Finding the Sweet Spot for the Treatment of B Cell Malignancies
Simple Summary
Abstract
1. Introduction
2. Aberrant Glycan Profiles in B Cell Malignancies
2.1. BCR-Stimulation via High Mannose N-Glycans in B Cell Lymphoma
2.1.1. Acquired Highly Mannosylated N-Glycan Motifs in the BCR of Lymphoma Cells
2.1.2. Highly Mannosylated N-Glycans Activate BCR-Signaling by Interacting with DC-SIGN
2.2. The Glycosphingolipid Globotriasosylceramide (Gb3/CD77) Is Highly Expressed on Burkitt’s Lymphoma Cells
2.3. Hypersialylation Negatively Impacts Survival of B Cell Lymphoma Patients
3. Finding the Sweet Spot for the Treatment of B Cell Malignancies
3.1. Therapeutic Targeting of the BCR in B Cell Malignancies
3.1.1. Targeting High-Mannose and Other Auto-Reactive BCRs
3.1.2. Targeting BCR/CD45 with Galectins
3.2. Targeting Gb3/CD77 to Treat Burkitt’s Lymphoma
3.2.1. The Lectin ‘Verotoxin’ and Anti-Gb3/CD77 Antibodies
3.2.2. Other Gb3/CD77-Specific Lectins
3.3. Other Glycosylation-Related Targets to Treat B Cell Malignancies
3.3.1. Modulating Malignant B Cell Adhesion by Targeting Glycosylation
3.3.2. Targeting N- and O-Glycosylation Pathways to Inhibit Malignant B Cell Survival
3.3.3. Glycan-Focused Chimeric Antigen Receptor (CAR) T Cell Therapy
3.3.4. Improving Therapy by Targeting Sialic Acids
4. Perspectives: Clinical Translation of Glycan-Targeting in B Cell Malignancies
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Activated B Cell-like |
Ac53FaxNeu5Ac | 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me |
ADCC | Antibody-Dependent Cell-Mediated Cytotoxicity |
ADCP | Antibody-Dependent Cell-Mediated Phagocytosis |
AIDS | Acquired Immunodeficiency Syndrome |
ALL | Acute Lymphoblastic Leukemia |
Asn | Asparagine |
BCR | B cell Receptor |
BL | Burkitt’s Lymphoma |
CAR | Chimeric Antigen Receptor |
CDR | Complementarity-Determining Region |
CLL | Chronic Lymphocytic Leukemia |
ConA | Concanavalin A |
CSR | Chimeric Switch Receptor |
DC-SIGN | Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Non-integrin |
DLBCL | Diffuse Large B Cell Lymphoma |
FL | Follicular Lymphoma |
GalNAc | N-acetylgalactosamine |
GC | Germinal Center |
GCB | Germinal Center B Cell-Like |
GlcNAc | N-acetylglucosamine |
HL | Hodgkin’s Lymphoma |
Ig | Immunoglobulin |
MBL | Mannose-Binding Lectin |
MCL | Mantle Cell Lymphoma |
moDC | Monocyte-Derived Dendritic Cells |
MR | Mannose Receptor |
NEU | Neuraminidase |
NHL | Non-Hodgkin Lymphoma |
NK | Natural Killer |
OGT | O-GlcNAc Transferase |
PCFCL | Primary Cutaneous Follicle Center Lymphoma |
PCNSL | Primary Central Nervous System Lymphoma |
PD-L1 | Programmed Dead Ligand 1 |
PNA | Peanut Agglutinin |
PS | Phosphatidyl Serine |
PTLD | Post-Transplant Lymphoproliferative Disorders |
PVRL | Primary Vitreoretinal Lymphoma |
RTX | Rituximab |
Ser | Serine |
SLL | Small Lymphocytic Lymphoma |
Thr | Threonine |
References
- Jiménez, C.; Garrote-de-Barros, A.; López-Portugués, C.; Hernández-Sánchez, M.; Díez, P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int. J. Mol. Sci. 2024, 25, 4644. [Google Scholar] [CrossRef] [PubMed]
- Deeb, S.J.; Tyanova, S.; Hummel, M.; Schmidt-Supprian, M.; Cox, J.; Mann, M. Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles. Mol. Cell. Proteom. 2015, 14, 2947–2960. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Nijland, M.; Rutgers, B.; Veenstra, R.; Langendonk, M.; van der Meeren, L.E.; Kluin, P.M.; Li, G.; Diepstra, A.; Chiu, J.-F.; et al. Proteomics Based Identification of Proteins with Deregulated Expression in B Cell Lymphomas. PLoS ONE 2016, 11, e0146624. [Google Scholar] [CrossRef]
- Ejtehadifar, M.; Zahedi, S.; Gameiro, P.; Cabeçadas, J.; Rodriguez, M.S.; da Silva, M.G.; Beck, H.C.; Matthiesen, R.; Carvalho, A.S. Proteome alterations in peripheral immune cells of DLBCL patients and evidence of cancer extracellular vesicles involvement. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167842. [Google Scholar] [CrossRef]
- Stranneheim, H.; Orre, L.M.; Lehtiö, J.; Flygare, J. A comparison between protein profiles of B cell subpopulations and mantle cell lymphoma cells. Proteome Sci. 2009, 7, 43. [Google Scholar] [CrossRef]
- Johnston, H.E.; Carter, M.J.; Larrayoz, M.; Clarke, J.; Garbis, S.D.; Oscier, D.; Strefford, J.C.; Steele, A.J.; Walewska, R.; Cragg, M.S. Proteomics Profiling of CLL Versus Healthy B-cells Identifies Putative Therapeutic Targets and a Subtype-independent Signature of Spliceosome Dysregulation. Mol. Cell. Proteom. 2018, 17, 776–791. [Google Scholar] [CrossRef] [PubMed]
- Ramberger, E.; Sapozhnikova, V.; Ng, Y.L.D.; Dolnik, A.; Ziehm, M.; Popp, O.; Sträng, E.; Kull, M.; Grünschläger, F.; Krüger, J.; et al. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. Nat. Cancer 2024, 5, 1267–1284. [Google Scholar] [CrossRef]
- He, M.; Zhou, X.; Wang, X. Glycosylation: Mechanisms, biological functions and clinical implications. Signal Transduct. Target. Ther. 2024, 9, 194. [Google Scholar] [CrossRef]
- Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J. Essentials of Glycobiology, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2015. [Google Scholar]
- Fink, U.; Heywang, S.; Mayr, B.; Berger, H. Subtracted versus non-subtracted digital imaging in peripheral angiography. Eur. J. Radiol. 1989, 9, 236–240. [Google Scholar]
- Linder, A.T.; Schmidt, M.; Hitschfel, J.; Abeln, M.; Schneider, P.; Gerardy-Schahn, R.; Münster-Kühnel, A.K.; Nitschke, L. Sialic acids on B cells are crucial for their survival and provide protection against apoptosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2201129119. [Google Scholar] [CrossRef]
- Giovannone, N.; Antonopoulos, A.; Liang, J.; Sweeney, J.G.; Kudelka, M.R.; King, S.L.; Lee, G.S.; Cummings, R.D.; Dell, A.; Barthel, S.R.; et al. Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans. Front. Immunol. 2018, 9, 2857. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, J.; Lubman, D.M.; Gao, C. Aberrant glycosylation and cancer biomarker discovery: A promising and thorny journey. Clin. Chem. Lab. Med. 2019, 57, 407–416. [Google Scholar] [CrossRef] [PubMed]
- de Haan, N.; Falck, D.; Wuhrer, M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020, 30, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.E.; Ngo, V.N.; Lenz, G.; Tolar, P.; Young, R.M.; Romesser, P.B.; Kohlhammer, H.; Lamy, L.; Zhao, H.; Yang, Y.; et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010, 463, 88–92. [Google Scholar] [CrossRef]
- Young, R.M.; Wu, T.; Schmitz, R.; Dawood, M.; Xiao, W.; Phelan, J.D.; Xu, W.; Menard, L.; Meffre, E.; Chan, W.-C.C.; et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA 2015, 112, 13447–13454. [Google Scholar] [CrossRef]
- Sebastián, E.; Alcoceba, M.; Balanzategui, A.; Marín, L.; Montes-Moreno, S.; Flores, T.; González, D.; Sarasquete, M.E.; Chillón, M.C.; Puig, N.; et al. Molecular characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma: Antigen-driven origin and IGHV4-34 as a particular subgroup of the non-GCB subtype. Am. J. Pathol. 2012, 181, 1879–1888. [Google Scholar] [CrossRef]
- Fenwick, M.K.; Escobedo, F.A. Exploration of factors affecting the onset and maturation course of follicular lymphoma through simulations of the germinal center. Bull. Math. Biol. 2009, 71, 1432–1462. [Google Scholar] [CrossRef]
- Zabalegui, N.; De Cerio, A.L.-D.; Inogés, S.; Rodríguez-Calvillo, M.; Pérez-Calvo, J.; Hernández, M.; García-Foncillas, J.; Martín-Algarra, S.; Rocha, E.; Bendandi, M. Acquired potential N-glycosylation sites within the tumor-specific immunoglobulin heavy chains of B-cell malignancies. Haematologica 2004, 89, 541–546. [Google Scholar]
- Haebe, S.; Day, G.; Czerwinski, D.K.; Sathe, A.; Grimes, S.M.; Chen, T.; Long, S.R.; Martin, B.; Ozawa, M.G.; Ji, H.P.; et al. Follicular lymphoma evolves with a surmountable dependency on acquired glycosylation motifs in the B-cell receptor. Blood 2023, 142, 2296–2304. [Google Scholar] [CrossRef]
- Odabashian, M.; Carlotti, E.; Araf, S.; Okosun, J.; Spada, F.; Gribben, J.G.; Forconi, F.; Stevenson, F.K.; Calaminici, M.; Krysov, S. IGHV sequencing reveals acquired N-glycosylation sites as a clonal and stable event during follicular lymphoma evolution. Blood 2020, 135, 834–844. [Google Scholar] [CrossRef]
- Michaeli, M.; Carlotti, E.; Hazanov, H.; Gribben, J.G.; Mehr, R. Mutational patterns along different evolution paths of follicular lymphoma. Front. Oncol. 2022, 12, 1029995. [Google Scholar] [CrossRef]
- Zhu, D.; McCarthy, H.; Ottensmeier, C.H.; Johnson, P.; Hamblin, T.J.; Stevenson, F.K. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 2002, 99, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Belessi, C.; Stamatopolous, K.; Kosmas, C. Glycosylation of V region genes in follicular lymphoma as a result of the somatic hypermutation mechanism. Blood 2002, 100, 2269–2270. [Google Scholar] [CrossRef] [PubMed]
- Radcliffe, C.M.; Arnold, J.N.; Suter, D.M.; Wormald, M.R.; Harvey, D.J.; Royle, L.; Mimura, Y.; Kimura, Y.; Sim, R.B.; Inogès, S. Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor. J. Biol. Chem. 2007, 282, 7405–7415. [Google Scholar] [CrossRef]
- McCann, K.J.; Ottensmeier, C.H.; Callard, A.; Radcliffe, C.M.; Harvey, D.J.; Dwek, R.A.; Rudd, P.M.; Sutton, B.J.; Hobby, P.; Stevenson, F.K. Remarkable selective glycosylation of the immunoglobulin variable region in follicular lymphoma. Mol. Immunol. 2008, 45, 1567–1572. [Google Scholar] [CrossRef]
- Mamessier, E.; Drevet, C.; Broussais-Guillaumot, F.; Mollichella, M.-L.; Garciaz, S.; Roulland, S.; Benchetrit, M.; Nadel, B.; Xerri, L. Contiguous follicular lymphoma and follicular lymphoma in situ harboring N-glycosylated sites. Haematologica 2015, 100, e155–e157. [Google Scholar] [CrossRef]
- Koning, M.T.; Quinten, E.; Zoutman, W.H.; Kiełbasa, S.M.; Mei, H.; van Bergen, C.A.; Jansen, P.; Vergroesen, R.D.; Willemze, R.; Vermeer, M.H. Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire. J. Invest. Dermatol. 2019, 139, 2195–2203. [Google Scholar] [CrossRef]
- Lim, B.; Kydd, L.; Jaworski, J. Engineering a reporter cell line to mimic the high oligomannose presenting surface immunoglobulin of follicular lymphoma B cells. Sci. Rep. 2021, 11, 87. [Google Scholar] [CrossRef]
- Zhu, D.; Ottensmeier, C.H.; Du, M.-Q.; McCarthy, H.; Stevenson, F.K. Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt’s lymphoma and mucosa-associated lymphoid tissue lymphoma. Br. J. Haematol. 2003, 120, 217–222. [Google Scholar] [CrossRef]
- Forconi, F.; Capello, D.; Berra, E.; Rossi, D.; Gloghini, A.; Cerri, M.; Muti, G.; Morra, E.; Paulli, M.; Magrini, U.; et al. Incidence of novel N-glycosylation sites in the B-cell receptor of lymphomas associated with immunodeficiency. Br. J. Haematol. 2004, 124, 604–609. [Google Scholar] [CrossRef]
- Chiodin, G.; Allen, J.D.; Bryant, D.J.; Rock, P.; Martino, E.A.; Valle-Argos, B.; Duriez, P.J.; Watanabe, Y.; Henderson, I.; Blachly, J.S.; et al. Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood 2021, 138, 1570–1582. [Google Scholar] [CrossRef]
- Zamò, A.; Pischimarov, J.; Schlesner, M.; Rosenstiel, P.; Bomben, R.; Horn, H.; Grieb, T.; Nedeva, T.; López, C.; Haake, A.; et al. Differences between BCL2-break positive and negative follicular lymphoma unraveled by whole-exome sequencing. Leukemia 2018, 32, 685–693. [Google Scholar] [CrossRef]
- Leich, E.; Maier, C.; Bomben, R.; Vit, F.; Bosi, A.; Horn, H.; Gattei, V.; Ott, G.; Rosenwald, A.; Zamò, A. Follicular lymphoma subgroups with and without t(14;18) differ in their N-glycosylation pattern and IGHV usage. Blood Adv. 2021, 5, 4890–4900. [Google Scholar] [CrossRef] [PubMed]
- Krysov, S.; Potter, K.N.; Mockridge, C.I.; Coelho, V.; Wheatley, I.; Packham, G.; Stevenson, F.K. Surface IgM of CLL cells displays unusual glycans indicative of engagement of antigen in vivo. Blood 2010, 115, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Coelho, V.; Krysov, S.; Ghaemmaghami, A.M.; Emara, M.; Potter, K.N.; Johnson, P.; Packham, G.; Martinez-Pomares, L.; Stevenson, F.K. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc. Natl. Acad. Sci. USA 2010, 107, 18587–18592. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Kurhade, S.E.; Ross, P.; Apley, K.D.; Griffin, J.D.; Berkland, C.J.; Farrell, M.P. Disrupting N-Glycosylation Using Type I Mannosidase Inhibitors Alters B-Cell Receptor Signaling. ACS Pharmacol. Transl. Sci. 2022, 5, 1062–1069. [Google Scholar] [CrossRef]
- Schneider, D.; Minden, M.D.-V.; Alkhatib, A.; Setz, C.; van Bergen, C.A.M.; Benkißer-Petersen, M.; Wilhelm, I.; Villringer, S.; Krysov, S.; Packham, G.; et al. Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 2015, 125, 3287–3296. [Google Scholar] [CrossRef]
- Linley, A.; Krysov, S.; Ponzoni, M.; Johnson, P.W.; Packham, G.; Stevenson, F.K. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood 2015, 126, 1902–1910. [Google Scholar] [CrossRef]
- Valle-Argos, B.; Chiodin, G.; Bryant, D.J.; Taylor, J.; Lemm, E.; Duriez, P.J.; Rock, P.J.; Strefford, J.C.; Forconi, F.; Burack, R.W.; et al. DC-SIGN binding to mannosylated B-cell receptors in follicular lymphoma down-modulates receptor signaling capacity. Sci. Rep. 2021, 11, 11676. [Google Scholar] [CrossRef]
- Brewer, C.F.; Miceli, M.C.; Baum, L.G. Clusters, bundles, arrays and lattices: Novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 2002, 12, 616–623. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Martz, R.; Dorward, D.; Waisberg, M.; Pierce, S.K. Endocytosed BCRs sequentially regulate MAPK and Akt signaling pathways from intracellular compartments. Nat. Immunol. 2011, 12, 1119–1126. [Google Scholar] [CrossRef]
- Courtney, A.H.; Bennett, N.R.; Zwick, D.B.; Hudon, J.; Kiessling, L.L. Synthetic antigens reveal dynamics of BCR endocytosis during inhibitory signaling. ACS Chem. Biol. 2014, 9, 202–210. [Google Scholar] [CrossRef]
- Domínguez-Soto, A.; Sierra-Filardi, E.; Puig-Kröger, A.; Pérez-Maceda, B.; Gómez-Aguado, F.; Corcuera, M.T.; Sánchez-Mateos, P.; Corbí, A.L. Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10. J. Immunol. 2011, 186, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
- Farinha, P.; Masoudi, H.; Skinnider, B.F.; Shumansky, K.; Spinelli, J.J.; Gill, K.; Klasa, R.; Voss, N.; Connors, J.M.; Gascoyne, R.D. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 2005, 106, 2169–2174. [Google Scholar] [CrossRef] [PubMed]
- Granelli-Piperno, A.; Pritsker, A.; Pack, M.; Shimeliovich, I.; Arrighi, J.-F.; Park, C.G.; Trumpfheller, C.; Piguet, V.; Moran, T.M.; Steinman, R.M. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol. 2005, 175, 4265–4273. [Google Scholar] [CrossRef] [PubMed]
- Relloso, M.; Puig-KrögEr, A.; Pello, O.M.; RodrígUez-FernánDez, J.L.; de la Rosa, G.; Longo, N.; Navarro, J.; MuñoZ-FernánDez, M.A.; SánChez-Mateos, P.; Corbí, A.L. DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J. Immunol. 2002, 168, 2634–2643. [Google Scholar] [CrossRef]
- Pandey, S.; Mourcin, F.; Marchand, T.; Nayar, S.; Guirriec, M.; Pangault, C.; Monvoisin, C.; Amé-Thomas, P.; Guilloton, F.; Dulong, J.; et al. IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood 2017, 129, 2507–2518. [Google Scholar] [CrossRef]
- Calvo, K.R.; Dabir, B.; Kovach, A.; Devor, C.; Bandle, R.; Bond, A.; Shih, J.H.; Jaffe, E.S. IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma. Blood 2008, 112, 3818–3826. [Google Scholar] [CrossRef]
- Pangault, C.; Amé-Thomas, P.; Ruminy, P.; Rossille, D.; Caron, G.; Baia, M.; De Vos, J.; Roussel, M.; Monvoisin, C.; Lamy, T.; et al. Follicular lymphoma cell niche: Identification of a preeminent IL-4-dependent T(FH)-B cell axis. Leukemia 2010, 24, 2080–2089. [Google Scholar] [CrossRef]
- van Bergen, C.A.M.; Kloet, S.L.; Quinten, E.; Yáñez, J.H.S.; Menafra, R.; Griffioen, M.; Jansen, P.M.; Koning, M.T.; Knijnenburg, J.; Navarrete, M.A.; et al. Acquisition of a glycosylated B-cell receptor drives follicular lymphoma toward a dark zone phenotype. Blood Adv. 2023, 7, 5812–5816. [Google Scholar] [CrossRef]
- Alduaij, W.; Collinge, B.J.; Ben-Neriah, S.; Jiang, A.; Hilton, L.K.; Boyle, M.; Meissner, B.; Chong, L.C.; Miyata-Takata, T.; Slack, G.W.; et al. Molecular determinants of clinical outcomes in a real-world diffuse large B-cell lymphoma population. Blood 2023, 141, 2493–2507. [Google Scholar] [CrossRef] [PubMed]
- Urata, T.; Naoi, Y.; Jiang, A.; Boyle, M.; Sunami, K.; Imai, T.; Nawa, Y.; Hiramatsu, Y.; Yamamoto, K.; Fujii, S.; et al. Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study. Blood Adv. 2023, 7, 7459–7470. [Google Scholar] [CrossRef] [PubMed]
- Nudelman, E.; Kannagi, R.; Hakomori, S.; Parsons, M.; Lipinski, M.; Wiels, J.; Fellous, M.; Tursz, T. A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 1983, 220, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Wiels, J.; Fellous, M.; Tursz, T. Monoclonal antibody against a Burkitt lymphoma-associated antigen. Proc. Natl. Acad. Sci. USA 1981, 78, 6485–6488. [Google Scholar] [CrossRef]
- Kalisiak, A.; Minniti, J.G.; Oosterwijk, E.; Old, L.J.; Scheinberg, D.A. Neutral glycosphingolipid expression in B-cell neoplasms. Int. J. Cancer 1991, 49, 837–845. [Google Scholar] [CrossRef]
- Taga, S.; Mangeney, M.; Tursz, T.; Wiels, J. Differential regulation of glycosphingolipid biosynthesis in phenotypically distinct Burkitt’s lymphoma cell lines. Int. J. Cancer 1995, 61, 261–267. [Google Scholar] [CrossRef]
- Junqua, S.; Larsen, A.K.; Wils, P.; Mishal, Z.; Wiels, J.; Le Pecq, J.B. Decreased accessibility of globotriaosylceramide associated with decreased tumorigenicity in Burkitt’s lymphoma variants induced by immunoselection. Cancer Res. 1989, 49, 6480–6486. [Google Scholar]
- Arbus, G.S.; Grisaru, S.; Segal, O.; Dosch, M.; Pop, M.; Lala, P.; Nutikka, A.; A Lingwood, C. Verotoxin targets lymphoma infiltrates of patients with post-transplant lymphoproliferative disease. Leuk. Res. 2000, 24, 857–864. [Google Scholar] [CrossRef]
- Schwartz-Albiez, R.; Dörken, B.; Möller, P.; Brodin, N.T.; Monner, D.A.; Kniep, B. Neutral glycosphingolipids of the globo-series characterize activation stages corresponding to germinal center B cells. Int. Immunol. 1990, 2, 929–936. [Google Scholar] [CrossRef]
- Sharma, P.; Zhang, X.; Ly, K.; Zhang, Y.; Hu, Y.; Ye, A.Y.; Hu, J.; Kim, J.H.; Lou, M.; Wang, C.; et al. The lipid globotriaosylceramide promotes germinal center B cell responses and antiviral immunity. Science 2024, 383, eadg0564. [Google Scholar] [CrossRef]
- Maloney, M.D.; Binnington-Boyd, B.; Lingwood, C.A. Globotriaosyl ceramide modulates interferon-alpha-induced growth inhibition and CD19 expression in Burkitt’s lymphoma cells. Glycoconj. J. 1999, 16, 821–828. [Google Scholar] [CrossRef]
- Jarvis, R.M.; Chamba, A.; Holder, M.J.; Challa, A.; Smith, D.C.; Hodgkin, M.N.; Lord, J.M.; Gordon, J. Dynamic interplay between the neutral glycosphingolipid CD77/Gb3 and the therapeutic antibody target CD20 within the lipid bilayer of model B lymphoma cells. Biochem. Biophys. Res. Commun. 2007, 355, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Mangeney, M.; Lingwood, C.A.; Taga, S.; Caillou, B.; Tursz, T.; Wiels, J. Apoptosis induced in Burkitt’s lymphoma cells via Gb3/CD77, a glycolipid antigen. Cancer Res. 1993, 53, 5314–5319. [Google Scholar] [PubMed]
- Suzuki, O.; Nozawa, Y.; Kawaguchi, T.; Abe, M. Phaseolus vulgaris leukoagglutinating lectin-binding reactivity in human diffuse large B-cell lymphoma and its relevance to the patient’s clinical outcome: Lectin histochemistry and lectin blot analysis. Pathol. Int. 1999, 49, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, O.; Nozawa, Y.; Kawaguchi, T.; Abe, M. Alpha-2,6-sialylation of L-PHA reactive oligosaccharides and expression of N-acetylglucosaminyltransferase V in human diffuse large B cell lymphoma. Oncol. Rep. 2003, 10, 1759–1764. [Google Scholar]
- Suzuki, O.; Nozawa, Y.; Abe, M. Loss of L-PHA-, PNA-, or ConA-reactive oligosaccharides is associated with a poor prognosis in human Burkitt’s lymphoma. Oncol. Rep. 2007, 17, 775–779. [Google Scholar] [CrossRef]
- Altevogt, P.; Fogel, M.; Cheingsong-Popov, R.; Dennis, J.; Robinson, P.; Schirrmacher, V. Different patterns of lectin binding and cell surface sialylation detected on related high- and low-metastatic tumor lines. Cancer Res. 1983, 43, 5138–5144. [Google Scholar]
- Tomaszewska, R.; Sonta-Jakimczyk, D.; Dyduch, A.; Olejnik, I.; Mazur, B. Sialic acid concentration in different stages of malignant lymphoma and leukemia in children. Acta Paediatr. Jpn. 1997, 39, 448–450. [Google Scholar] [CrossRef]
- Marie, A.-L.; Gao, Y.; Ivanov, A.R. Native N-glycome profiling of single cells and ng-level blood isolates using label-free capillary electrophoresis-mass spectrometry. Nat. Commun. 2024, 15, 3847. [Google Scholar] [CrossRef]
- Cumin, C.; Gee, L.; Litfin, T.; Muchabaiwa, R.; Martin, G.; Cooper, O.; Heinzelmann-Schwarz, V.; Lange, T.; von Itzstein, M.; Jacob, F.; et al. Highly Sensitive Spatial Glycomics at Near-Cellular Resolution by On-Slide Derivatization and Mass Spectrometry Imaging. Anal. Chem. 2024, 96, 11163–11171. [Google Scholar] [CrossRef]
- de Haan, N.; Song, M.; Grant, O.C.; Ye, Z.; Khoder Agha, F.; Koed Møller Aasted, M.; Woods, R.J.; Vakhrushev, S.Y.; Wandall, H.H. Sensitive and Specific Global Cell Surface N-Glycoproteomics Shows Profound Differences Between Glycosylation Sites and Subcellular Components. Anal. Chem. 2023, 95, 17328–17336. [Google Scholar] [CrossRef]
- Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D.F.; Cummings, R.D.; Mahal, L.K. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem. Biol. 2022, 17, 2993–3012. [Google Scholar] [CrossRef]
- Rosati, E.; Sabatini, R.; Rampino, G.; De Falco, F.; Di Ianni, M.; Falzetti, F.; Fettucciari, K.; Bartoli, A.; Screpanti, I.; Marconi, P. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood 2010, 116, 2713–2723. [Google Scholar] [CrossRef]
- Favaro, F.; Both, D.; Derks, I.A.M.; Spaargaren, M.; Muñoz-Pinedo, C.; Eldering, E. Negligible role of TRAIL death receptors in cell death upon endoplasmic reticulum stress in B-cell malignancies. Oncogenesis 2023, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Scheich, S.; Chen, J.; Liu, J.; Schnütgen, F.; Enssle, J.C.; Ceribelli, M.; Thomas, C.J.; Choi, J.; Morris, V.; Hsiao, T.; et al. Targeting N-linked Glycosylation for the Therapy of Aggressive Lymphomas. Cancer Discov. 2023, 13, 1862–1883. [Google Scholar] [CrossRef] [PubMed]
- Thurner, L.; Preuss, K.-D.; Bewarder, M.; Kemele, M.; Fadle, N.; Regitz, E.; Altmeyer, S.; Schormann, C.; Poeschel, V.; Ziepert, M.; et al. Hyper-N-glycosylated SAMD14 and neurabin-I as driver autoantigens of primary central nervous system lymphoma. Blood 2018, 132, 2744–2753. [Google Scholar] [CrossRef]
- Elbert, M.; Neumann, F.; Kiefer, M.; Christofyllakis, K.; Balensiefer, B.; Kos, I.; Carbon, G.; Kaddu-Mulindwa, D.; Bittenbring, J.T.; Fadle, N.; et al. Hyper-N-glycosylated SEL1L3 as auto-antigenic B-cell receptor target of primary vitreoretinal lymphomas. Sci. Rep. 2024, 14, 9571. [Google Scholar] [CrossRef]
- Saunders, K.O.; Nicely, N.I.; Wiehe, K.; Bonsignori, M.; Meyerhoff, R.R.; Parks, R.; Walkowicz, W.E.; Aussedat, B.; Wu, N.R.; Cai, F.; et al. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Rep. 2017, 18, 2175–2188. [Google Scholar] [CrossRef]
- Cendret, V.; François-Heude, M.; Méndez-Ardoy, A.; Moreau, V.; Fernández, J.M.G.; Djedaïni-Pilard, F. Design and synthesis of a ‘click’ high-mannose oligosaccharide mimic emulating Man8 binding affinity towards Con A. Chem. Commun. 2012, 48, 3733–3735. [Google Scholar] [CrossRef]
- Zhang, H.; Daněk, O.; Makarov, D.; Rádl, S.; Kim, D.; Ledvinka, J.; Vychodilová, K.; Hlaváč, J.; Lefèbre, J.; Denis, M.; et al. Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold. ACS Med. Chem. Lett. 2022, 13, 935–942. [Google Scholar] [CrossRef]
- Cruz, L.J.; Tacken, P.J.; Pots, J.M.; Torensma, R.; Buschow, S.I.; Figdor, C.G. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials 2012, 33, 4229–4239. [Google Scholar] [CrossRef]
- Thieme, E.; Liu, T.; Bruss, N.; Roleder, C.; Lam, V.; Wang, X.; Nechiporuk, T.; Shouse, G.; Danilova, O.V.; Bottomly, D.; et al. Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma. Cell Death Dis. 2022, 13, 246. [Google Scholar] [CrossRef]
- Cheng, S.; Coffey, G.; Zhang, X.H.; Shaknovich, R.; Song, Z.; Lu, P.; Pandey, A.; Melnick, A.M.; Sinha, U.; Wang, Y.L. SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 2011, 118, 6342–6352. [Google Scholar] [CrossRef]
- Huntington, N.D.; Xu, Y.; Puthalakath, H.; Light, A.; Willis, S.N.; Strasser, A.; Tarlinton, D.M. CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol. 2006, 7, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.C.; Pang, M.; Hsu, D.K.; Liu, F.-T.; de Vos, S.; Gascoyne, R.D.; Said, J.; Baum, L.G. Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death. Blood 2012, 120, 4635–4644. [Google Scholar] [CrossRef] [PubMed]
- Earl, L.A.; Bi, S.; Baum, L.G. N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J. Biol. Chem. 2010, 285, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, O.; Abe, M. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: Regulatory roles of cell surface glycans. Int. J. Oncol. 2014, 44, 1433–1442. [Google Scholar] [CrossRef]
- Suzuki, O.; Nozawa, Y.; Abe, M. Regulatory roles of altered N- and O-glycosylation of CD45 in galectin-1-induced cell death in human diffuse large B cell lymphoma. Int. J. Oncol. 2005, 26, 1063–1068. [Google Scholar]
- Suzuki, O.; Nozawa, Y.; Abe, M. Altered N-glycosylation in CD45 and regulatory roles of altered N-glycosylation in galectin-1-induced growth inhibition in human diffuse large B cell lymphoma. Oncol. Rep. 2005, 13, 109–114. [Google Scholar]
- Giovannone, N.; Liang, J.; Antonopoulos, A.; Sweeney, J.G.; King, S.L.; Pochebit, S.M.; Bhattacharyya, N.; Lee, G.S.; Dell, A.; Widlund, H.R.; et al. Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat. Commun. 2018, 9, 3287. [Google Scholar] [CrossRef]
- Cao, A.; Alluqmani, N.; Buhari, F.H.M.; Wasim, L.; Smith, L.K.; Quaile, A.T.; Shannon, M.; Hakim, Z.; Furmli, H.; Owen, D.M.; et al. Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat. Commun. 2018, 9, 3288. [Google Scholar] [CrossRef] [PubMed]
- Koll, L.; Lourens, H.J.; Marsman, G.; de Haan, S.; Niki, T.; Huls, G.A.; Bremer, E.; Wiersma, V.R. Galectin-9 treatment is cytotoxic for B cell lymphoma by disrupting autophagy. Front. Pharmacol. 2025, 16, 1601235. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, O.; Hirsch, B.; Abe, M.; Dürkop, H.; Stein, H. Galectin-1-mediated cell death is increased by CD30-induced signaling in anaplastic large cell lymphoma cells but not in Hodgkin lymphoma cells. Lab. Investig. 2012, 92, 191–199. [Google Scholar] [CrossRef]
- Suzuki, O.; Abe, M. Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma. Oncol. Rep. 2008, 19, 743–748. [Google Scholar] [CrossRef]
- Carulli, G.; Cannizzo, E.; Zucca, A.; Buda, G.; Orciuolo, E.; Marini, A.; Petrini, M. CD45 expression in low-grade B-cell non-Hodgkin’s lymphomas. Leuk. Res. 2008, 32, 263–267. [Google Scholar] [CrossRef]
- Deane, D.L.; Cohen, B.B.; Morton, J.E.; Steel, C.M. Correlation between tumorigenicity and altered glycosylation of a ‘leukocyte common’ antigen in human lymphoid cell lines. Int. J. Cancer 1984, 34, 459–462. [Google Scholar] [CrossRef]
- Yu, Y.; Rabinowitz, R.; Polliack, A.; Ben-Bassat, H.; Schlesinger, M. Hyposialated 185 kDa CD45RA+ molecules attain a high concentration in B lymphoma cells and in activated human B cells. Eur. J. Haematol. 2002, 68, 22–30. [Google Scholar] [CrossRef]
- Yoshimura, M.; Nishikawa, A.; Ihara, Y.; Nishiura, T.; Nakao, H.; Kanayama, Y.; Matuzawa, Y.; Taniguchi, N. High expression of UDP-N-acetylglucosamine: Beta-D mannoside beta-1,4-N-acetylglucosaminyltransferase III (GnT-III) in chronic myelogenous leukemia in blast crisis. Int. J. Cancer 1995, 60, 443–449. [Google Scholar] [CrossRef]
- Tétaud, C.; Falguières, T.; Carlier, K.; Lécluse, Y.; Garibal, J.; Coulaud, D.; Busson, P.; Steffensen, R.; Clausen, H.; Johannes, L.; et al. Two distinct Gb3/CD77 signaling pathways leading to apoptosis are triggered by anti-Gb3/CD77 mAb and verotoxin-1. J. Biol. Chem. 2003, 278, 45200–45208. [Google Scholar] [CrossRef]
- Garibal, J.; Hollville, E.; Renouf, B.; Tétaud, C.; Wiels, J. Caspase-8-mediated cleavage of Bid and protein phosphatase 2A-mediated activation of Bax are necessary for Verotoxin-1-induced apoptosis in Burkitt’s lymphoma cells. Cell. Signalling 2010, 22, 467–475. [Google Scholar] [CrossRef]
- Mori, T.; Kiyokawa, N.; Katagiri, Y.U.; Taguchi, T.; Suzuki, T.; Sekino, T.; Sato, N.; Ohmi, K.; Nakajima, H.; Takeda, T.; et al. Globotriaosyl ceramide (CD77/Gb3) in the glycolipid-enriched membrane domain participates in B-cell receptor-mediated apoptosis by regulating lyn kinase activity in human B cells. Exp. Hematol. 2000, 28, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Rosato, F.; Pasupuleti, R.; Tomisch, J.; Meléndez, A.V.; Kolanovic, D.; Makshakova, O.N.; Wiltschi, B.; Römer, W. A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death. J. Transl. Med. 2022, 20, 578. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, R.; Riedl, S.; Núñez, L.S.; Karava, M.; Kumar, V.; Kourist, R.; Turnbull, W.B.; Zweytick, D.; Wiltschi, B. Lectin-anticancer peptide fusion demonstrates a significant cancer-cell-selective cytotoxic effect and inspires the production of ‘clickable’ anticancer peptide in Escherichia coli. Protein Sci. 2023, 32, e4830. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Dohmae, N.; Takio, K.; Kawsar, S.M.A.; Matsumoto, R.; Hasan, I.; Koide, Y.; Kanaly, R.A.; Yasumitsu, H.; Ogawa, Y.; et al. A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J. Biol. Chem. 2012, 287, 44772–44783. [Google Scholar] [CrossRef]
- Hasan, I.; Sugawara, S.; Fujii, Y.; Koide, Y.; Terada, D.; Iimura, N.; Fujiwara, T.; Takahashi, K.G.; Kojima, N.; Rajia, S.; et al. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt’s Lymphoma Cells to Trigger Apoptosis through Multiple Pathways. Mar. Drugs 2015, 13, 7377–7389. [Google Scholar] [CrossRef]
- Chernikov, O.; Kuzmich, A.; Chikalovets, I.; Molchanova, V.; Hua, K.-F. Lectin CGL from the sea mussel Crenomytilus grayanus induces Burkitt’s lymphoma cells death via interaction with surface glycan. Int. J. Biol. Macromol. 2017, 104 Pt A, 508–514. [Google Scholar] [CrossRef]
- Kuzmich, A.S.; Filshtein, A.P.; Likhatskaya, G.N.; Gorpenchenko, T.Y.; Chikalovets, I.V.; Mizgina, T.O.; Hua, K.; von Amsberg, G.; Dyshlovoy, S.A.; Chernikov, O.V. Lectins CGL and MTL, representatives of mytilectin family, exhibit different antiproliferative activity in Burkitt’s lymphoma cells. IUBMB Life 2024, 76, 1279–1294. [Google Scholar] [CrossRef]
- Fujii, Y.; Sugawara, S.; Araki, D.; Kawano, T.; Tatsuta, T.; Takahashi, K.; Kawsar, S.M.A.; Matsumoto, R.; Kanaly, R.A.; Yasumitsu, H.; et al. MRP1 expressed on Burkitt’s lymphoma cells was depleted by catfish egg lectin through Gb3-glycosphingolipid and enhanced cytotoxic effect of drugs. Protein J. 2012, 31, 15–26. [Google Scholar] [CrossRef]
- Gardano, L.; Ferreira, J.; Le Roy, C.; Ledoux, D.; Varin-Blank, N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett. 2024. [Google Scholar] [CrossRef]
- Yi, L.; Hu, Q.; Zhou, J.; Liu, Z.; Li, H. Alternative splicing of Ikaros regulates the FUT4/LeX-α5β1 integrin-FAK axis in acute lymphoblastic leukemia. Biochem. Biophys. Res. Commun. 2019, 510, 128–134. [Google Scholar] [CrossRef]
- Nakamura, M.; Furukawa, Y.; Sasaki, R.; Masuyama, J.-I.; Kikuchi, J.; Iwase, S.; Kudo, T.; Narimatsu, H.; Asakura, S.; Fujiwara, S.; et al. UDP-GlcNAc:Galbeta1—>3GalNAc (GlcNAc to GalNAc) beta1—>6N-acetylglucosaminyltransferase holds a key role on the control of CD15s expression in human pre-B lymphoid cell lines. Glycobiology 1999, 9, 1–12. [Google Scholar] [CrossRef]
- Suzuki, O.; Nozawa, Y.; Abe, M. The regulatory roles of cell surface sialylation and N-glycans in human B cell lymphoma cell adhesion to galectin-1. Int. J. Oncol. 2006, 28, 155–160. [Google Scholar] [CrossRef]
- Suzuki, O.; Abe, M.; Hashimoto, Y. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family. Int. J. Oncol. 2015, 47, 2091–2099. [Google Scholar] [CrossRef]
- Suzuki, O.; Abe, M.; Hashimoto, Y. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int. J. Oncol. 2015, 46, 973–980. [Google Scholar] [CrossRef]
- D’Haene, N.; Maris, C.; Sandras, F.; Dehou, M.-F.; Remmelink, M.; Decaestecker, C.; Salmon, I. The differential expression of Galectin-1 and Galectin-3 in normal lymphoid tissue and non-Hodgkin’s and Hodgkin’s lymphomas. Int. J. Immunopathol. Pharmacol. 2005, 18, 431–443. [Google Scholar] [CrossRef]
- Rodig, S.J.; Ouyang, J.; Juszczynski, P.; Currie, T.; Law, K.; Neuberg, D.S.; Rabinovich, G.A.; Shipp, M.A.; Kutok, J.L. AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin. Cancer Res. 2008, 14, 3338–3344. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, A.; Udomjarumanee, P.; Georgescu, A.-S.; Barri, M.; Zinovkin, D.A.; Pranjol, M.Z.I. The Immunomodulatory Role of Galectin-1 in the Tumour Microenvironment and Strategies for Therapeutic Applications. Cancers 2025, 17, 1888. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Han, Y.; Lu, W.; Yang, J.; Tian, J.; Sun, P.; Yu, T.; Hu, Y.; Zhang, H.; et al. Overexpression of GLT1D1 induces immunosuppression through glycosylation of PD-L1 and predicts poor prognosis in B-cell lymphoma. Mol. Oncol. 2020, 14, 1028–1044. [Google Scholar] [CrossRef]
- Li, C.-W.; Lim, S.-O.; Xia, W.; Lee, H.-H.; Chan, L.-C.; Kuo, C.-W.; Khoo, K.-H.; Chang, S.-S.; Cha, J.-H.; Kim, T.; et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 2016, 7, 12632. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.V.; Bryant, J.L.; Mendez, R.; Chen, J.; Tamayo, A.T.; Xu-Monette, Z.Y.; Young, K.H.; Manyam, G.C.; Yang, D.; Medeiros, L.J.; et al. Targeting the hexosamine biosynthetic pathway and O-linked N-acetylglucosamine cycling for therapeutic and imaging capabilities in diffuse large B-cell lymphoma. Oncotarget 2016, 7, 80599–80611. [Google Scholar] [CrossRef]
- Tienstra, M.; de Boer, J.W.; van Doesum, J.A.; Keijzer, K.; Morsink, L.M.; Hazenberg, C.L.; Ammatuna, E.; Huls, G.A.; Choudhary, P.; Gans, R.O.; et al. High Frequency of Severe Hyperglycemia Observed During Intensive Hematologic Care: A Prospective Study Using Continuous Glucose Monitoring. Endocr. Pract. 2024, 30, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Reagan, P.M.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; et al. Comparison of 2-year outcomes with CAR T cells (ZUMA-1) vs salvage chemotherapy in refractory large B-cell lymphoma. Blood Adv. 2021, 5, 4149–4155. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Barua, A.; Huang, L.; Ganguly, S.; Feng, Q.; He, B. From bench to bedside: The history and progress of CAR T cell therapy. Front. Immunol. 2023, 14, 1188049. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, A.V.; Cárdenas, R.M.-H.V.; Lagies, S.; Strietz, J.; Siukstaite, L.; Thomas, O.S.; Tomisch, J.; Weber, W.; Kammerer, B.; Römer, W.; et al. Novel lectin-based chimeric antigen receptors target Gb3-positive tumour cells. Cell. Mol. Life Sci. 2022, 79, 513. [Google Scholar] [CrossRef]
- López-Cantillo, G.; Urueña, C.; Camacho, B.A.; Ramírez-Segura, C. CAR-T Cell Performance: How to Improve Their Persistence? Front. Immunol. 2022, 13, 878209. [Google Scholar] [CrossRef]
- Visser, N.; González-Corrales, M.; Álvarez-Freile, J.; Pruis, M.G.; Rockstein, L.; Lourens, H.J.; Schuringa, J.J.; van Meerten, T.; Huls, G.; Bremer, E. K12-ligand-based CAR T cell therapy for CD7-positive T cell malignancies. Mol. Ther. Oncol. 2025, 33, 200988. [Google Scholar] [CrossRef]
- Prasse, N.; Wessolowski, C.; Müller, I.; Cornils, K.; Franke, A.-K. Glycan Structures in Osteosarcoma as Targets for Lectin-Based Chimeric Antigen Receptor Immunotherapy. Int. J. Mol. Sci. 2024, 25, 5344. [Google Scholar] [CrossRef]
- McKenna, M.K.; Ozcan, A.; Brenner, D.; Watanabe, N.; Legendre, M.; Thomas, D.G.; Ashwood, C.; Cummings, R.D.; Bonifant, C.; Markovitz, D.M.; et al. Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. J. Immunother. Cancer 2023, 11, e005891. [Google Scholar] [CrossRef]
- Lin, C.-W.; Wang, Y.-J.; Lai, T.-Y.; Hsu, T.-L.; Han, S.-Y.; Wu, H.-C.; Shen, C.-N.; Dang, V.; Chen, M.-W.; Chen, L.-B.; et al. Homogeneous antibody and CAR-T cells with improved effector functions targeting SSEA-4 glycan on pancreatic cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2114774118. [Google Scholar] [CrossRef]
- Sharma, P.; Marada, V.V.V.R.; Cai, Q.; Kizerwetter, M.; He, Y.; Wolf, S.P.; Schreiber, K.; Clausen, H.; Schreiber, H.; Kranz, D.M. Structure-guided engineering of the affinity and specificity of CARs against Tn-glycopeptides. Proc. Natl. Acad. Sci. USA 2020, 117, 15148–15159. [Google Scholar] [CrossRef]
- Zingg, A.; Ritschard, R.; Thut, H.; Buchi, M.; Holbro, A.; Oseledchyk, A.; Heinzelmann, V.; Buser, A.; Binder, M.; Zippelius, A.; et al. Targeting cancer-associated glycosylation for adoptive T cell therapy of solid tumors. Cancer Immunol. Res. 2025, 13, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhou, Y.; Guo, L.; Feng, S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov. 2024, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Bordron, A.; Bagacean, C.; Mohr, A.; Tempescul, A.; Bendaoud, B.; Deshayes, S.; Dalbies, F.; Buors, C.; Saad, H.; Berthou, C.; et al. Resistance to complement activation, cell membrane hypersialylation and relapses in chronic lymphocytic leukemia patients treated with rituximab and chemotherapy. Oncotarget 2018, 9, 31590–31605. [Google Scholar] [CrossRef] [PubMed]
- Gasdaska, J.R.; Sherwood, S.; Regan, J.T.; Dickey, L.F. An afucosylated anti-CD20 monoclonal antibody with greater antibody-dependent cellular cytotoxicity and B-cell depletion and lower complement-dependent cytotoxicity than rituximab. Mol. Immunol. 2012, 50, 134–141. [Google Scholar] [CrossRef]
- Edgar, L.J.; Thompson, A.J.; Vartabedian, V.F.; Kikuchi, C.; Woehl, J.L.; Teijaro, J.R.; Paulson, J.C. Sialic Acid Ligands of CD28 Suppress Costimulation of T Cells. ACS Cent. Sci. 2021, 7, 1508–1515. [Google Scholar] [CrossRef]
- Durgin, J.S.; Thokala, R.; Johnson, L.; Song, E.; Leferovich, J.; Bhoj, V.; Ghassemi, S.; Milone, M.; Binder, Z.; O’ROurke, D.M.; et al. Enhancing CAR T function with the engineered secretion of C. perfringens neuraminidase. Mol. Ther. 2022, 30, 1201–1214. [Google Scholar] [CrossRef]
- Eisenberg, V.; Hoogi, S.; Katzman, E.; Ben Haim, N.; Zur-Toledano, R.; Radman, M.; Reboh, Y.; Zadok, O.; Kamer, I.; Bar, J.; et al. Targeting Tumor-Associated Sialic Acids Using Chimeric Switch Receptors Based on Siglec-9 Enhances the Antitumor Efficacy of Engineered T Cells. Cancer Immunol. Res. 2024, 12, 1380–1391. [Google Scholar] [CrossRef]
- Chen, W.C.; Sigal, D.S.; Saven, A.; Paulson, J.C. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD22. Leuk. Lymphoma 2012, 53, 208–210. [Google Scholar] [CrossRef]
- Chen, W.C.; Completo, G.C.; Sigal, D.S.; Crocker, P.R.; Saven, A.; Paulson, J.C. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 2010, 115, 4778–4786. [Google Scholar] [CrossRef]
- Hong, S.; Yu, C.; Wang, P.; Shi, Y.; Cao, W.; Cheng, B.; Chapla, D.G.; Ma, Y.; Li, J.; Rodrigues, E.; et al. Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for B-Cell Lymphoma Therapy. Angew. Chem., Int. Ed. 2021, 60, 3603–3610. [Google Scholar] [CrossRef]
- Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectr. 2014, 2, EHEC-0024-2013. [Google Scholar] [CrossRef]
- Bogoevska, V.; Nollau, P.; Lucka, L.; Grunow, D.; Klampe, B.; Uotila, L.M.; Samsen, A.; Gahmberg, C.G.; Wagener, C. DC-SIGN binds ICAM-3 isolated from peripheral human leukocytes through Lewis x residues. Glycobiology 2007, 17, 324–333. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.H.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.; Adema, G.J.; van Kooyk, Y.; Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000, 100, 575–585. [Google Scholar] [CrossRef]
- Morschhauser, F.; Flinn, I.W.; Advani, R.; Sehn, L.H.; Diefenbach, C.; Kolibaba, K.; Press, O.W.; Salles, G.; Tilly, H.; I Chen, A.; et al. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: Final results from a phase 2 randomised study (ROMULUS). Lancet Haematol. 2019, 6, e254–e265. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, S.R.; Phelan, J.D.; Choi, J.; Shevchenko, G.; Fenner, R.E.; Yu, X.; Scheich, S.; Hsiao, T.; Morris, V.M.; Papachristou, E.K.; et al. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov. 2024, 14, 1653–1674. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xiao, R.; Jiang, D.; Luo, X.; Tang, Y.; Cui, M.; You, L.; Zhao, Y. Sialic Acids: Sweet modulators fueling cancer cells and domesticating the tumor microenvironment. Cancer Lett. 2025, 626, 217773. [Google Scholar] [CrossRef] [PubMed]
- Macauley, M.S.; Arlian, B.M.; Rillahan, C.D.; Pang, P.-C.; Bortell, N.; Marcondes, M.C.G.; Haslam, S.M.; Dell, A.; Paulson, J.C. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J. Biol. Chem. 2014, 289, 35149–35158. [Google Scholar] [CrossRef]
- Büll, C.; Boltje, T.J.; Balneger, N.; Weischer, S.M.; Wassink, M.; van Gemst, J.J.; Bloemendal, V.R.; Boon, L.; van der Vlag, J.; Heise, T.; et al. Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity. Cancer Res. 2018, 78, 3574–3588. [Google Scholar] [CrossRef]
- Büll, C.; Jan Boltje, T.; van Dinther, E.A.W.; Peters, T.; de Graaf, A.M.A.; Leusen, J.H.W.; Kreutz, M.; Figdor, C.G.; den Brok, M.H.; Adema, G.J. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano 2015, 9, 733–745. [Google Scholar] [CrossRef]
- Nelemans, L.C.; Choukrani, G.; Ustyanovska-Avtenyuk, N.; Wiersma, V.R.; Dähne, L.; Bremer, E. Design of Vaterite Nanoparticles for Controlled Delivery of Active Immunotherapeutic Proteins. Part. Part. Syst. Charact. 2024, 41, 2300153. [Google Scholar] [CrossRef]
- Moons, S.J.; Hornikx, D.L.; Aasted, M.K.M.; Pijnenborg, J.F.; Calzari, M.; White, P.B.; Narimatsu, Y.; Clausen, H.; Wandall, H.H.; Boltje, T.J.; et al. UV light-induced spatial loss of sialic acid capping using a photoactivatable sialyltransferase inhibitor. RSC Chem. Biol. 2023, 4, 506–511. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Liu, Z. Radiotherapy-Activated Prodrug: Past, Present and Beyond. ACS Cent. Sci. 2025, 11, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, K.; Orozco-Moreno, M.; Goode, E.A.; Fisher, M.; Garnham, R.; Beatson, R.; Turner, H.; Livermore, K.; Zhou, Y.; Wilson, L.; et al. Sialic acid blockade inhibits the metastatic spread of prostate cancer to bone. EBioMedicine 2024, 104, 105163. [Google Scholar] [CrossRef] [PubMed]
- Kuhnl, A.; Roddie, C.; Kirkwood, A.A.; Menne, T.; Cuadrado, M.M.; Marzolini, M.A.V.; Osborne, W.; Sanderson, R.; O’rEilly, M.; Townsend, W.M.; et al. Early FDG-PET response predicts CAR-T failure in large B-cell lymphoma. Blood Adv. 2022, 6, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Baur, K.; Buser, A.; Jeker, L.T.; Khanna, N.; Läubli, H.; Heim, D.; Dirks, J.C.; Widmer, C.C.; Volken, T.; Passweg, J.R.; et al. CD4+ CAR T-cell expansion is associated with response and therapy related toxicities in patients with B-cell lymphomas. Bone Marrow Transplant. 2023, 58, 1048–1050. [Google Scholar] [CrossRef]
- De Bousser, E.; Callewaert, N.; De Munter, S.; Vanhee, S.; Naranjo, A.; Hacein-Bey-Abina, S.; Debets, R.; Vandekerckhove, B. N-glycosylation engineering in chimeric antigen receptor T cells enhances anti-tumor activity. bioRxiv 2023. [Google Scholar] [CrossRef]
- Azevedo, C.M.; Xie, B.; Gunn, W.G.; Peralta, R.M.; Dantas, C.S.; Fernandes-Mendes, H.; Joshi, S.; Dean, V.; Almeida, P.; Wilfahrt, D.; et al. Reprogramming CD8+ T-cell Branched N-Glycosylation Limits Exhaustion, Enhancing Cytotoxicity and Tumor Killing. Cancer Immunol. Res. 2025, 13, 1655–1673. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, J.; Lamao, Q.; Qiu, Y.; Yang, J.; Liu, Y.; Liang, F.; Sun, X.; Tang, W.; Chen, C.; et al. Glycan shielding enables TCR-sufficient allogeneic CAR-T therapy. Cell 2025, 188, 5101–5117.e22. [Google Scholar] [CrossRef]
- Azcona, M.S.R.; Mussolino, C. Protocol for Efficient Generation of Chimeric Antigen Receptor T Cells with Multiplexed Gene Silencing by Epigenome Editing. Methods Mol. Biol. 2024, 2842, 209–223. [Google Scholar] [CrossRef]
- Roman Azcona, M.S.; Monaco, G.; Whitehead, M.; Kaufmann, M.M.; Alzubi, J.; Cathomen, T.; Mussolino, C. Sustained and specific multiplexed immune checkpoint modulation in CAR T cells induced by targeted epigenome editing. Mol. Ther. Nucleic Acids 2025, 36, 102618. [Google Scholar] [CrossRef]
- Horvathova, L.; Wiersma, V.R.; Rots, M.G. Toward designer magic bullets: Epigenetic editing to empower CAR T cells. Mol. Ther. Nucleic Acids 2025, 36, 102700. [Google Scholar] [CrossRef]
- Abrantes, R.; Forcados, C.; Warren, D.J.; Santos-Ferreira, L.; Fleten, K.G.; Senra, E.; Costa, A.F.; Krpina, K.; Henrique, R.; Liberg, A.M.; et al. Pan-carcinoma sialyl-Tn-targeting expands CAR therapy to solid tumors. Cell Rep. Med. 2025, 6, 102350. [Google Scholar] [CrossRef]
- Keisham, S.; Tateno, H. Emerging technologies for single-cell glycomics. BBA Adv. 2024, 6, 100125. [Google Scholar] [CrossRef]
- Boottanun, P.; Fuseya, S.; Kuno, A. Toward spatial glycomics and glycoproteomics: Innovations and applications. BBA Adv. 2025, 7, 100146. [Google Scholar] [CrossRef]
(A) Acquired N-glycan motifs in the heavy chain of the BCR-Ig of FL samples | |||
Reference | Frequency Acquired Frequency Acquired N-Glycan Motif | Isotype of BCR-Ig | Location Acquired N-Glycan Motif |
Zhu et al., 2002 [23] | 16 out of 17 (94%) 55 out of 70 (79%) | Ig | CDR1, CDR2, CDR3, FR1, FR3 |
Belessi et al., 2002 [24] | 4 out of 10 (40%) | Ig | CDR2, FR1, FR2 |
Zabalegui et al., 2004 [19] | 24 out of 24 (100%) | IgM, IgG | CDR2, CDR3, FR3 |
Radcliffe et al., 2007 [25] | 6 out of 6 (100%) | IgM, IgG | CDR2, CDR3, FR1 |
McCann et al., 2008 [26] | 7 out of 7 (100%) | Ig | CDR1, CDR2, CDR3, FR1, FR3 |
Mamessier et al., 2015 [27] $ | 1 out of 1 (100%) | Ig | |
Koning et al., 2019 [28] * | 12 out of 18 (67%) | IgA, IgM, IgG | CDR1, CDR2, FR3 |
Odabashian et al., 2020 [21] | 6 out of 6 (100%) | Ig | CDR1, CDR2, CDR3, FR2, GFR3 |
Lim et al., 2021 [29] | 1 out of 1 (100%) | IgM | CDR1, CDR3 |
Haebe et al., 2023 [20] | 15 of the 17 (88%) | IgM, IgG | CDR1, CDR2, CDR3, FR2, FR3 |
(B) Acquired N-glycan motifs in the light chain of the BCR-Ig of FL samples | |||
Reference | Frequency Acquired N-Glycan Motif | Isotype of BCR-Ig | Location Acquired N-Glycan Motif |
Zhu et al., 2002 [23] | 10 out of 17 (59%) | Ig | |
Belessi et al., 2002 [24] | 0 out of 10 (0%) | Ig | |
Radcliffe et al., 2007 [25] | 2 out of 6 (33%) | Ig | CDR2, FR4 |
McCann et al., 2008 [26] | 2 out of 7 (29%) | Ig | CDR1, CDR3 |
Koning et al., 2019 [28] * | 12 out of 18 (67%) | IgA, IgM, IgG | CDR1, CDR2, CDR3, FR1, FR3 |
Lim et al., 2021 [29] | 0 out of 1 (0%) | IgM | |
Haebe et al., 2023 [20] | 7 out of 17 (41%) | IgM/IgG | |
(C) Acquired N-glycan motifs in the BCR-Ig of other (malignant) B cells | |||
Reference | Subtype | Frequency Acquired N-Glycan Motif | |
Normal B cells | |||
Zhu et al., 2002 [23] | - | 7 out of 75 (9%) | |
Burkitt’s lymphoma | |||
Zabalegui et al., 2004 [19] | BL | 1 out of 4 (25%) | |
Zhu et al., 2003 [30] | endemic BL | 14 out of 17 (82%) | |
Zhu et al., 2003 [30] | sporadic BL | 10 out of 23 (43%) | |
Zhu et al., 2003 [30] | AIDS-BL | 3 out of 9 (33%) | |
Forconi et al., 2004 [31] | AIDS-BL | 5 out of 12 (42%) | |
Zhu et al., 2003 [30] | Iranian-BL | 4 out of 4 (80%) | |
Diffuse large B cell lymphoma | |||
Zhu et al., 2002 [23] | DLBCL | 13 out of 32 (41%) | |
Zabalegui et al., 2004 [19] | DLBCL | 0 out of 6 (0%) | |
Koning et al., 2019 [28] | DLBCL | 0 out of 8 (0%) | |
Chiodin et al., 2021 [32] | DLBCL | GCB: 55 out of 92 (60%), ABC: 23 out of 180 (13%) | |
Forconi et al., 2004 [31] | AIDS-DLBCL | 11 out of 24 (46%) | |
Forconi et al., 2004 [31] | PT-DLBCL | 3 out of 15 (20%) | |
Koning et al., 2019 [28] | PC-DLBCL | 0 out of 8 (0%) | |
Other lymphoma | |||
Zhu et al., 2002 [23] | CLL | 5 out of 40 (13%) | |
Zabalegui et al., 2004 [19] | MCL | 1 out of 3 (30%) | |
Zabalegui et al., 2004 [19] | SLL | 0 out of 4 (0%) | |
Zhu et al., 2003 [30] | MALT | 3 out of 34 (9%) | |
Forconi et al., 2004 [31] | AIDS-NHL | 16 out of 36 (44%) | |
Forconi et al., 2004 [31] | PTLD | 4 out of 19 (21%) | |
Forconi et al., 2004 [31] | P-PTLD | 1 out of 4 (25%) | |
Multiple myeloma | |||
Zhu et al., 2002 [23] | MM | 5 out of 64 (8%) | |
Belessi et al., 2002 [24] | MM | 2 out of 17 (12%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiersma, V.R. Finding the Sweet Spot for the Treatment of B Cell Malignancies. Cancers 2025, 17, 3366. https://doi.org/10.3390/cancers17203366
Wiersma VR. Finding the Sweet Spot for the Treatment of B Cell Malignancies. Cancers. 2025; 17(20):3366. https://doi.org/10.3390/cancers17203366
Chicago/Turabian StyleWiersma, Valerie R. 2025. "Finding the Sweet Spot for the Treatment of B Cell Malignancies" Cancers 17, no. 20: 3366. https://doi.org/10.3390/cancers17203366
APA StyleWiersma, V. R. (2025). Finding the Sweet Spot for the Treatment of B Cell Malignancies. Cancers, 17(20), 3366. https://doi.org/10.3390/cancers17203366