Effect of Conization Prior to Radical Hysterectomy on Overall and Progression-Free Survival in Early-Stage Cervical Cancer: A Propensity Score-Matched Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Exposure and Outcomes
2.3. Covariates
2.4. Handling of Missing Data
2.5. Propensity-Score Estimation and Matching
2.6. Survival Analysis
3. Results
3.1. Patient Population and Baseline Characteristics
3.2. Conization Margin and Residual Tumor
3.3. Survival Outcomes Comparison Between Patients With and Without Conization
3.4. Subgroup Analysis Excluding Patients with High-Risk Histopathological Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cibula, D.; Raspollini, M.R.; Planchamp, F.; Centeno, C.; Chargari, C.; Felix, A.; Fischerova, D.; Jahnn-Kuch, D.; Joly, F.; Kohler, C.; et al. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer—Update 2023. Int. J. Gynecol. Cancer 2023, 33, 649–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, B.; Li, W.; Li, P. The efficacy of pre-operative conization in patients undergoing surgical treatment for early-stage cervical cancer: A meta-analysis. Eur. J. Surg. Oncol. 2023, 49, 106995. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ye, L.; Fu, Y.; You, B.; Lu, W. Radical hysterectomy with preoperative conization in early-stage cervical cancer: A systematic review and pairwise and network meta-analysis. J. Minim. Invasive Gynecol. 2024, 31, 193–199. [Google Scholar] [CrossRef]
- Querleu, D.; Morrow, C.P. Classification of radical hysterectomy. Lancet Oncol. 2008, 9, 297–303. [Google Scholar] [CrossRef]
- Cibula, D.; Abu-Rustum, N.R.; Benedetti-Panici, P.; Kohler, C.; Raspagliesi, F.; Querleu, D.; Morrow, C.P. New classification system of radical hysterectomy: Emphasis on a three-dimensional anatomic template for parametrial resection. Gynecol. Oncol. 2011, 122, 264–268. [Google Scholar] [CrossRef]
- Querleu, D.; Cibula, D.; Abu-Rustum, N.R. 2017 update on the Querleu-Morrow classification of radical hysterectomy. Ann. Surg. Oncol. 2017, 24, 3406–3412. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Schwartz, L.H.; Litiere, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1—Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef]
- Sedlis, A.; Bundy, B.N.; Rotman, M.Z.; Lentz, S.S.; Muderspach, L.I.; Zaino, R.J. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: A Gynecologic Oncology Group Study. Gynecol. Oncol. 1999, 73, 177–183. [Google Scholar] [CrossRef]
- Peters, W.A., 3rd; Liu, P.Y.; Barrett, R.J., 2nd; Stock, R.J.; Monk, B.J.; Berek, J.S.; Souhami, L.; Grigsby, P.; Gordon, W., Jr.; Alberts, D.S. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J. Clin. Oncol. 2000, 18, 1606–1613. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org (accessed on 11 October 2025).
- Bogani, G.; Cromi, A.; Uccella, S.; Serati, M.; Casarin, J.; Pinelli, C.; Ghezzi, F. Laparoscopic versus open abdominal management of cervical cancer: Long-term results from a propensity-matched analysis. J. Minim. Invasive Gynecol. 2014, 21, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Diver, E.; Hinchcliff, E.; Gockley, A.; Melamed, A.; Contrino, L.; Feldman, S.; Growdon, W. Minimally invasive radical hysterectomy for cervical cancer is associated with reduced morbidity and similar survival outcomes compared with laparotomy. J. Minim. Invasive Gynecol. 2017, 24, 402–406. [Google Scholar] [CrossRef]
- Ramirez, P.T.; Frumovitz, M.; Pareja, R.; Lopez, A.; Vieira, M.; Ribeiro, R.; Buda, A.; Yan, X.; Shuzhong, Y.; Chetty, N.; et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N. Engl. J. Med. 2018, 379, 1895–1904. [Google Scholar] [CrossRef]
- Lin, F.; Pan, L.; Li, L.; Li, D.; Mo, L. Effects of a simulated CO2 pneumoperitoneum environment on the proliferation, apoptosis, and metastasis of cervical cancer cells in vitro. Med. Sci. Monit. 2014, 20, 2497–2503. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.W.; Chang, S.J.; Piao, X.; Paek, J.; Lee, Y.; Lee, E.J.; Chun, M.; Ryu, H.S. Patterns of recurrence and survival after abdominal versus laparoscopic/robotic radical hysterectomy in patients with early cervical cancer. J. Obstet. Gynaecol. Res. 2016, 42, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Kohler, C.; Hertel, H.; Herrmann, J.; Marnitz, S.; Mallmann, P.; Favero, G.; Plaikner, A.; Martus, P.; Gajda, M.; Schneider, A. Laparoscopic radical hysterectomy with transvaginal closure of vaginal cuff—A multicenter analysis. Int. J. Gynecol. Cancer 2019, 29, 845–850. [Google Scholar] [CrossRef]
- Sert, B.M.; Kristensen, G.B.; Kleppe, A.; Dorum, A. Long-term oncological outcomes and recurrence patterns in early-stage cervical cancer treated with minimally invasive versus abdominal radical hysterectomy: The Norwegian Radium Hospital experience. Gynecol. Oncol. 2021, 162, 284–291. [Google Scholar] [CrossRef]
- Li, R.Z.; Sun, L.F.; Li, R.; Wang, H.J. Survival after minimally invasive radical hysterectomy without using uterine manipulator for early-stage cervical cancer: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2023, 130, 176–183. [Google Scholar] [CrossRef]
- Bizzarri, N.; Pedone Anchora, L.; Kucukmetin, A.; Ratnavelu, N.; Korompelis, P.; Carbone, V.; Fedele, C.; Bruno, M.; Vizzielli, G.; Gallotta, V.; et al. Protective role of conization before radical hysterectomy in early-stage cervical cancer: A propensity-score matching study. Ann. Surg. Oncol. 2021, 28, 3585–3594. [Google Scholar] [CrossRef]
- Li, J.; Gong, X.; Li, P.; Ouyang, X.; Chang, X.; Tang, J. Preoperative conization may have a positive impact on survival in early-stage cervical cancer: A propensity-matched study. Oncol. Res. Treat. 2021, 44, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.S.; Min, J.S.; Song, K.H.; Choi, C.H.; Kim, T.J.; Lee, J.W.; Kim, B.G.; Lee, Y.Y. The role of conization before radical hysterectomy in cervical cancer including high risk factors of recurrence: Propensity score matching. Cancers 2022, 14, 3863. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Choi, B.R.; Kim, H.S.; Chung, H.H.; Kim, J.W.; Park, N.H.; Song, Y.S.; Choi, C.H.; Lee, M. Cervical conization before primary radical hysterectomy has a protective effect on disease recurrence in early cervical cancer: A two-center matched cohort study according to surgical approach. Gynecol. Oncol. 2022, 164, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Chacon, E.; Manzour, N.; Zanagnolo, V.; Querleu, D.; Nunez-Cordoba, J.M.; Martin-Calvo, N.; Capilna, M.E.; Fagotti, A.; Kucukmetin, A.; Mom, C.; et al. SUCCOR cone study: Conization before radical hysterectomy. Int. J. Gynecol. Cancer 2022, 32, 117–124. [Google Scholar] [CrossRef]
- Gennari, P.; Tchaikovski, S.; Meszaros, J.; Gerken, M.; Klinkhammer-Schalke, M.; Toth, G.; Ortmann, O.; Eggemann, H.; Ignatov, A. Protective effect of pre-operative conization in patients undergoing surgical treatment for early-stage cervical cancer. Gynecol. Oncol. 2022, 166, 57–60. [Google Scholar] [CrossRef]
- Kim, S.I.; Nam, S.H.; Hwangbo, S.; Kim, Y.; Cho, H.W.; Suh, D.H.; Song, J.Y.; Kim, J.W.; Choi, C.H.; Kim, D.Y.; et al. Conization before radical hysterectomy in patients with early-stage cervical cancer: A Korean multicenter study (COBRA-R). Gynecol. Oncol. 2023, 173, 88–97. [Google Scholar] [CrossRef]
- Mignot, F.; Gouy, S.; Schernberg, A.; Bockel, S.; Espenel, S.; Maulard, A.; Leary, A.; Genestie, C.; Annede, P.; Kissel, M.; et al. Comprehensive analysis of patient outcome after local recurrence of locally advanced cervical cancer treated with concomitant chemoradiation and image-guided adaptive brachytherapy. Gynecol. Oncol. 2020, 157, 644–648. [Google Scholar] [CrossRef]
- Webb, M.J.; Symmonds, R.E. Radical hysterectomy: Influence of recent conization on morbidity and complications. Obstet. Gynecol. 1979, 53, 290–292. [Google Scholar]
- Samlal, R.A.; van der Velden, J.; Schilthuis, M.S.; Ten Kate, F.J.; Hart, A.A.; Lammes, F.B. Influence of diagnostic conization on surgical morbidity and survival in patients undergoing radical hysterectomy for stage IB and IIA cervical carcinoma. Eur. J. Gynaecol. Oncol. 1997, 18, 478–481. [Google Scholar]
- Orr, J.W., Jr.; Shingleton, H.M.; Hatch, K.D.; Mann, W.J., Jr.; Austin, J.M., Jr.; Soong, S.J. Correlation of perioperative morbidity and conization to radical hysterectomy interval. Obstet. Gynecol. 1982, 59, 726–731. [Google Scholar]





| Variable | Before Matching | After Matching | ||||
|---|---|---|---|---|---|---|
| Conization (n = 314) | Control (n = 528) | p-Value | Conization (n = 274) | Control (n = 274) | p-Value | |
| Age: median (IQR), years | 48.5 (13.0) | 47.0 (13.0) | 0.157 | 49.0 (13.0) | 47.0 (12.0) | 0.763 |
| Parity: median (IQR) | 2 (1) | 2 (1) | 0.871 | 2 (1) | 2 (1) | 0.510 |
| Menopause | 122 (38.9%) | 185 (35.0%) | 0.299 | 107 (39.1%) | 96 (35.0%) | 0.376 |
| Radical hysterectomy | 0.079 | 0.102 | ||||
| Type B | 18 (5.8%) | 16 (3.0%) | 17 (6.2%) | 8 (2.9%) | ||
| Type C | 295 (94.2%) | 512 (97.0%) | 257 (93.8%) | 266 (97.1%) | ||
| Pathologic maximum tumor diameter: median (IQR), cm | 1.6 (1.6) | 2.5 (1.4) | <0.001 * | 1.7 (1.7) | 2.0 (1.4) | 0.159 |
| Histological type | 0.016 * | 0.935 | ||||
| Squamous | 231 (73.6%) | 340 (64.4%) | 194 (70.8%) | 195 (71.2%) | ||
| Adeno | 66 (21.0%) | 140 (26.5%) | 63 (23.0%) | 64 (23.4%) | ||
| Adenosquamous | 17 (5.4%) | 48 (9.1%) | 17 (6.2%) | 15 (5.5%) | ||
| Histological grade | 0.001 * | 0.001 * | ||||
| Well differentiated | 49 (25.3%) | 132 (26.9%) | 47 (25.7%) | 72 (28.3%) | ||
| Moderately differentiated | 130 (67.0%) | 267 (54.5%) | 123 (67.2%) | 135 (67.2%) | ||
| Poorly differentiated | 15 (7.7%) | 91 (18.6%) | 13 (7.1%) | 47 (7.1%) | ||
| LVSI | 171 (68.7%) | 323 (72.3%) | 0.362 | 151 (68.3%) | 139 (63.2%) | 0.299 |
| Depth of stromal invasion | 0.111 | 0.502 | ||||
| Inner1/3 | 37 (18.5%) | 73 (14.3%) | 35 (18.6%) | 59 (22.8%) | ||
| Middle1/3 | 55 (27.5%) | 119 (23.3%) | 49 (26.1%) | 69 (26.6%) | ||
| Outer1/3 | 108 (54.0%) | 319 (62.4%) | 104 (55.3%) | 131 (50.6%) | ||
| Vaginal metastasis | 22 (7.0%) | 89 (16.9%) | <0.001 * | 22 (8.0%) | 26 (9.5%) | 0.826 |
| Adnexal metastasis | 0 (0.0%) | 9 (1.7%) | 0.058 | 0 (0.0%) | 0 (0.0%) | 0.662 |
| Uterine corpus metastasis | 6 (1.9%) | 14 (2.7%) | 0.216 | 6 (2.2%) | 3 (1.1%) | 0.383 |
| Pelvic node metastasis | 36 (11.5%) | 97 (18.4%) | 0.011 * | 35 (12.8%) | 31 (11.3%) | 0.694 |
| Parametrial metastasis | 35 (11.2%) | 104 (19.7%) | 0.002 * | 35 (12.8%) | 34 (12.4%) | 1.000 |
| Positive vaginal margin | 8 (2.5%) | 25 (4.7%) | 0.249 | 8 (2.9%) | 7 (2.6%) | 0.676 |
| Positive parametrial margin | 0 (0.0%) | 5 (0.9%) | 0.164 | 0 (0.0%) | 0 (0.0%) | 1.000 |
| Operative time:median (IQR), min | 210.0 (51.3) | 220.0 (55.0) | 0.022 * | 211.0 (53.0) | 220.0 (56.5) | 0.273 |
| Estimated blood loss: median (IQR), mL | 400.0 (400.0) | 400.0 (500.0) | 0.568 | 400.0 (425.0) | 400.0 (500.0) | 0.804 |
| Operative complications | 30 (9.6%) | 57 (10.8%) | 0.643 | 28 (10.2%) | 30 (10.9%) | 0.890 |
| Adjuvant treatment | 98 (31.2%) | 262 (50.0%) | <0.001 * | 96 (35.0%) | 98 (35.8%) | 0.929 |
| Adjuvant radiation | <0.001 * | 0.903 | ||||
| Brachytherapy alone | 10 (3.2%) | 20 (3.8%) | 10 (3.6%) | 12 (4.4%) | ||
| WPRT ± brachytherapy | 83 (26.4%) | 226 (43.5%) | 81 (29.6%) | 81 (29.7%) | ||
| Adjuvant chemotherapy | 70 (22.3%) | 186 (35.5%) | <0.001 * | 68 (24.8%) | 63 (23.0%) | 0.689 |
| Adjuvant CCRT | 9 (2.9%) | 33 (6.3%) | 0.039 * | 9 (3.3%) | 6 (2.2%) | 0.606 |
| Outcomes | Before Matching | After Matching | ||||
|---|---|---|---|---|---|---|
| Conization (n = 314) | Control (n = 528) | p-Value | Conization (n = 274) | Control (n = 274) | p-Value | |
| Recurrence | 16 (5.1%) | 54 (10.3%) | 0.013 * | 15 (5.5%) | 23 (8.4%) | 0.235 |
| Site of recurrence | 0.037 * | 0.533 | ||||
| Pelvis | 10 (3.2%) | 26 (4.9%) | 9 (3.3%) | 14 (5.1%) | ||
| Distant metastasis | 4 (1.3%) | 22 (4.2%) | 4 (1.5%) | 7 (2.6%) | ||
| Pelvis + Distant metastasis | 2 (0.6%) | 7 (1.3%) | 2 (0.7%) | 3 (1.1%) | ||
| Death | 36 (11.5%) | 108 (20.5%) | 0.001 * | 30 (10.9%) | 47 (17.2%) | 0.049 * |
| Follow time: median (IQR), months | 74.7 (80.1) | 73.7 (86.3) | 0.384 | 73.6 (79.0) | 73.2 (87.7) | 0.834 |
| Outcomes | Before Matching | After Matching | ||||
|---|---|---|---|---|---|---|
| Conization (n = 238) | Control (n = 346) | p-Value | Conization (n = 202) | Control (n = 202) | p-Value | |
| Recurrence | 7 (3.0%) | 31 (9.0%) | 0.006 * | 7 (3.5%) | 11 (5.5%) | 0.463 |
| Site of recurrence | 0.012 * | 0.187 | ||||
| Pelvis | 6 (2.5%) | 18 (5.2%) | 6 (3.0%) | 6 (3.0%) | ||
| Distant metastasis | 1 (0.4%) | 11 (3.2%) | 1 (0.5%) | 6 (3.0%) | ||
| Pelvis + Distant metastasis | 0 (0.0%) | 3 (0.9%) | 0 (0.0%) | 0 (0.0%) | ||
| Death | 21 (8.8%) | 62 (17.9%) | 0.003 * | 16 (7.9%) | 29 (14.4%) | 0.058 |
| Follow time:median (IQR), months | 75.8 (83.5) | 74.2 (86.8) | 0.179 | 80.9 (94.8) | 74.9 (83.8) | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachadech, N.; Phookiaw, S.; Charoenkwan, K. Effect of Conization Prior to Radical Hysterectomy on Overall and Progression-Free Survival in Early-Stage Cervical Cancer: A Propensity Score-Matched Analysis. Cancers 2025, 17, 3360. https://doi.org/10.3390/cancers17203360
Rachadech N, Phookiaw S, Charoenkwan K. Effect of Conization Prior to Radical Hysterectomy on Overall and Progression-Free Survival in Early-Stage Cervical Cancer: A Propensity Score-Matched Analysis. Cancers. 2025; 17(20):3360. https://doi.org/10.3390/cancers17203360
Chicago/Turabian StyleRachadech, Nutthanun, Sunisa Phookiaw, and Kittipat Charoenkwan. 2025. "Effect of Conization Prior to Radical Hysterectomy on Overall and Progression-Free Survival in Early-Stage Cervical Cancer: A Propensity Score-Matched Analysis" Cancers 17, no. 20: 3360. https://doi.org/10.3390/cancers17203360
APA StyleRachadech, N., Phookiaw, S., & Charoenkwan, K. (2025). Effect of Conization Prior to Radical Hysterectomy on Overall and Progression-Free Survival in Early-Stage Cervical Cancer: A Propensity Score-Matched Analysis. Cancers, 17(20), 3360. https://doi.org/10.3390/cancers17203360

