovanni, A.; Di Iorio, V.; Oboldi, D.; Masini, C.; Ibrahim, T. Pembrolizumab in a Patient With Heavily Pre-Treated Squamous Cell Thymic Carcinoma and Cardiac Impairment: A Case Report and Literature Review. Front. Oncol. 2020, 10, 1478. [Google Scholar] [CrossRef] [PubMed]
- Agatsuma, T.; Koizumi, T.; Kanda, S.; Ito, M.; Urushihata, K.; Yamamoto, H.; Hanaoka, M.; Kubo, K. Combination chemotherapy with doxorubicin, vincristine, cyclophosphamide, and platinum compounds for advanced thymic carcinoma. J. Thorac. Oncol. 2011, 6, 2130–2134. [Google Scholar] [CrossRef] [PubMed]
- Okuma, Y.; Hosomi, Y.; Takagi, Y.; Iguchi, M.; Okamura, T.; Shibuya, M. Cisplatin and irinotecan combination chemotherapy for advanced thymic carcinoma: Evaluation of efficacy and toxicity. Lung Cancer 2011, 74, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Tsukita, Y.; Inoue, A.; Sugawara, S.; Kuyama, S.; Nakagawa, T.; Harada, D.; Tanaka, H.; Watanabe, K.; Mori, Y.; Harada, T.; et al. Phase II study of S-1 in patients with previously-treated invasive thymoma and thymic carcinoma: North Japan lung cancer study group trial 1203. Lung Cancer 2020, 139, 89–93. [Google Scholar] [CrossRef]
- Inoue, A.; Sugawara, S.; Harada, M.; Kobayashi, K.; Kozuki, T.; Kuyama, S.; Maemondo, M.; Asahina, H.; Hisamoto, A.; Nakagawa, T.; et al. Phase II study of Amrubicin combined with carboplatin for thymic carcinoma and invasive thymoma: North Japan Lung Cancer group study 0803. J. Thorac. Oncol. 2014, 9, 1805–1809. [Google Scholar] [CrossRef]
- Gbolahan, O.B.; Porter, R.F.; Salter, J.T.; Yiannoutsos, C.; Burns, M.; Chiorean, E.G.; Loehrer, P.J., Sr. A Phase II Study of Pemetrexed in Patients with Recurrent Thymoma and Thymic Carcinoma. J. Thorac. Oncol. 2018, 13, 1940–1948. [Google Scholar] [CrossRef]
- Rajan, A.; Sivapiromrat, A.K.; McAdams, M.J. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers 2024, 16, 1369. [Google Scholar] [CrossRef]
- Katsuya, Y.; Fujita, Y.; Horinouchi, H.; Ohe, Y.; Watanabe, S.; Tsuta, K. Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma. Lung Cancer 2015, 88, 154–159. [Google Scholar] [CrossRef]
- Giaccone, G.; Kim, C.; Thompson, J.; McGuire, C.; Kallakury, B.; Chahine, J.J.; Manning, M.; Mogg, R.; Blumenschein, W.M.; Tan, M.T.; et al. Pembrolizumab in patients with thymic carcinoma: A single-arm, single-centre, phase 2 study. Lancet Oncol. 2018, 19, 347–355. [Google Scholar] [CrossRef]
- Cho, J.; Kim, H.S.; Ku, B.M.; Choi, Y.L.; Cristescu, R.; Han, J.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; et al. Pembrolizumab for Patients With Refractory or Relapsed Thymic Epithelial Tumor: An Open-Label Phase II Trial. J. Clin. Oncol. 2019, 37, 2162–2170. [Google Scholar] [CrossRef]
- Kondo, K.; Monden, Y. Therapy for thymic epithelial tumors: A clinical study of 1,320 patients from Japan. Ann. Thorac. Surg. 2003, 76, 878–884; discussion 875–884. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Ruffini, E.; Marx, A.; Faivre-Finn, C.; Peters, S. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v40–v55. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, S.; Okada, S.; Ogi, H.; Kodama, Y.; Shimomura, M.; Tsunezuka, H.; Itoh, K.; Marx, A.; Inoue, M. Programmed death-ligand 1 expression profiling in thymic epithelial cell tumors: Clinicopathological features and quantitative digital image analyses. Lung Cancer 2020, 145, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, X.; Luo, L.; Wang, C.; Jiang, Z.; Lin, Y. Mutational landscape of thymic epithelial tumors in a Chinese population: Insights into potential clinical implications. Gland. Surg. 2021, 10, 1410–1417. [Google Scholar] [CrossRef]
- Rouquette, I.; Taranchon-Clermont, E.; Gilhodes, J.; Bluthgen, M.V.; Perallon, R.; Chalabreysse, L.; De Muret, A.; Hofman, V.; Marx, A.; Parrens, M.; et al. Immune biomarkers in thymic epithelial tumors: Expression patterns, prognostic value and comparison of diagnostic tests for PD-L1. Biomark. Res. 2019, 7, 28. [Google Scholar] [CrossRef]
- Song, J.S.; Kim, D.; Kwon, J.H.; Kim, H.R.; Choi, C.M.; Jang, S.J. Clinicopathologic Significance and Immunogenomic Analysis of Programmed Death-Ligand 1 (PD-L1) and Programmed Death 1 (PD-1) Expression in Thymic Epithelial Tumors. Front. Oncol. 2019, 9, 1055. [Google Scholar] [CrossRef]
- Funaki, S.; Shintani, Y.; Fukui, E.; Yamamoto, Y.; Kanzaki, R.; Ose, N.; Kanou, T.; Minami, M.; Mori, E.; Okumura, M. The prognostic impact of programmed cell death 1 and its ligand and the correlation with epithelial-mesenchymal transition in thymic carcinoma. Cancer Med. 2019, 8, 216–226. [Google Scholar] [CrossRef]
- Yokoyama, S.; Miyoshi, H.; Nakashima, K.; Shimono, J.; Hashiguchi, T.; Mitsuoka, M.; Takamori, S.; Akagi, Y.; Ohshima, K. Prognostic Value of Programmed Death Ligand 1 and Programmed Death 1 Expression in Thymic Carcinoma. Clin. Cancer Res. 2016, 22, 4727–4734. [Google Scholar] [CrossRef]
- Sakane, T.; Murase, T.; Okuda, K.; Takino, H.; Masaki, A.; Oda, R.; Watanabe, T.; Kawano, O.; Haneda, H.; Moriyama, S.; et al. A comparative study of PD-L1 immunohistochemical assays with four reliable antibodies in thymic carcinoma. Oncotarget 2018, 9, 6993–7009. [Google Scholar] [CrossRef]
- Duan, J.; Liu, X.; Chen, H.; Sun, Y.; Liu, Y.; Bai, H.; Wang, J. Impact of PD-L1, transforming growth factor-β expression and tumor-infiltrating CD8+ T cells on clinical outcome of patients with advanced thymic epithelial tumors. Thorac. Cancer 2018, 9, 1341–1353. [Google Scholar] [CrossRef]
- Padda, S.K.; Riess, J.W.; Schwartz, E.J.; Tian, L.; Kohrt, H.E.; Neal, J.W.; West, R.B.; Wakelee, H.A. Diffuse high intensity PD-L1 staining in thymic epithelial tumors. J. Thorac. Oncol. 2015, 10, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; Goto, T.; Hirotsu, Y.; Nakagomi, T.; Yokoyama, Y.; Otake, S.; Amemiya, K.; Oyama, T.; Omata, M. PD-L1 Expression and Tumor-Infiltrating Lymphocytes in Thymic Epithelial Neoplasms. J. Clin. Med. 2019, 8, 1833. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.; Chai, X.; Gao, J.; Chen, G.; Zhang, W.; Zhang, Y. Correlation between the Expression of PD-L1 and Clinicopathological Features in Patients with Thymic Epithelial Tumors. Biomed. Res. Int. 2018, 2018, 5830547. [Google Scholar] [CrossRef] [PubMed]
- Bedekovics, J.; Beke, L.; Mokanszki, A.; Szilagyi, S.; Mehes, G. Programmed Death-ligand 1 (PD-L1) Expression in Thymic Epithelial Tumors. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 1–9. [Google Scholar] [CrossRef]
- Berardi, R.; Goteri, G.; Brunelli, A.; Pagliaretta, S.; Paolucci, V.; Caramanti, M.; Rinaldi, S.; Refai, M.; Pompili, C.; Morgese, F.; et al. Prognostic relevance of programmed cell death protein 1/programmed death-ligand 1 pathway in thymic malignancies with combined immunohistochemical and biomolecular approach. Expert Opin. Ther. Targets 2020, 24, 937–943. [Google Scholar] [CrossRef]
- Kashima, J.; Hishima, T.; Okuma, Y.; Horio, H.; Ogawa, M.; Hayashi, Y.; Horiguchi, S.I.; Motoi, T.; Ushiku, T.; Fukayama, M. CD70 in Thymic Squamous Cell Carcinoma: Potential Diagnostic Markers and Immunotherapeutic Targets. Front. Oncol. 2021, 11, 808396. [Google Scholar] [CrossRef]
- Chubachi, K.; Tanaka, H.; Taima, K.; Tasaka, S.; Kurose, A. PD-L1 expression on tumor cells and tumor-infiltrating immune cells in thymic epithelial tumors detected with SP142 and SP263 antibodies. PLoS ONE 2025, 20, e0327792. [Google Scholar] [CrossRef]
- Lu, S.; Ma, X.; Liu, L.; Li, Q.; Hu, J.; Wang, C.; He, J.; Hu, X.; Chen, C.; Yang, Z.; et al. Efficacy and Safety of Atezolizumab in Chinese Patients With Advanced Thymic Carcinoma: A Multicenter, Single-Arm Phase 2 Study. Clin. Lung Cancer 2025, 26, 244–252.e2. [Google Scholar] [CrossRef]
- Jakopovic, M.; Bitar, L.; Seiwerth, F.; Marusic, A.; Krpina, K.; Samarzija, M. Immunotherapy for thymoma. J. Thorac. Dis. 2020, 12, 7635–7641. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Rajan, A.; Heery, C.R.; Thomas, A.; Mammen, A.L.; Perry, S.; O’Sullivan Coyne, G.; Guha, U.; Berman, A.; Szabo, E.; Madan, R.A.; et al. Efficacy and tolerability of anti-programmed death-ligand 1 (PD-L1) antibody (Avelumab) treatment in advanced thymoma. J. Immunother. Cancer 2019, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): Part 2: National Harbor, MD, USA. 10 November 2019. J. Immunother. Cancer 2019, 7, 283. [CrossRef]
- Mortier, E.; Quéméner, A.; Vusio, P.; Lorenzen, I.; Boublik, Y.; Grötzinger, J.; Plet, A.; Jacques, Y. Soluble interleukin-15 receptor α (IL-15R α)-sushi as a selective and potent agonist of IL-15 action through IL-15R β/γ. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem. 2006, 281, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef]
- Karp, D.D.; Camidge, D.R.; Infante, J.R.; Ames, T.D.; Price, M.R.; Jimeno, J.; Bryce, A.H. Phase I study of PT-112, a novel pyrophosphate-platinum immunogenic cell death inducer, in advanced solid tumours. eClinicalMedicine 2022, 49, 101430. [Google Scholar] [CrossRef]
- McAdams, M.; Swift, S.; Donahue, R.N.; Celades, C.; Tsai, Y.-T.; Bingham, M.; Szabo, E.; Zhao, C.; Sansone, S.; Choradia, N.; et al. Preliminary efficacy, safety, and immunomodulatory effects of PT-112 from a phase 2 proof of concept study in patients (pts) with thymic epithelial tumors (TETs). J. Clin. Oncol. 2023, 41, e20647. [Google Scholar] [CrossRef]
- He, Y.; Ramesh, A.; Gusev, Y.; Bhuvaneshwar, K.; Giaccone, G. Molecular predictors of response to pembrolizumab in thymic carcinoma. Cell Rep. Med. 2021, 2, 100392. [Google Scholar] [CrossRef]
- Katsuya, Y.; Horinouchi, H.; Seto, T.; Umemura, S.; Hosomi, Y.; Satouchi, M.; Nishio, M.; Kozuki, T.; Hida, T.; Sukigara, T.; et al. Single-arm, multicentre, phase II trial of nivolumab for unresectable or recurrent thymic carcinoma: PRIMER study. Eur. J. Cancer 2019, 113, 78–86. [Google Scholar] [CrossRef]
- Girard, N.; Ponce Aix, S.; Cedres, S.; Berghmans, T.; Burgers, S.; Toffart, A.C.; Popat, S.; Janssens, A.; Gervais, R.; Hochstenbag, M.; et al. Efficacy and safety of nivolumab for patients with pre-treated type B3 thymoma and thymic carcinoma: Results from the EORTC-ETOP NIVOTHYM phase II trial. ESMO Open 2023, 8, 101576. [Google Scholar] [CrossRef]
- Ak, N.; Aydiner, A. Nivolumab treatment for metastatic thymic epithelial tumors. J. Oncol. Pharm. Pract. 2021, 27, 1710–1715. [Google Scholar] [CrossRef]
- Tabernero, J.; Andre, F.; Blay, J.Y.; Bustillos, A.; Fear, S.; Ganta, S.; Jaeger, D.; Maio, M.; Mileshkin, L.; Melero, I. Phase II multicohort study of atezolizumab monotherapy in multiple advanced solid cancers. ESMO Open 2022, 7, 100419. [Google Scholar] [CrossRef] [PubMed]
- Girard, N. Therapeutic Management of Metastatic Thymoma and Thymic Carcinoma. Curr. Oncol. Rep. 2025, 27, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Fenioux, C.; Abbar, B.; Boussouar, S.; Bretagne, M.; Power, J.R.; Moslehi, J.J.; Gougis, P.; Amelin, D.; Dechartres, A.; Lehmann, L.H.; et al. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat. Med. 2023, 29, 3100–3110. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Iwahori, K.; Shintani, Y. Current immunotherapy for thymic epithelial tumors: A narrative review. Mediastinum 2024, 8, 47. [Google Scholar] [CrossRef]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Flieswasser, T.; Van den Eynde, A.; Van Audenaerde, J.; De Waele, J.; Lardon, F.; Riether, C.; de Haard, H.; Smits, E.; Pauwels, P.; Jacobs, J. The CD70-CD27 axis in oncology: The new kids on the block. J. Exp. Clin. Cancer Res. 2022, 41, 12. [Google Scholar] [CrossRef]
- van de Ven, K.; Borst, J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: Rationale and potential. Immunotherapy 2015, 7, 655–667. [Google Scholar] [CrossRef]
- Iyer, S.P.; Sica, R.A.; Ho, P.J.; Prica, A.; Zain, J.; Foss, F.M.; Hu, B.; Beitinjaneh, A.; Weng, W.K.; Kim, Y.H.; et al. Safety and activity of CTX130, a CD70-targeted allogeneic CRISPR-Cas9-engineered CAR T-cell therapy, in patients with relapsed or refractory T-cell malignancies (COBALT-LYM): A single-arm, open-label, phase 1, dose-escalation study. Lancet Oncol. 2025, 26, 110–122. [Google Scholar] [CrossRef]
- Freeman, G.J.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 2010, 235, 172–189. [Google Scholar] [CrossRef]
- Ngiow, S.F.; von Scheidt, B.; Akiba, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011, 71, 3540–3551. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Gabrilovich, D.; Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007, 25, 267–296. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, W.P. B7-H4, a promising target for immunotherapy. Cell. Immunol. 2020, 347, 104008. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Feng, J.; Hong, B.; Qian, Y. The Expression of PD-L1 and B7-H4 in Thymic Epithelial Tumor and Its Relationship With Tumor Immune-Infiltrating Cells. Front. Oncol. 2021, 11, 662010. [Google Scholar] [CrossRef] [PubMed]
- Maniar, R.; Loehrer, P.J., Sr. Understanding the landscape of immunotherapy in thymic epithelial tumors. Cancer 2023, 129, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.F.; Chu, C.Y.; Chang, C.C.; Lin, S.H.; Su, W.C.; Tseng, Y.L.; Lin, C.C.; Yen, Y.T. Different pattern of PD-L1, IDO, and FOXP3 Tregs expression with survival in thymoma and thymic carcinoma. Lung Cancer 2018, 125, 35–42. [Google Scholar] [CrossRef]
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Ahuja, S.; Zaheer, S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol. Int. 2024, 48, 87–127. [Google Scholar] [CrossRef]
- Yuki, R. Aberrant Activation Mechanism of TGF-β Signaling in Epithelial-mesenchymal Transition. Yakugaku Zasshi 2021, 141, 1229–1234. [Google Scholar] [CrossRef]
- Bu, J.; Zhang, Y.; Niu, N.; Bi, K.; Sun, L.; Qiao, X.; Wang, Y.; Zhang, Y.; Jiang, X.; Wang, D.; et al. Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2+HR+ breast cancer. eLife 2023, 12, e85246. [Google Scholar] [CrossRef]
- Kanamori, K.; Suina, K.; Shukuya, T.; Takahashi, F.; Hayashi, T.; Hara, K.; Saito, T.; Mitsuishi, Y.; Shimamura, S.S.; Winardi, W.; et al. CALML5 is a novel diagnostic marker for differentiating thymic squamous cell carcinoma from type B3 thymoma. Thorac. Cancer 2023, 14, 1089–1097. [Google Scholar] [CrossRef]
- Kaira, K.; Murakami, H.; Serizawa, M.; Koh, Y.; Abe, M.; Ohde, Y.; Takahashi, T.; Kondo, H.; Nakajima, T.; Yamamoto, N. MUC1 expression in thymic epithelial tumors: MUC1 may be useful marker as differential diagnosis between type B3 thymoma and thymic carcinoma. Virchows Arch. 2011, 458, 615–620. [Google Scholar] [CrossRef]
- Syrkina, M.S.; Rubtsov, M.A. MUC1 in Cancer Immunotherapy—New Hope or Phantom Menace? Biochemistry 2019, 84, 773–781. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Z.; Zhang, S.; Zhu, P.; Ko, J.K.; Yung, K.K. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int. J. Mol. Sci. 2021, 22, 6567. [Google Scholar] [CrossRef] [PubMed]
- Panda, M.; Tripathi, S.K.; Biswal, B.K. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188517. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Garbutt, C.C.; Spentzos, D.; Choy, E.; Hornicek, F.J.; Duan, Z. Expression and Therapeutic Potential of SOX9 in Chordoma. Clin. Cancer Res. 2017, 23, 5176–5186. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.; Carrasco-Garcia, E.; Garcia-Puga, M.; Aldaz, P.; Montes, M.; Fernandez-Reyes, M.; de Oliveira, C.C.; Lawrie, C.H.; Araúzo-Bravo, M.J.; Ribeiro, M.L.; et al. SOX9 Elevation Acts with Canonical WNT Signaling to Drive Gastric Cancer Progression. Cancer Res. 2016, 76, 6735–6746. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, L.; Luo, W.; Zhao, Y.; Nashan, B.; Yu, F.; Liu, Y. Diagnostic and Prognostic Significances of SOX9 in Thymic Epithelial Tumor. Front. Oncol. 2021, 11, 708735. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, J.; Wang, Z.; Lan, H.; Hou, J.; Zhang, N.; Wang, X.; Lu, H. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188902. [Google Scholar] [CrossRef]
- Yeung, V.; Zaemes, J.; Yeh, J.; Giancarlo, C.; Ahn, J.; Reuss, J.E.; Kallakury, B.V.; Liu, S.V.; Duttargi, A.; Khan, G.; et al. High levels of expression of Trop-2 in thymic epithelial tumors. Lung Cancer 2023, 184, 107324. [Google Scholar] [CrossRef]
- Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-angiogenic agents—Overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 2021, 18, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Brest, P.; Mograbi, B.; Pagès, G.; Hofman, P.; Milano, G. Checkpoint inhibitors and anti-angiogenic agents: A winning combination. Br. J. Cancer 2023, 129, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Zucali, P.A.; Pala, L.; Catania, C.; Bagnardi, V.; Sala, I.; Della Vigna, P.; Perrino, M.; Zagami, P.; Corti, C.; et al. Avelumab plus axitinib in unresectable or metastatic type B3 thymomas and thymic carcinomas (CAVEATT): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, P.; Long, J. Robust and durable response to first-line treatment of pembrolizumab combined with chemotherapy in two patients with metastatic thymic squamous cell carcinoma: Case report. Front. Immunol. 2022, 13, 941092. [Google Scholar] [CrossRef]
- Asao, T.; Shukuya, T.; Mimori, T.; Goto, Y.; Tanaka, H.; Takayama, K.; Tsubata, Y.; Tachihara, M.; Suzuki, T.; Kaira, K.; et al. Study Design and Rationale for Marble Study: A Phase II Trial of Atezolizumab (MPDL3280A) Plus Carboplatin and Paclitaxel in Patients With Advanced or Recurrent Thymic Carcinoma (JTD2101). Clin. Lung Cancer 2023, 24, e247–e253. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Yoo, C.; Javle, M.M.; Verdaguer Mata, H.; de Braud, F.; Trojan, J.; Raoul, J.L.; Kim, J.W.; Ueno, M.; Lee, C.K.; Hijioka, S.; et al. Phase 2 trial of bintrafusp alfa as second-line therapy for patients with locally advanced/metastatic biliary tract cancers. Hepatology 2023, 78, 758–770. [Google Scholar] [CrossRef]
- Song, X.; Fan, J.; Zhu, L.; Wang, Z.; He, Y.; Zhou, C. The efficacy and safety of immunotherapy in thymic epithelial tumors: More effective, more risky: A systematic review. J. Thorac. Dis. 2021, 13, 5093–5103. [Google Scholar] [CrossRef]

| irAEs (n, %) | Pembrolizumab | Pembrolizumab | Nivolumab | Atezolizumab |
|---|---|---|---|---|
| Giaccone et al. (n = 40) [10] | Cho et al. (n = 26) [11] | Katsuya et al. (n = 15) [39] | Lu et al. (n = 34) [29] | |
| Hepatic (AST/ALT ↑) | 7 (17.5%) | 2 (7.7%) | 3 (8%) | 1 (6.7%) |
| Myositis/CPK ↑ | 4 (11%) | 0 | 2 (5%) | 0 |
| Myocarditis | 2 (5%) | 0 | 2 (5%) | 0 |
| Myasthenia gravis/Myoclonus | 0 | 3 (11.5%) | 0 | 0 |
| Other irAEs (e.g., thyroiditis, rash) | 6 (15%) | 1 (3.8%) | 2 (5%) | 2 (13.3%) |
| Total Grade 3–4 irAEs | ~15% | ~12% | ~13% | ~13% |
| Experiment Drug | Trial | Target | Phase | End Points |
|---|---|---|---|---|
| Bintrafusp Alfa (M7824) | NCT04417660 | PD-L1 and TGF-β | 2 | ORR |
| Pembrolizumab and Sunitinib | NCT03463460 | PD-L1, PDGFR, RTK and VEGFR | 2 | PR and CR |
| Pembrolizumab and chemotherapy | NCT04554524 | PD-L1 | 4 | ORR |
| Pembrolizumab and chemotherapy | NCT03858582 | PD-L1 | 2 | Major pathologic response rate |
| Pembrolizumab, Lenvatinib and chemotherapy | NCT05832827 | PD-1 and VEGFR/FGFR | 2 | RR |
| RXC004 and Nivolumab | NCT03447470 | Wnt and PD-1 | 1 | DLT |
| Toripalimab and chemotherapy | NCT04667793 | PD-1 | 2 | Safety and MPR |
| Vorolanib and nivolumab | NCT03583086 | PD-1 and VEGFR/PDGFR | 1/2 | Escalation and Dose Expansion |
| KN046 | NCT04925947 | PD-1 and CTLA-4 | 4 | ORR |
| Pembrolizumab and Lenvatinib | NCT04710628 | PD-1 and VEGFR/FGFR | 2 | PFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Mao, F.; Liu, H.; Chen, J. Immune Checkpoint Therapy for Thymic Carcinoma. Cancers 2025, 17, 3377. https://doi.org/10.3390/cancers17203377
Li J, Mao F, Liu H, Chen J. Immune Checkpoint Therapy for Thymic Carcinoma. Cancers. 2025; 17(20):3377. https://doi.org/10.3390/cancers17203377
Chicago/Turabian StyleLi, Jinhui, Fuling Mao, Hongyu Liu, and Jun Chen. 2025. "Immune Checkpoint Therapy for Thymic Carcinoma" Cancers 17, no. 20: 3377. https://doi.org/10.3390/cancers17203377
APA StyleLi, J., Mao, F., Liu, H., & Chen, J. (2025). Immune Checkpoint Therapy for Thymic Carcinoma. Cancers, 17(20), 3377. https://doi.org/10.3390/cancers17203377

