Novel Molecular Insights and Evolution of Less Toxic Therapeutic Strategies in Burkitt Lymphoma
Abstract
Simple Summary
Abstract
1. Introduction
2. Epidemiology and Clinical Presentation
3. Pathology and Immunophenotype of BL
4. Molecular Biology of BL
5. Management of BL in the Frontline Setting
6. Management of BL in the Relapsed/Refractory Setting
7. Treatment Recommendations for Adult BL
8. Future Directions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burkitt, D. A Sarcoma Involving the Jaws in African Children. J. Br. Surg. 1958, 46, 218–223. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Z.; He, C.; Xing, X.; Tan, Z.; Sang, W. Global, Regional, and National Burden of Burkitt Lymphoma from 1990 to 2021 and Predictions to 2030: A Systematic Analysis for the Global Burden of Disease Study 2021. Blood Cancer J. 2024, 14, 154. [Google Scholar] [CrossRef]
- Parkin, D.M.; Sitas, F.; Chirenje, M.; Stein, L.; Abratt, R.; Wabinga, H. Part I: Cancer in Indigenous Africans—Burden, Distribution, and Trends. Lancet Oncol. 2008, 9, 683–692. [Google Scholar] [CrossRef]
- Mburu, W.; Devesa, S.S.; Check, D.; Shiels, M.S.; Mbulaiteye, S.M. Incidence of Burkitt Lymphoma in the United States during 2000 to 2019. Int. J. Cancer 2023, 153, 1182–1191. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; de Oliveira Araujo, I.B.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Dalla-Favera, R.; Bregni, M.; Erikson, J.; Patterson, D.; Gallo, R.C.; Croce, C.M. Human C-Myc Onc Gene Is Located on the Region of Chromosome 8 That Is Translocated in Burkitt Lymphoma Cells. Proc. Natl. Acad. Sci. USA 1982, 79, 7824–7827. [Google Scholar] [CrossRef]
- Taub, R.; Kirsch, I.; Morton, C.; Lenoir, G.; Swan, D.; Tronick, S.; Aaronson, S.; Leder, P. Translocation of the C-Myc Gene into the Immunoglobulin Heavy Chain Locus in Human Burkitt Lymphoma and Murine Plasmacytoma Cells. Proc. Natl. Acad. Sci. USA 1982, 79, 7837–7841. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Sun, Z.; Jima, D.; Li, G.; Zhang, J.; Miles, R.; Richards, K.L.; Dunphy, C.H.; Choi, W.W.L.; Srivastava, G.; et al. The Genetic Landscape of Mutations in Burkitt Lymphoma. Nat. Genet. 2012, 44, 1321–1325. [Google Scholar] [CrossRef]
- Panea, R.I.; Love, C.L.; Shingleton, J.R.; Reddy, A.; Bailey, J.A.; Moormann, A.M.; Otieno, J.A.; Ong’echa, J.M.; Oduor, C.I.; Schroeder, K.M.S.; et al. The Whole-Genome Landscape of Burkitt Lymphoma Subtypes. Blood 2019, 134, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, G.; Bonifacio, M.; Tecchio, C.; Balter, R.; Carli, G.; Stefani, P.M.; Adami, F.; Zamò, A.; Tos, A.P.D.; Marino, F.; et al. Intensive Short-term Chemotherapy Regimen Induces High Remission Rate (over 90%) and Event-free Survival Both in Children and Adult Patients with Advanced Sporadic Burkitt Lymphoma/Leukemia. Am. J. Hematol. 2012, 87, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, K.; Pittaluga, S.; Shovlin, M.; Steinberg, S.M.; Cole, D.; Grant, C.; Widemann, B.; Staudt, L.M.; Jaffe, E.S.; Little, R.F.; et al. Low-Intensity Therapy in Adults with Burkitt’s Lymphoma. N. Engl. J. Med. 2013, 369, 1915–1925. [Google Scholar] [CrossRef]
- Chamuleau, M.E.D.; Stenner, F.; Chitu, D.A.; Novak, U.; Minnema, M.C.; Geerts, P.; Stevens, W.B.C.; Zenz, T.; Van Imhoff, G.W.; Wu, K.L.; et al. R-CODOX-M/R-IVAC versus DA-EPOCH-R in Patients with Newly Diagnosed Burkitt Lymphoma (HOVON/SAKK): Final Results of a Multicentre, Phase 3, Open-Label, Randomised Trial. Lancet Haematol. 2023, 10, e966–e975. [Google Scholar] [CrossRef]
- Roschewski, M.; Dunleavy, K.; Abramson, J.S.; Powell, B.L.; Link, B.K.; Patel, P.; Bierman, P.J.; Jagadeesh, D.; Mitsuyasu, R.T.; Peace, D.; et al. Multicenter Study of Risk-Adapted Therapy with Dose-Adjusted EPOCH-R in Adults with Untreated Burkitt Lymphoma. J. Clin. Oncol. 2020, 38, 2519–2529. [Google Scholar] [CrossRef]
- Zayac, A.S.; Evens, A.M.; Danilov, A.; Smith, S.D.; Jagadeesh, D.; Leslie, L.A.; Wei, C.; Kim, S.-H.; Naik, S.; Sundaram, S.; et al. Outcomes of Burkitt Lymphoma with Central Nervous System Involvement: Evidence from a Large Multicenter Cohort Study. Haematologica 2021, 106, 1932–1942. [Google Scholar] [CrossRef]
- Prica, A.; Roschewski, M.; Beale, P.; Pittaluga, S.; Delabie, J.; Ortega, C.; Kridel, R. Glofitamab with Polatuzumab Vedotin in Refractory Burkitt’s Lymphoma. N. Engl. J. Med. 2025, 392, 1760–1762. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; De Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A Report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Dierickx, D.; Dirnhofer, S.; Dunleavy, K.; Gaulard, P.; Hasserjian, R.P.; Jaffe, E.S.; Kim, W.S.; King, R.L.; Lim, M.S.; et al. Lymphoma Classifications, How to Develop a Future Unified Taxonomy. J. Clin. Oncol. 2024, 42, 3177–3182. [Google Scholar] [CrossRef] [PubMed]
- Roschewski, M.; Staudt, L.M.; Wilson, W.H. Burkitt’s Lymphoma. N. Engl. J. Med. 2022, 387, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Quintana, M.D.P.; Smith-Togobo, C.; Moormann, A.; Hviid, L. Endemic Burkitt Lymphoma—An Aggressive Childhood Cancer Linked to Plasmodium falciparum Exposure, but Not to Exposure to Other Malaria Parasites. APMIS 2020, 128, 129–135. [Google Scholar] [CrossRef]
- Gopal, S.; Gross, T.G. How I Treat Burkitt Lymphoma in Children, Adolescents, and Young Adults in Sub-Saharan Africa. Blood 2018, 132, 254–263. [Google Scholar] [CrossRef]
- Offor, U.T.; Akyea, R.K.; Neequaye, J.E.; Renner, L.A.; Segbefia, C.I. The Changing Clinical Pattern of Endemic Burkitt Lymphoma in Western Africa: Experience from a Tertiary Center in Ghana. Pediatr. Blood Cancer 2018, 65, e27275. [Google Scholar] [CrossRef]
- Lamb, M.; Painter, D.; Howell, D.; Barrans, S.; Cargo, C.; De Tute, R.; Tooze, R.; Burton, C.; Patmore, R.; Roman, E.; et al. Lymphoid Blood Cancers, Incidence and Survival 2005-2023: A Report from the UK’s Haematological Malignancy Research Network. Cancer Epidemiol. 2024, 88, 102513. [Google Scholar] [CrossRef]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US Lymphoid Malignancy Statistics by World Health Organization Subtypes. CA. Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Natkunam, Y.; Gratzinger, D.; Chadburn, A.; Goodlad, J.R.; Chan, J.K.C.; Said, J.; Jaffe, E.S.; De Jong, D. Immunodeficiency-Associated Lymphoproliferative Disorders: Time for Reappraisal? Blood 2018, 132, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Alderuccio, J.P.; Olszewski, A.J.; Evens, A.M.; Collins, G.P.; Danilov, A.V.; Bower, M.; Jagadeesh, D.; Zhu, C.; Sperling, A.; Kim, S.-H.; et al. HIV-Associated Burkitt Lymphoma: Outcomes from a US-UK Collaborative Analysis. Blood Adv. 2021, 5, 2852–2862. [Google Scholar] [CrossRef] [PubMed]
- Gopal, S.; Patel, M.R.; Yanik, E.L.; Cole, S.R.; Achenbach, C.J.; Napravnik, S.; Burkholder, G.A.; Reid, E.G.; Rodriguez, B.; Deeks, S.G.; et al. Temporal Trends in Presentation and Survival for HIV-Associated Lymphoma in the Antiretroviral Therapy Era. JNCI J. Natl. Cancer Inst. 2013, 105, 1221–1229. [Google Scholar] [CrossRef]
- Guech-Ongey, M.; Simard, E.P.; Anderson, W.F.; Engels, E.A.; Bhatia, K.; Devesa, S.S.; Mbulaiteye, S.M. AIDS-Related Burkitt Lymphoma in the United States: What Do Age and CD4 Lymphocyte Patterns Tell Us about Etiology and/or Biology? Blood 2010, 116, 5600–5604. [Google Scholar] [CrossRef]
- Dunleavy, K.; Wilson, W.H. How I Treat HIV-Associated Lymphoma. Blood 2012, 119, 3245–3255. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J. Clin. Oncol. 2014, 32, 3059–3067. [Google Scholar] [CrossRef]
- Olszewski, A.J.; Jakobsen, L.H.; Collins, G.P.; Cwynarski, K.; Bachanova, V.; Blum, K.A.; Boughan, K.M.; Bower, M.; Dalla Pria, A.; Danilov, A.; et al. Burkitt Lymphoma International Prognostic Index. J. Clin. Oncol. 2021, 39, 1129–1138. [Google Scholar] [CrossRef]
- King, R.L.; Hsi, E.D.; Chan, W.C.; Piris, M.A.; Cook, J.R.; Scott, D.W.; Swerdlow, S.H. Diagnostic Approaches and Future Directions in Burkitt Lymphoma and High-Grade B-Cell Lymphoma. Virchows Arch. 2023, 482, 193–205. [Google Scholar] [CrossRef]
- Nakamura, N.; Nakamine, H.; Tamaru, J.; Nakamura, S.; Yoshino, T.; Ohshima, K.; Abe, M. The Distinction between Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma with c-Myc Rearrangement. Mod. Pathol. 2002, 15, 771–776. [Google Scholar] [CrossRef]
- Ribrag, V.; Bron, D.; Rymkiewicz, G.; Hoelzer, D.; Jørgensen, J.; De Armas-Castellano, A.; Trujillo-Martín, M.; Fenaux, P.; Malcovati, L.; Bolaños, N.; et al. Diagnosis and Treatment of Burkitt Lymphoma in Adults: Clinical Practice Guidelines from ERN-EuroBloodNet. Lancet Haematol. 2025, 12, e138–e150. [Google Scholar] [CrossRef]
- Ferry, J.A. Burkitt’s Lymphoma: Clinicopathologic Features and Differential Diagnosis. Oncologist 2006, 11, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.-J.; Kim, D.; Yoon, D.-H.; Cho, H.; Huh, J.; Suh, C.-W.; Go, H. Clinicopathologic and Genetic Features of the Starry-Sky Pattern in Double-Expressor Diffuse Large B-Cell Lymphoma. Hum. Pathol. 2023, 139, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, K.; Braziel, R.M.; Gatter, K.; Bakke, T.C.; Olson, S.; Fan, G. Immunophenotypic Variations of Burkitt Lymphoma. Am. J. Clin. Pathol. 2010, 134, 127–138. [Google Scholar] [CrossRef]
- Satou, A.; Asano, N.; Kato, S.; Elsayed, A.A.; Nakamura, N.; Miyoshi, H.; Ohshima, K.; Nakamura, S. Prognostic Impact of MUM1/IRF4 Expression in Burkitt Lymphoma (BL): A Reappraisal of 88 BL Patients in Japan. Am. J. Surg. Pathol. 2017, 41, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Brady, G.; MacArthur, G.J.; Farrell, P.J. Epstein–Barr Virus and Burkitt Lymphoma. Postgrad. Med. J. 2008, 84, 372–377. [Google Scholar] [CrossRef]
- Pannone, G.; Zamparese, R.; Pace, M.; Pedicillo, M.C.; Cagiano, S.; Somma, P.; Errico, M.E.; Donofrio, V.; Franco, R.; De Chiara, A.; et al. The Role of EBV in the Pathogenesis of Burkitt’s Lymphoma: An Italian Hospital Based Survey. Infect. Agent. Cancer 2014, 9, 34. [Google Scholar] [CrossRef]
- Molina, E.; García-Gutiérrez, L.; Junco, V.; Perez-Olivares, M.; De Yébenes, V.G.; Blanco, R.; Quevedo, L.; Acosta, J.C.; Marín, A.V.; Ulgiati, D.; et al. MYC Directly Transactivates CR2/CD21, the Receptor of the Epstein–Barr Virus, Enhancing the Viral Infection of Burkitt Lymphoma Cells. Oncogene 2023, 42, 3358–3370. [Google Scholar] [CrossRef]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. Lancet 1964, 283, 702–703. [Google Scholar] [CrossRef]
- Rochford, R. Reframing Burkitt Lymphoma: Virology Not Epidemiology Defines Clinical Variants. Ann. Lymphoma 2021, 5, 22. [Google Scholar] [CrossRef]
- Geser, A.; De Thé, G.; Lenoir, G.; Day, N.E.; Williams, E.H. Final Case Reporting from the Ugandan Prospective Study of the Relationship between Ebv and Burktit’s Lymphoma. Int. J. Cancer 1982, 29, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Küppers, R. B Cells under Influence: Transformation of B Cells by Epstein–Barr Virus. Nat. Rev. Immunol. 2003, 3, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Labrecque, L.G.; Lu, Q.; Ong, S.K.; Lampert, I.A.; Kazembe, P.; Molyneux, E.; Broadhead, R.L.; Borgstein, E.; Griffin, B.E. Promiscuous Expression of Epstein-Barr Virus Genes in Burkitt’s Lymphoma from the Central African Country Malawi. Int. J. Cancer 2002, 99, 635–643. [Google Scholar] [CrossRef]
- Fitzsimmons, L.; Kelly, G. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017, 9, 339. [Google Scholar] [CrossRef]
- Nanbo, A. Epstein-Barr Virus RNA Confers Resistance to Interferon-Alpha-Induced Apoptosis in Burkitt’s Lymphoma. EMBO J. 2002, 21, 954–965. [Google Scholar] [CrossRef]
- Lu, J.; Murakami, M.; Verma, S.C.; Cai, Q.; Haldar, S.; Kaul, R.; Wasik, M.A.; Middeldorp, J.; Robertson, E.S. Epstein–Barr Virus Nuclear Antigen 1 (EBNA1) Confers Resistance to Apoptosis in EBV-Positive B-Lymphoma Cells through up-Regulation of Survivin. Virology 2011, 410, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; He, C.; Mao, Z. Epstein-Barr Virus Interactions with the Bcl-2 Protein Family and Apoptosis in Human Tumor Cells. J. Zhejiang Univ. Sci. B 2013, 14, 8–24. [Google Scholar] [CrossRef]
- Grande, B.M.; Gerhard, D.S.; Jiang, A.; Griner, N.B.; Abramson, J.S.; Alexander, T.B.; Allen, H.; Ayers, L.W.; Bethony, J.M.; Bhatia, K.; et al. Genome-Wide Discovery of Somatic Coding and Noncoding Mutations in Pediatric Endemic and Sporadic Burkitt Lymphoma. Blood 2019, 133, 1313–1324. [Google Scholar] [CrossRef]
- Muramatsu, M.; Kinoshita, K.; Fagarasan, S.; Yamada, S.; Shinkai, Y.; Honjo, T. Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme. Cell 2000, 102, 553–563. [Google Scholar] [CrossRef]
- Ruiz, J.F.; Gómez-González, B.; Aguilera, A. AID Induces Double-Strand Breaks at Immunoglobulin Switch Regions and c-MYC Causing Chromosomal Translocations in Yeast THO Mutants. PLoS Genet. 2011, 7, e1002009. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Bunting, S.; Feldhahn, N.; Bothmer, A.; Camps, J.; Deroubaix, S.; McBride, K.M.; Klein, I.A.; Stone, G.; Eisenreich, T.R.; et al. AID Produces DNA Double-Strand Breaks in Non-Ig Genes and Mature B Cell Lymphomas with Reciprocal Chromosome Translocations. Mol. Cell 2009, 36, 631–641. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Bothmer, A.; Callen, E.; Reina-San-Martin, B.; Dorsett, Y.; Difilippantonio, S.; Bolland, D.J.; Chen, H.T.; Corcoran, A.E.; Nussenzweig, A.; et al. AID Is Required for the Chromosomal Breaks in C-Myc That Lead to c-Myc/IgH Translocations. Cell 2008, 135, 1028–1038. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Deroubaix, S.; Feldhahn, N.; Oliveira, T.Y.; Callen, E.; Wang, Q.; Jankovic, M.; Silva, I.T.; Rommel, P.C.; Bosque, D.; et al. Plasmodium Infection Promotes Genomic Instability and AID-Dependent B Cell Lymphoma. Cell 2015, 162, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Thorley-Lawson, D.; Deitsch, K.W.; Duca, K.A.; Torgbor, C. The Link between Plasmodium Falciparum Malaria and Endemic Burkitt’s Lymphoma—New Insight into a 50-Year-Old Enigma. PLOS Pathog. 2016, 12, e1005331. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.C.; Baylot, V.; Felsher, D.W. The MYC Oncogene Is a Global Regulator of the Immune Response. Blood 2018, 131, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC Oncogene —the Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef]
- The Pathogenesis of Burkitt’s Lymphoma. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 1990; pp. 133–270. ISBN 978-0-12-006655-1.
- Zech, L.; Haglund, U.; Nilsson, K.; Klein, G. Characteristic Chromosomal Abnormalities in Biopsies and Lymphoid-cell Lines from Patients with Burkitt and Non-burkitt Lymphomas. Int. J. Cancer 1976, 17, 47–56. [Google Scholar] [CrossRef]
- Cai, Q.; Medeiros, L.J.; Xu, X.; Young, K.H. MYC -Driven Aggressive B-Cell Lymphomas: Biology, Entity, Differential Diagnosis and Clinical Management. Oncotarget 2015, 6, 38591–38616. [Google Scholar] [CrossRef]
- Ott, G.; Rosenwald, A.; Campo, E. Understanding MYC-Driven Aggressive B-Cell Lymphomas: Pathogenesis and Classification. Blood 2013, 122, 3884–3891. [Google Scholar] [CrossRef]
- Joos, S.; Falk, M.H.; Lichter, P.; Haluska, F.G.; Henglein, B.; Lenoir, G.M.; Bornkamm, G.W. Variable Breakpoints in Burkitt Lymphoma Cells with Chromosomal t(8; 14) Translocation Separate c-Myc and the IgH Locus up to Several Hundred Kb. Hum. Mol. Genet. 1992, 1, 625–632. [Google Scholar] [CrossRef]
- Pelicci, P.G.; Knowles, D.M.; Magrath, I.; Dalla-Favera, R. Chromosomal Breakpoints and Structural Alterations of the C-Myc Locus Differ in Endemic and Sporadic Forms of Burkitt Lymphoma. Proc. Natl. Acad. Sci. USA 1986, 83, 2984–2988. [Google Scholar] [CrossRef]
- Sewastianik, T.; Prochorec-Sobieszek, M.; Chapuy, B.; Juszczyński, P. MYC Deregulation in Lymphoid Tumors: Molecular Mechanisms, Clinical Consequences and Therapeutic Implications. Biochim. Biophys. Acta BBA-Rev. Cancer 2014, 1846, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Zayac, A.S.; Landsburg, D.J.; Hughes, M.E.; Bock, A.M.; Nowakowski, G.S.; Ayers, E.C.; Girton, M.; Hu, M.; Beckman, A.K.; Li, S.; et al. High-Grade B-Cell Lymphoma, Not Otherwise Specified: A Multi-Institutional Retrospective Study. Blood Adv. 2023, 7, 6381–6394. [Google Scholar] [CrossRef] [PubMed]
- Maybury, B.D.; James, L.; Phillips, N.; Venkatadasari, I.; Qureshi, I.; Riley, J.; Talbot, G.; Moosai, S.; Giles, H.; Chadderton, N.; et al. Testing for t(3;8) in MYC/BCL6-Rearranged Large B-Cell Lymphoma Identifies a High-Risk Subgroup with Inferior Survival. Blood 2024, 144, 113–117. [Google Scholar] [CrossRef]
- Chong, L.C.; Ben-Neriah, S.; Slack, G.W.; Freeman, C.; Ennishi, D.; Mottok, A.; Collinge, B.; Abrisqueta, P.; Farinha, P.; Boyle, M.; et al. High-Resolution Architecture and Partner Genes of MYC Rearrangements in Lymphoma with DLBCL Morphology. Blood Adv. 2018, 2, 2755–2765. [Google Scholar] [CrossRef] [PubMed]
- Hilton, L.K.; Collinge, B.; Ben-Neriah, S.; Alduaij, W.; Shaalan, H.; Weng, A.P.; Cruz, M.; Slack, G.W.; Farinha, P.; Miyata-Takata, T.; et al. Motive and Opportunity: MYC Rearrangements in High-Grade B-Cell Lymphoma with MYC and BCL2 Rearrangements (an LLMPP Study). Blood 2024, 144, 525–540. [Google Scholar] [CrossRef]
- Hummel, M.; Bentink, S.; Berger, H.; Klapper, W.; Wessendorf, S.; Barth, T.F.E.; Bernd, H.-W.; Cogliatti, S.B.; Dierlamm, J.; Feller, A.C.; et al. A Biologic Definition of Burkitt’s Lymphoma from Transcriptional and Genomic Profiling. N. Engl. J. Med. 2006, 354, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Weltgesundheitsorganisation. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. In World Health Organization Classification of Tumours, Revised 4th ed.; Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Eds.; International Agency for Research on Cancer: Lyon, France, 2017; ISBN 978-92-832-4494-3. [Google Scholar]
- Harris, A.W.; Pinkert, C.A.; Crawford, M.; Langdon, W.Y.; Brinster, R.L.; Adams, J.M. The E Mu-Myc Transgenic Mouse. A Model for High-Incidence Spontaneous Lymphoma and Leukemia of Early B Cells. J. Exp. Med. 1988, 167, 353–371. [Google Scholar] [CrossRef]
- Thomas, N.; Dreval, K.; Gerhard, D.S.; Hilton, L.K.; Abramson, J.S.; Ambinder, R.F.; Barta, S.; Bartlett, N.L.; Bethony, J.; Bhatia, K.; et al. Genetic Subgroups Inform on Pathobiology in Adult and Pediatric Burkitt Lymphoma. Blood 2023, 141, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Wilke, A.C.; Doebele, C.; Zindel, A.; Lee, K.S.; Rieke, S.A.; Ceribelli, M.; Comoglio, F.; Phelan, J.D.; Wang, J.Q.; Pikman, Y.; et al. SHMT2 Inhibition Disrupts the TCF3 Transcriptional Survival Program in Burkitt Lymphoma. Blood 2022, 139, 538–553. [Google Scholar] [CrossRef]
- Schmitz, R.; Young, R.M.; Ceribelli, M.; Jhavar, S.; Xiao, W.; Zhang, M.; Wright, G.; Shaffer, A.L.; Hodson, D.J.; Buras, E.; et al. Burkitt Lymphoma Pathogenesis and Therapeutic Targets from Structural and Functional Genomics. Nature 2012, 490, 116–120. [Google Scholar] [CrossRef]
- McMahon, S.B. MYC and the Control of Apoptosis. Cold Spring Harb. Perspect. Med. 2014, 4, a014407. [Google Scholar] [CrossRef]
- Komano, J.; Sugiura, M.; Takada, K. Epstein-Barr Virus Contributes to the Malignant Phenotype and to Apoptosis Resistance in Burkitt’s Lymphoma Cell Line Akata. J. Virol. 1998, 72, 9150–9156. [Google Scholar] [CrossRef]
- Cairo, M.S. TP3 Binding Domain Mutations Are Bad News in Burkitt Lymphoma. Haematologica 2024, 109, 2775–2777. [Google Scholar] [CrossRef]
- Wilda, M.; Bruch, J.; Harder, L.; Rawer, D.; Reiter, A.; Borkhardt, A.; Woessmann, W. Inactivation of the ARF–MDM-2–P53 Pathway in Sporadic Burkitt’s Lymphoma in Children. Leukemia 2004, 18, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, S.A.K.; Subramanyan, L.V.; Lim, W.K.; Udayappan, U.K.; Wang, M.; Casey, P.J. The Emerging Roles of Gα12/13 Proteins on the Hallmarks of Cancer in Solid Tumors. Oncogene 2022, 41, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Healy, J.A.; Nugent, A.; Rempel, R.E.; Moffitt, A.B.; Davis, N.S.; Jiang, X.; Shingleton, J.R.; Zhang, J.; Love, C.; Datta, J.; et al. GNA13 Loss in Germinal Center B Cells Leads to Impaired Apoptosis and Promotes Lymphoma in Vivo. Blood 2016, 127, 2723–2731. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, J.R.; Schmitz, R.; Green, J.A.; Xiao, W.; Larsen, A.B.; Braun, S.E.; An, J.; Xu, Y.; Rosenwald, A.; Ott, G.; et al. Loss of Signalling via Gα13 in Germinal Centre B-Cell-Derived Lymphoma. Nature 2014, 516, 254–258. [Google Scholar] [CrossRef]
- Deng, Q.; Lakra, P.; Gou, P.; Yang, H.; Meydan, C.; Teater, M.; Chin, C.; Zhang, W.; Dinh, T.; Hussein, U.; et al. SMARCA4 Is a Haploinsufficient B Cell Lymphoma Tumor Suppressor That Fine-Tunes Centrocyte Cell Fate Decisions. Cancer Cell 2024, 42, 605–622.e11. [Google Scholar] [CrossRef] [PubMed]
- Giulino-Roth, L.; Wang, K.; MacDonald, T.Y.; Mathew, S.; Tam, Y.; Cronin, M.T.; Palmer, G.; Lucena-Silva, N.; Pedrosa, F.; Pedrosa, M.; et al. Targeted Genomic Sequencing of Pediatric Burkitt Lymphoma Identifies Recurrent Alterations in Antiapoptotic and Chromatin-Remodeling Genes. Blood 2012, 120, 5181–5184. [Google Scholar] [CrossRef]
- Thomas, N.; García-Prieto, C.A.; Dreval, K.; Hilton, L.K.; Abramson, J.S.; Bartlett, N.L.; Bethony, J.; Bowen, J.; Bryan, A.C.; Casper, C.; et al. DNA Methylation Epitypes of Burkitt Lymphoma with Distinct Molecular and Clinical Features. Blood Cancer Discov. 2025, 6, 325–342. [Google Scholar] [CrossRef]
- Smeland, S.; Blystad, A.K.; Kvaløy, S.O.; Ikonomou, I.M.; Delabie, J.; Kvalheim, G.; Hammerstrøm, J.; Lauritzsen, G.F.; Holte, H. Treatment of Burkitt’s/Burkitt-like Lymphoma in Adolescents and Adults: A 20-Year Experience from the Norwegian Radium Hospital with the Use of Three Successive Regimens. Ann. Oncol. 2004, 15, 1072–1078. [Google Scholar] [CrossRef]
- Crombie, J.; LaCasce, A. The Treatment of Burkitt Lymphoma in Adults. Blood 2021, 137, 743–750. [Google Scholar] [CrossRef]
- De Vita, V.T.; Hubbard, S.M.; Longo, D.L. The Chemotherapy of Lymphomas: Looking Back, Moving Forward--the Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 1987, 47, 5810–5824. [Google Scholar]
- McMaster, M.L.; Greer, J.P.; Greco, F.A.; Johnson, D.H.; Wolff, S.N.; Hainsworth, J.D. Effective Treatment of Small-Noncleaved-Cell Lymphoma with High-Intensity, Brief-Duration Chemotherapy. J. Clin. Oncol. 1991, 9, 941–946. [Google Scholar] [CrossRef]
- Magrath, I.; Adde, M.; Shad, A.; Venzon, D.; Seibel, N.; Gootenberg, J.; Neely, J.; Arndt, C.; Nieder, M.; Jaffe, E.; et al. Adults and Children with Small Non-Cleaved-Cell Lymphoma Have a Similar Excellent Outcome When Treated with the Same Chemotherapy Regimen. J. Clin. Oncol. 1996, 14, 925–934. [Google Scholar] [CrossRef]
- Mead, G.M.; Sydes, M.R.; Walewski, J.; Grigg, A.; Hatton, C.S.; Norbert, P.; Guarnaccia, C.; Lewis, M.S.; McKendrick, J.; Stenning, S.P.; et al. An International Evaluation of CODOX-M and CODOX-M Alternating with IVAC in Adult Burkitt’s Lymphoma: Results of United Kingdom Lymphoma Group LY06 Study. Ann. Oncol. 2002, 13, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Mead, G.M.; Barrans, S.L.; Qian, W.; Walewski, J.; Radford, J.A.; Wolf, M.; Clawson, S.M.; Stenning, S.P.; Yule, C.L.; Jack, A.S. A Prospective Clinicopathologic Study of Dose-Modified CODOX-M/IVAC in Patients with Sporadic Burkitt Lymphoma Defined Using Cytogenetic and Immunophenotypic Criteria (MRC/NCRI LY10 Trial). Blood 2008, 112, 2248–2260. [Google Scholar] [CrossRef] [PubMed]
- Lacasce, A.; Howard, O.; Li, S.; Fisher, D.; Weng, A.; Neuberg, D.; Shipp, M. Modified Magrath Regimens for Adults with Burkitt and Burkitt-Like Lymphomas: Preserved Efficacy with Decreased Toxicity. Leuk. Lymphoma 2004, 45, 761–767. [Google Scholar] [CrossRef]
- Barnes, J.A.; LaCasce, A.S.; Feng, Y.; Toomey, C.E.; Neuberg, D.; Michaelson, J.S.; Hochberg, E.P.; Abramson, J.S. Evaluation of the Addition of Rituximab to CODOX-M/IVAC for Burkitt’s Lymphoma: A Retrospective Analysis. Ann. Oncol. 2011, 22, 1859–1864. [Google Scholar] [CrossRef]
- Evens, A.M.; Carson, K.R.; Kolesar, J.; Nabhan, C.; Helenowski, I.; Islam, N.; Jovanovic, B.; Barr, P.M.; Caimi, P.F.; Gregory, S.A.; et al. A Multicenter Phase II Study Incorporating High-Dose Rituximab and Liposomal Doxorubicin into the CODOX-M/IVAC Regimen for Untreated Burkitt’s Lymphoma. Ann. Oncol. 2013, 24, 3076–3081. [Google Scholar] [CrossRef]
- Noy, A.; Lee, J.Y.; Cesarman, E.; Ambinder, R.; Baiocchi, R.; Reid, E.; Ratner, L.; Wagner-Johnston, N.; Kaplan, L. AMC 048: Modified CODOX-M/IVAC-Rituximab Is Safe and Effective for HIV-Associated Burkitt Lymphoma. Blood 2015, 126, 160–166. [Google Scholar] [CrossRef]
- Diviné, M.; Casassus, P.; Koscielny, S.; Bosq, J.; Sebban, C.; Le Maignan, C.; Stamattoulas, A.; Dupriez, B.; Raphaël, M.; Pico, J.-L.; et al. Burkitt Lymphoma in Adults: A Prospective Study of 72 Patients Treated with an Adapted Pediatric LMB Protocol. Ann. Oncol. 2005, 16, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.A.; Cortes, J.; O’Brien, S.; Pierce, S.; Faderl, S.; Albitar, M.; Hagemeister, F.B.; Cabanillas, F.F.; Murphy, S.; Keating, M.J.; et al. Hyper-CVAD Program in Burkitt’s-Type Adult Acute Lymphoblastic Leukemia. J. Clin. Oncol. 1999, 17, 2461. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.A.; Faderl, S.; O’Brien, S.; Bueso-Ramos, C.; Cortes, J.; Garcia-Manero, G.; Giles, F.J.; Verstovsek, S.; Wierda, W.G.; Pierce, S.A.; et al. Chemoimmunotherapy with hyper-CVAD plus Rituximab for the Treatment of Adult Burkitt and Burkitt-type Lymphoma or Acute Lymphoblastic Leukemia. Cancer 2006, 106, 1569–1580. [Google Scholar] [CrossRef]
- Hoelzer, D.; Walewski, J.; Döhner, H.; Viardot, A.; Hiddemann, W.; Spiekermann, K.; Serve, H.; Dührsen, U.; Hüttmann, A.; Thiel, E.; et al. Improved Outcome of Adult Burkitt Lymphoma/Leukemia with Rituximab and Chemotherapy: Report of a Large Prospective Multicenter Trial. Blood 2014, 124, 3870–3879. [Google Scholar] [CrossRef] [PubMed]
- Rizzieri, D.A.; Johnson, J.L.; Niedzwiecki, D.; Lee, E.J.; Vardiman, J.W.; Powell, B.L.; Barcos, M.; Bloomfield, C.D.; Schiffer, C.A.; Peterson, B.A.; et al. Intensive Chemotherapy with and without Cranial Radiation for Burkitt Leukemia and Lymphoma: Final Results of Cancer and Leukemia Group B Study 9251. Cancer 2004, 100, 1438–1448. [Google Scholar] [CrossRef]
- Rizzieri, D.A.; Johnson, J.L.; Byrd, J.C.; Lozanski, G.; Blum, K.A.; Powell, B.L.; Shea, T.C.; Nattam, S.; Hoke, E.; Cheson, B.D.; et al. Improved Efficacy Using Rituximab and Brief Duration, High Intensity Chemotherapy with Filgrastim Support for Burkitt or Aggressive Lymphomas: Cancer and Leukemia Group B Study 10 002. Br. J. Haematol. 2014, 165, 102–111. [Google Scholar] [CrossRef]
- Ribrag, V.; Koscielny, S.; Bosq, J.; Leguay, T.; Casasnovas, O.; Fornecker, L.-M.; Recher, C.; Ghesquieres, H.; Morschhauser, F.; Girault, S.; et al. Rituximab and Dose-Dense Chemotherapy for Adults with Burkitt’s Lymphoma: A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet 2016, 387, 2402–2411. [Google Scholar] [CrossRef]
- Ribera, J.-M.; Morgades, M.; Garcia-Calduch, O.; Sirvent, M.; Buendia, B.; Cervera, M.; Luzardo, H.; Hernandez-Rivas, J.-M.; Sitges, M.; Garcia-Cadenas, I.; et al. Feasibility and Outcomes after Dose Reduction of Immunochemotherapy in Young Adults with Burkitt Lymphoma and Leukemia: Results of the BURKIMAB14 Trial. Haematologica 2023, 109, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, K.; Little, R.F.; Pittaluga, S.; Grant, N.; Wayne, A.S.; Carrasquillo, J.A.; Steinberg, S.M.; Yarchoan, R.; Jaffe, E.S.; Wilson, W.H. The Role of Tumor Histogenesis, FDG-PET, and Short-Course EPOCH with Dose-Dense Rituximab (SC-EPOCH-RR) in HIV-Associated Diffuse Large B-Cell Lymphoma. Blood 2010, 115, 3017–3024. [Google Scholar] [CrossRef]
- Dunleavy, K.; Fanale, M.A.; Abramson, J.S.; Noy, A.; Caimi, P.F.; Pittaluga, S.; Parekh, S.; Lacasce, A.; Hayslip, J.W.; Jagadeesh, D.; et al. Dose-Adjusted EPOCH-R (Etoposide, Prednisone, Vincristine, Cyclophosphamide, Doxorubicin, and Rituximab) in Untreated Aggressive Diffuse Large B-Cell Lymphoma with MYC Rearrangement: A Prospective, Multicentre, Single-Arm Phase 2 Study. Lancet Haematol. 2018, 5, e609–e617. [Google Scholar] [CrossRef]
- Sariban, E.; Edwards, B.; Janus, C.; Magrath, I. Central Nervous System Involvement in American Burkitt’s Lymphoma. J. Clin. Oncol. 1983, 1, 677–681. [Google Scholar] [CrossRef]
- Boehme, V.; Zeynalova, S.; Kloess, M.; Loeffler, M.; Kaiser, U.; Pfreundschuh, M.; Schmitz, N. Incidence and Risk Factors of Central Nervous System Recurrence in Aggressive Lymphoma—A Survey of 1693 Patients Treated in Protocols of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann. Oncol. 2007, 18, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Roschewski, M. Be Mindful of the Central Nervous System in Burkitt Lymphoma. Haematologica 2021, 106, 1785–1786. [Google Scholar] [CrossRef]
- Cairo, M.S.; Gerrard, M.; Sposto, R.; Auperin, A.; Pinkerton, C.R.; Michon, J.; Weston, C.; Perkins, S.L.; Raphael, M.; McCarthy, K.; et al. Results of a Randomized International Study of High-Risk Central Nervous System B Non-Hodgkin Lymphoma and B Acute Lymphoblastic Leukemia in Children and Adolescents. Blood 2007, 109, 2736–2743. [Google Scholar] [CrossRef] [PubMed]
- Simkins, A.; Dunleavy, K. Tackling Burkitt When It’s Back. Blood 2020, 135, 1078–1080. [Google Scholar] [CrossRef]
- Kim, H.; Park, E.S.; Lee, S.H.; Koo, H.H.; Kim, H.S.; Lyu, C.J.; Jun, S.E.; Lim, Y.T.; Baek, H.J.; Kook, H.; et al. Clinical Outcome of Relapsed or Refractory Burkitt Lymphoma and Mature B-Cell Lymphoblastic Leukemia in Children and Adolescents. Cancer Res. Treat. 2014, 46, 358–365. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.M.; Ko, H.; Khoury, J.D.; Ravandi, F.; Thomas, D.A.; Garcia-Manero, G.; Khouri, M.; Cortes, J.E.; Wierda, W.G.; et al. Outcomes of Adults with Relapsed or Refractory Burkitt and High-Grade B-Cell Leukemia/Lymphoma. Am. J. Hematol. 2017, 92, E114–E117. [Google Scholar] [CrossRef] [PubMed]
- Maramattom, L.V.; Hari, P.N.; Burns, L.J.; Carreras, J.; Arcese, W.; Cairo, M.S.; Costa, L.J.; Fenske, T.S.; Lill, M.; Freytes, C.O.; et al. Autologous and Allogeneic Transplantation for Burkitt Lymphoma Outcomes and Changes in Utilization: A Report from the Center for International Blood and Marrow Transplant Research. Biol. Blood Marrow Transplant. 2013, 19, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Sweetenham, J.W.; Pearce, R.; Taghipour, G.; Blaise, D.; Gisselbrecht, C.; Goldstone, A.H. Adult Burkitt’s and Burkitt-like Non-Hodgkin’s Lymphoma--Outcome for Patients Treated with High-Dose Therapy and Autologous Stem-Cell Transplantation in First Remission or at Relapse: Results from the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 1996, 14, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Avigdor, A.; Shouval, R.; Jacoby, E.; Davidson, T.; Shimoni, A.; Besser, M.; Nagler, A. CAR T Cells Induce a Complete Response in Refractory Burkitt Lymphoma. Bone Marrow Transplant. 2018, 53, 1583–1585. [Google Scholar] [CrossRef]
- Seitter, S.J.; McClelland, P.H.; Ahlman, M.A.; Goff, S.L.; Yang, J.C.; McIntyre, L.; Rosenberg, S.A.; Kochenderfer, J.N.; Brudno, J.N. Durable Remissions in Two Adult Patients with Burkitt Lymphoma Following Anti-CD19 CAR T-Cell Therapy: A Single Center Experience. Leuk. Lymphoma 2022, 63, 2469–2473. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, G.; Liu, Y.; Tu, S.; Xue, B.; Zhong, Y.; Zhang, C.; Zhou, L.; Ye, S.; Lu, Y.; et al. CAR T-Cell Therapy Combined with Autologous Hematopoietic Cell Transplantation in Patients with Refractory/Relapsed Burkitt Lymphoma. Curr. Res. Transl. Med. 2025, 73, 103477. [Google Scholar] [CrossRef]
- Samples, L.; Sadrzadeh, H.; Frigault, M.J.; Jacobson, C.A.; Hamadani, M.; Gurumurthi, A.; Strati, P.; Shouval, R.; Noy, A.; Riedell, P.A.; et al. Outcomes among Adult Recipients of CAR T-Cell Therapy for Burkitt Lymphoma. Blood 2025, 145, 2762–2767. [Google Scholar] [CrossRef]
- Almeida, P.M.; Relander, T.; Linden, O. Salvage Therapy for Burkitt Lymphoma with Glofitamab: A Case Report. Leuk. Lymphoma 2025, 66, 952–955. [Google Scholar] [CrossRef]
- Chamba, C.; Mbulaiteye, S.M.; Balandya, E.; Schuh, A. Clinical Application of Circulating Cell-Free Lymphoma DNA for Fast and Precise Diagnosis of Burkitt Lymphoma: Precision Medicine for Sub-Saharan Africa. Camb. Prisms Precis. Med. 2023, 1, e13. [Google Scholar] [CrossRef]
- Atallah-Yunes, S.A.; Habermann, T.M.; Khurana, A. Targeted Therapy in Burkitt Lymphoma: Small Molecule Inhibitors under Investigation. Br. J. Haematol. 2024, 204, 2165–2172. [Google Scholar] [CrossRef]
- Bhatti, M.; Ippolito, T.; Mavis, C.; Gu, J.; Cairo, M.S.; Lim, M.S.; Hernandez-Ilizaliturri, F.; Barth, M.J. Pre-Clinical Activity of Targeting the PI3K/Akt/mTOR Pathway in Burkitt Lymphoma. Oncotarget 2018, 9, 21820–21830. [Google Scholar] [CrossRef] [PubMed]
Burkitt Lymphoma | |||
---|---|---|---|
Sporadic BL (sBL) | Endemic BL (eBL) | Immunodeficiency-Associated BL (ID-BL) | |
Epidemiology | Worldwide | Plasmodium falciparum regions; specifically equatorial Africa and Papua New Guinea | Worldwide |
Incidence | 2–3/1,000,000 adults per year | 4–5/100,000 per year | 6/1000 patients with HIV |
Age | Bimodal: Adolescents and AYA, ~75 years of age | Median age: 4–7 years of age | Median age: 40–45 years |
Gender (M:F) | 3:1 | 2:1 | 1:1 |
Clinical Presentation | Abdominal involvement, especially the ileocecal region, occasionally with extra-nodal disease | Jaw and peri-orbital masses. Also involves the abdomen (mesentery and retroperitoneum), gonads, and kidneys. | Nodal disease, often with extensive involvement of the GI tract and bone marrow. CD4 often >200 cells/mm3 |
CNS involvement | 5–20%; leptomeningeal disease, cranial nerve palsies | <10%; cranial nerve palsies | 20–30% at diagnosis |
BM involvement | 20–40% | 10–20% | Frequent |
Histopathology | Sheets of monotonous intermediate-sized cells with a “starry sky” appearance. Prominent nucleoli. Typically expressing CD19, CD20, CD22, CD79a, and PAX5 and positive for GC markers CD10 and BCL6.Commonly negative for CD5, CD23, BCL2, MUM1, and TdT. Ki-67 often >95%. | ||
EBV positivity | 10–30% | >95% | 25–45% |
Chromosomal translocations | t(8;14)(q24;q32) ~80% (>endemic BL) t(2;8)(p12;q24) ~15% (>sporadic BL) t(8;22)(q24;q11) ~5% (>sporadic BL) | ||
Genomics | ID3-TCF3 axis: 70–73% CCND3: 38–51% TP53: ~50% GNA13/P2RY8: ~25% Other recurrent mutations: SMARCA4, FBXO11, and HIST1H2BK | ID3-TCF3 axis: 30–40% CCND3: 1.8–5% TP53: 15–30% GNA13/P2RY8: 4–6% Other recurrent mutations: ARID1A, IGLL5, DDX3X, and BCL6 | ID3-TCF3 axis: 67% CCND3: 67% TP53: 40–70% GNA13/P2RY8: ~25% Other recurrent mutations: BACH2, IGLL5, and DNMT1 |
Study | Study Type | Regimen | Disease | No. of Patients | Median Age, Range (Years) | Ann Arbor Stage 3–4 | Outcome |
---|---|---|---|---|---|---|---|
Dose Intensive Regimens | |||||||
Magrath et al. [90] | Phase 2 | CODOX-M/IVAC | BL/ B-ALL | 20 | 25 (18–59) | 70% | 2-EFS 100% |
Mead et al. [91] | Phase 2 | Risk Adapted CODOX-M/IVAC | BL | 52 Low-risk 12 High-risk 40 | 35 (15–60) | 61% | Low-risk 2-EFS 83.3%, 2-OS 81.5% High-risk 2-EFS 59.5%, 2-OS 69.9% |
Mead et al. [92] | Phase 2 | Modified CODOX-M/IVAC | BL | 53 | 37 (17–76) | 76% | 2-PFS 64% (95% CI 51–77%) 2-OS 67% (95% CI 54–80%) |
Divine et al. [97] | Phase 2 | Modified LMB95 | BL | 72 | 33 (18–76) | 67% | 2-EFS 65% (95% CI 54–77%) 2-OS 70% (95% CI 59–81%) |
Thomas et al. [98] | Phase 2 | HyperCVAD | BL/ B-ALL | 26 | 58 (17–79) | 3-CCR 61% (±11%) 3-OS 49% (±11%) | |
Thomas et al. [99] | Phase 2 | HyperCVAD+ Rituximab | BL/B-ALL | 31 | 46 (17–77) | 3-EFS 80% 3-OS 89% | |
Evens et al. [95] | Phase 2 | Modified CODOX-M/IVAC + Rituximab | BL | 25 HIV+ 4 HIV− 21 | 44 (23–70) | 80% | Overall: 2-PFS 80%, 2-OS 84% High-risk: 2-PFS 76%, 2-OS 81% |
Noy et al. [96] | Phase 2 | Modified CODOX-M/IVAC + Rituximab | HIV+ BL | 34 | 42 (19–55) | 74% | 1-PFS 69% (95% CI 51–82%) 1-OS 72% (95% CI 53–85%) |
Hoelzer et al. [100] | Phase 2 GMALL-B-ALL/NHL2002 | B-NHL83 + Rituximab | BL/ B-ALL | 363 | 42 (16–85) | 71% | 5-PFS 75% ± 3% 5-OS 80% ± 2% |
Rizzieri et al. [101] | Phase 2 | CALGB9251 ± Cranial RT | BL/ B-ALL | Cohort 1 52 Cohort 2 40 | 44 (18–72) 50 (17–78) | 87% 93% | Cranial RT: 3-EFS 52%, 2-OS 54% No cranial RT: 3-EFS 45%, 3-OS 50% |
Rizzieri et al. [102] | Phase 2 | CALGB1002 + Rituximab | BL/B-ALL | 105 | 43 (19–79) | 49% | 2-EFS 79% (95% CI 66–88%) 2-OS 81% (95% CI 68–89%) |
Ribrag et al. [103] | Phase 3 | LMB ± Rituximab | BL | 257 | 47 (18–72) | 74% | Rituximab: 3-EFS 75%, 3-OS 83% No Rituximab: 3-EFS 62%, 3-OS 70% |
Ribera et al. [104] | Phase 2 Burkimab14 | Modified LMB + Rituximab | BL/ B-ALL | 107 HIV+ 24 HIV− 83 | 51 (18–80) | 73% | 4-DFS 86% (95% CI 76–92%) 4-OS 73% (95% CI 63–81%) |
Reduced Intensity Regimens | |||||||
Dunleavy et al. [11] | Phase 2 | DA-EPOCH-R | BL | 19 | 25 (15–88) | 58% | 7-FFP 95% (95% CI 75–99%) 7-OS 100% (95% CI 82–100%) |
Dunleavy et al. [105] | Phase 2 | SC-EPOCH-RR | HIV+ BL | 11 | 44 (24–60) | 82% | 6-FFP 100% (95% CI 72–100%) 6-OS 90% (95% CI 60–98%) |
Roschewski et al. [13] | Phase 2 | Risk Adapted DA-EPOCH-R | BL/ HIV+ BL | 113 HIV+ 28 HIV− 85 | 49 (18–86) | 79% | Low-risk 4-EFS 100%, 4-OS 100% High-risk 4-EFS 82.1%, 4-OS 84.9% |
Chamuleau et al. [12] | Phase 3 HOVON/SAKK 127 | R-CODOX-M/IVAC vs. DA-EPOCH-R | BL/ HIV+ BL | 84 HIV+ 9 HIV− 75 | 52 (18–75) | 90% | 2-PFS 76% vs. 70%; HR 1.47 (95% CI 0.66–3.28) 2-OS 76% vs. 75%; HR 1.21 (95% CI 0.53–2.76) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lap, C.J.; Dunleavy, K. Novel Molecular Insights and Evolution of Less Toxic Therapeutic Strategies in Burkitt Lymphoma. Cancers 2025, 17, 3372. https://doi.org/10.3390/cancers17203372
Lap CJ, Dunleavy K. Novel Molecular Insights and Evolution of Less Toxic Therapeutic Strategies in Burkitt Lymphoma. Cancers. 2025; 17(20):3372. https://doi.org/10.3390/cancers17203372
Chicago/Turabian StyleLap, Coen J., and Kieron Dunleavy. 2025. "Novel Molecular Insights and Evolution of Less Toxic Therapeutic Strategies in Burkitt Lymphoma" Cancers 17, no. 20: 3372. https://doi.org/10.3390/cancers17203372
APA StyleLap, C. J., & Dunleavy, K. (2025). Novel Molecular Insights and Evolution of Less Toxic Therapeutic Strategies in Burkitt Lymphoma. Cancers, 17(20), 3372. https://doi.org/10.3390/cancers17203372