Clinical Impact of FDG PET/CT in Pulmonary Nodule Characterization: Current Perspectives on Dual-Time-Point Imaging and Semi-Quantitative Imaging Metrics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Qualitative Analysis
3.2. Semi-Quantitative Assessment
3.3. Semi-Quantitative Metrics—SUVs
3.4. Novel Semi-Quantitative Metrics Beyond SUVmax—MTV and TLG
3.5. Dual-Time-Point PET/CT Imaging (DTPI)
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PN | pulmonary nodule |
18F FDG | 18 Fluorodeoxyglucose |
PET/CT | positron emission tomography/computed tomography |
SUV | standardized uptake value |
SUVmax | standardized uptake value maximum |
SUVmean | standardized uptake value mean |
SUVpeak | standardized uptake value peak |
MTV | metabolic tumor volume |
TLG | total lesion glycolysis |
DTPI | dual time point imaging |
ΔSUV | SUV2 (delayed phase) -SUV1 (early phase) |
ΔMTV | MTV2 (delayed phase) -MTV1 (early phase) |
ΔTLG | TLG2 (delayed phase) -TLG1 (early phase) |
WHO | World Health Organization |
ROI | region of interest |
OS | overall survival |
CT | computed tomography |
GLUT | glucose transporter |
AI | |
PETMR | |
Radiomics |
References
- Zhou, J.; Xu, Y.; Liu, J.; Feng, L.; Yu, J.; Chen, D. Global burden of lung cancer in 2022 and projections to 2050: Incidence and mortality estimate from GLOBOCAN. Cancer Epidemiol. 2024, 93, 102693. [Google Scholar] [CrossRef]
- Weir-McCall, J.R.; Harris, S.; Miles, K.A.; Qureshi, N.R.; Rintoul, R.C.; Dizdarevic, S.; Pike, L.; Cheow, H.K.; Gilbert, F.J.; SPUtNIk Investigators. Impact of solitary pulmonary nodule size on qualitative and quantitative assessment using 18F-fluorodeoxyglucose PET/CT: The SPUTNIK trial on behalf of the SPUtNIk investigators. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Zhang, H.; Wang, B.; Zhong, F.; Wang, S.; Liao, M. Comparison of CT-Guided Core Needle Biopsy in Pulmonary Ground-Glass and Solid Nodules Based on Propensity Score Matching Analysis. Technol. Cancer Res. Treat. 2022, 21, 15330338221085357. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 2009, 50, 11S–20S. [Google Scholar] [CrossRef]
- Veronesi, G.; Travaini, L.L.; Maisonneuve, P.; Rampinelli, C.; Bertolotti, R.; Spaggiari, L.; Bellomi, M.; Paganelli, G. Positron emission tomography in the diagnostic work-up of screening-detected lung nodules. Eur. Respir. J. 2015, 45, 501–510. [Google Scholar] [CrossRef]
- Pini, C.; Kirienko, M.; Gelardi, F.; Bossi, P.; Rahal, D.; Toschi, L.; Ninati, G.; Rodari, M.; Marulli, G.; Antunovic, L.; et al. Challenging the significance of SUV-based parameters in a large-scale retrospective study on lung lesions. Cancer Imaging 2024, 24, 162–173. [Google Scholar] [CrossRef]
- Khalaf, M.; Abdel-Nabi, H.; Baker, J.; Shao, Y.; Lamonica, D.; Gona, J. Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. J. Hematol. Oncol. 2008, 1, 13–20. [Google Scholar] [CrossRef]
- Lowe, V.J.; Hoffman, J.M.; Delong, D.M.; Patz, E.F.; Coleman, R.E. Semiquantitative and Visual Analysis of FDG-PET Images in Pulmonary Abnormalities. J. Nucl. Med. 1994, 35, 1771–1776. [Google Scholar] [PubMed]
- Shin, S.; Park, J.S.; Kim, H.K.; Choi, Y.S.; Shim, Y.M.; Lee, H.Y.; Kim, J. Approach to Metastasis-Suspected Nodule Accompanying Operable Non-Small Cell Lung Cancer. Thorac. Cardiovasc. Surg. 2014, 62, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, B.S.S.; Binboga, A.B.; Onay, M.; Altay, C.M.; Kara, A.B. The role of 18F-fluorodeoxyglucose positron emission tomography/ computed tomography SUVMax in deciding on a computed tomography-guided lung biopsy in solid solitary pulmonary nodules. Rev. Assoc. Med. Bras. 2025, 71, e20241741. [Google Scholar] [CrossRef]
- Pellegrino, S.; Fonti, R.; Mazziotti, E.; Piccin, L.; Mozzillo, E.; Damiano, V.; Matano, E.; De Placido, S.; Del Vecchio, S. Total metabolic tumor volume by 18F-FDG PET/CT for the prediction of outcome in patients with non-small cell lung cancer. Ann. Nucl. Med. 2019, 33, 937–944. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Han, J.; Lin, Q.; Zhao, L.; Li, Q.; Zhao, J.; Li, H.; Wang, Y.; Hu, C. A machine learning-based PET/CT model for automatic diagnosis of early-stage lung cancer. Front. Oncol. 2023, 13, 1192908. [Google Scholar] [CrossRef]
- Elsadawy, M.E.I.; Omar, Y.; Taha, N.M. Bronchogenic carcinoma: The added value of FDG PET/CT advanced volumetric and metabolic parameters in initial evaluation and their impact on prognosis and clinical outcome. Egypt. J. Radiol. Nucl. Med. 2024, 55, 39–50. [Google Scholar] [CrossRef]
- Larson, S.M.; Erdi, Y.; Akhurst, T.; Mazumdar, M.; Macapinlac, H.A.; Finn, R.D.; Casilla, C.; Fazzari, M.; Srivastava, N.; Yeung, H.W.; et al. Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging: The Visual Response Score and the Change in Total Lesion Glycolysis. Clin. Positron. Imaging 1999, 2, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Van Heek, L.; Stuka, C.; Kaul, H.; Müller, H.; Mettler, J.; Hitz, F.; Baues, C.; Fuchs, M.; Borchmann, P.; Engert, A.; et al. Predictive value of baseline metabolic tumor volume in early-stage favorable Hodgkin Lymphoma—Data from the prospective, multicenter phase III HD16 trial. BMC Cancer 2022, 22, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Berghmans, T.; Dusart, M.; Paesmans, M.; Hossein-Foucher, C.; Buvat, I.; Castaigne, C.; Sherpereel, A.; Mascaux, C.; Moreau, M.; Roelandts, M.; et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): A systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J. Thorac. Oncol. 2008, 3, 6–12. [Google Scholar] [PubMed]
- Wen, W.; Piao, Y.; Xu, D.; Li, X. Prognostic Value of MTV and TLG of 18F-FDG PET in Patients with Stage I and II Non-Small-Cell Lung Cancer: A Meta-Analysis. Contrast Media Mol. Imaging 2021, 2021, 7528971. [Google Scholar] [CrossRef]
- Gungor, S.; Gunaydin, U.M.; Yakar, H.I.; Simsek, E.T.; Akbiyik, A.G.; Keskin, H. Total Lesion Glycolysis Obtained by FDG PET/CT in Diagnosing Solitary Pulmonary Nodules. J. Coll. Physicians Surg. Pak. 2023, 33, 27–31. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Lei, J.; Tian, J.; Zhai, Y. Dual time point 18FDG-PET/CT versus single time point 18FDG-PET/CT for the differential diagnosis of pulmonary nodules: A meta-analysis. Acta Radiol. 2013, 54, 770–777. [Google Scholar] [CrossRef]
- Grisanti, F.; Zulueta, J.; Rosales, J.J.; Morales, M.I.; Sancho, L.; Lozano, M.D.; Guzman, M.; Garcia-Velloso, M.J. Diagnostic accuracy of visual analysis versus dual time point imaging with 18F FDG PET/CT for the characterization of indeterminate pulmonary nodules with low uptake. Rev. Esp. Med. Nucl. Imagen Mol. 2021, 40, 155–160. [Google Scholar] [CrossRef]
- Matthies, A.; Hickeson, M.; Cuchiara, A.; Alavi, A. Dual Time Point 18 F-FDG PET for the Evaluation of Pulmonary Nodules. J. Nucl. Med. 2002, 43, 871–875. [Google Scholar]
- Wumener, X.; Zhang, Y.; Zang, Z.; Du, F.; Ye, X.; Zhang, M.; Liu, M.; Zhao, J.; Sun, T.; Liang, Y. The value of dynamic FDG PET/CT in the differential diagnosis of lung cancer and predicting EGFR mutations. BMC Pulm. Med. 2024, 24, 227–236. [Google Scholar] [CrossRef]
- Shimizu, K.; Okita, R.; Saisho, S.; Yukawa, T.; Maeda, A.; Nojima, Y.; Nakata, M. Clinical significance of dual-time-point 18F-FDG PET imaging in resectable non-small cell lung cancer. Ann. Nucl. Med. 2015, 29, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Alkhawaldeh, K.; Bural, G.; Kumar, R.; Alavi, A. Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 246–252. [Google Scholar] [CrossRef]
- Li, X.; Jin, F.; Zhou, T.; Ru, Y.; Gu, F.; Wang, L.; Chen, J. Diagnostic Accuracy of CT-Guided Percutaneous Pulmonary Biopsy for Distinguishing Benign and Malignant Solitary Pulmonary Nodules. Altern. Ther. Health Med. 2023, 29, 918–923. [Google Scholar]
- Haidey, J.; Abele, J.T. FDG PET/CT Performed Prior to CT-Guided Percutaneous Biopsy of Lung Masses is Associated With an Increased Diagnostic Rate and Often Identifies Alternate Safer Sites to Biopsy. Can. Assoc. Radiol. J. 2025, 76, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, K.; Bellos, I.; Konstantelou, E.; Yusuf, G.; Hardavella, G.; Jacob, T.; Goldman, A.; Senbanjo, T.; Vlahos, I. 18F-FDG PET/CT anatomic and metabolic guidance in CT-guided lung biopsies. Eur. J. Radiol. 2024, 171, 111315. [Google Scholar] [CrossRef] [PubMed]
- Corica, F.; De Feo, M.S.; Stazza, M.L.; Rondini, M.; Marongiu, A.; Frantellizzi, V.; Nuvoli, S.; Farcomeni, A.; De Vincentis, G.; Spanu, A. Qualitative and Semiquantitative Parameters of 18F-FDG-PET/CT as Predictors of Malignancy in Patients with Solitary Pulmonary Nodule. Cancers 2023, 15, 1000. [Google Scholar] [CrossRef]
- Nomori, H.; Watanabe, K.; Ohtsuka, T.; Naruke, T.; Suemasu, K.; Uno, K. Evaluation of F-18 fluorodeoxyglucose uptake by positron emission tomography for pulmonary ground-glass opacity lesions. Ann. Thorac. Surg. 2004, 78, 1928–1932. [Google Scholar]
- Chen, H.H.W.; Chiu, N.T.; Su, W.C.; Guo, H.R.; Lee, B.F. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012, 264, 559–566. [Google Scholar] [CrossRef]
- Sugawara, Y.; Zasadny, K.R.; Neuhoff, A.W.; Wahl, R.L. Reevaluation of the Standardized Uptake Value for FDG: Variations with body weight and methods for correction. Radiology 1999, 213, 521–525. [Google Scholar] [CrossRef]
- Doerr, F.; Giese, A.; Höpker, K.; Menghesha, H.; Schlachtenberger, G.; Grapatsas, K.; Baldes, N.; Baldus, C.J.; Hagmeyer, L.; Fallouh, H.; et al. LIONS PREY: A New Logistic Scoring System for the Prediction of Malignant Pulmonary Nodules. Cancers 2024, 16, 729. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chen, J.H.; Ding, H.J.; Liang, J.A.; Yeh, J.J.; Kao, C.H. Potential value of dual-time-point 18F-FDG PET compared with initial single-time-point imaging in differentiating malignant from benign pulmonary nodules: A systematic review and meta-analysis. Nucl. Med. Commun. 2012, 33, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Barger, R.L., Jr.; Nandalur, K.R. Diagnostic performance of dual-time 18F-FDG PET in the diagnosis of pulmonary nodules: A meta-analysis. Acad. Radiol. 2012, 19, 153–158. [Google Scholar] [CrossRef]
- Gupta, M.; Fandy, E.V.; Ghindani, K. Early lung cancer screening: A comparative study of CNN and radiomics models with pulmonary nodule biologic characterization. medRxiv 2024, 6, 2024-07. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Du, B.; Li, X.; Li, Y. Predicting malignant risk of ground glass nodules using convolutional neural networks based on dual time point 18FFDG PET/CT. Cancer Imaging 2025, 25, 17. [Google Scholar] [CrossRef]
- Salihoğlu, Y.; Erdemir, R.; Puren, B.; Ozdemir, S.; Uyulan, C.; Erguzel, T.; Tekin, H. Diagnostic Performance of Machine Learning Models based on 18FFDG PET/CT Radiomic Features in the classification of solitary pulmonary nodules. Mol. Imaging Radionucl. Ther. 2022, 31, 82–88. [Google Scholar] [CrossRef]
- Mirshahvalad, S.A.; Meltser, U.; Basso Dias, A.B.; Ortega, C.; Yeung, J.; Veit-Hailbach, P. 18F FDG PET/MRI in detection of pulmonary malignancies: A systematic Review and Metaanalysis. Radiology 2023, 307, e221598. [Google Scholar] [CrossRef]
- Basu, S.; Zaidi, H.; Holm, S.; Alavi, A. Quantitative Techniques in PET-CT Imaging. Curr. Med. Imaging Rev. 2011, 7, 216–233. [Google Scholar] [CrossRef]
- Im, H.J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl. Med. Mol. Imaging 2018, 52, 5–15. [Google Scholar] [CrossRef]
- Thie, J.A. Understanding the Standardized Uptake Value, Its Methods, and Implications for Usage. J. Nucl. Med. 2004, 45, 1431–1434. [Google Scholar] [PubMed]
- Keyes, J.W. SUV: Standard uptake or silly useless value? J. Nucl. Med. 1995, 36, 1836–1839. [Google Scholar]
- Rogasch, J.M.M.; Hofheinz, F.; van Heek, L.; Voltin, C.A.; Boellaard, R.; Kobe, C. Influences on PET Quantification and Interpretation. Diagnostics 2022, 12, 451. [Google Scholar] [CrossRef]
- Cheng, G.; Torigian, D.A.; Zhuang, H.; Alavi, A. When should we recommend use of dual-time-point and delayed time-point imaging techniques in FDG PET? Eur. J. Nucl. Med. Mol Imaging 2013, 40, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Houshmand, S.; Jadvar, H.; Alavi, A. Dual-time-point imaging and delayed imaging in FDG PET/CT: Indications and pitfalls. PET Clin. 2016, 11, 289–303. [Google Scholar] [CrossRef]
- Gandhi, Z.; Gurram, P.; Amgai, B.; Lekkala, S.P.; Lokhandwala, A.; Manne, S.; Mohammed, A.; Koshiya, H.; Dewaswala, N.; Desai, R.; et al. Artificial intelligence and lung cancer: Impact on improving patient outcomes. Cancers 2023, 15, 5236. [Google Scholar] [CrossRef]
- Volpi, S.; Ali, J.M.; Tasker, A.; Peryt, A.; Aresu, G.; Coonar, A.S. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer. Ann. Transl. Med. 2018, 6, 95–103. [Google Scholar] [CrossRef]
- Safarian, A.; Mirshahvalad, S.A.; Nasrollahi, H.; Jung, T.; Pirich, C.; Arabi, H.; Beheshti, M. Impact of [18F] FDG PET/CT radiomics and artificial intelligence in clinical decision-making in lung cancer: Its current role. Semin. Nucl. Med. 2025, 55, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Li, K.; Yang, C.; Wang, Y.; Huang, R.; Gu, M.; Xiao, Y.; Huang, Y.; Chen, L. The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges. Front. Oncol. 2023, 13, 1133164. [Google Scholar] [CrossRef]
- Manafi-Farid, R.; Askari, E.; Shiri, I.; Rahmim, A.; Zaidi, H. [18F] FDG PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin. Nucl. Med. 2022, 52, 759–780. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, X.; Niu, R.; Gao, J.; Shi, Y.; Shao, X.; Wang, Y.; Shao, X. PET/CT radiomics and deep learning in the diagnosis of benign and malignant pulmonary nodules: Progress and challenges. Front. Oncol. 2024, 14, 1491762. [Google Scholar] [CrossRef]
- Biondetti Vangel, M.G.; Lahoud, R.M.; Furtado, F.S.; Rosen, B.R.; Groshar, D.; Canamaque, L.G.; Umutlu, L.; Zhang, E.W.; Mahmood, U.; Digumarthy, S.R.; et al. PET/MRI assessment of lung nodules in primary abdominal malignancies: Sensitivity and outcome analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1976–1986. [Google Scholar] [CrossRef]
Authors | Type of Study | Number of Patients | Parameters | Type of Analysis | Measurement | Results |
---|---|---|---|---|---|---|
Pini et al., 2024 [6] | Retrospective | 567 | SUV mean SUV max | Survival analysis | Survival | HR 0.99; p = 0.0001 |
Khalaf et al., 2008 [7] | Retrospective | 173 | SUV max ≥ 2.5 | Linear regression for different nodule sizes | Sensitivity Specificity Accuracy | For ≤1.0 cm [85%; 36%; 54%] For 1.1–2.0 cm [91%; 47%; 79%] For 2.1–3.0 cm [94%; 23%; 76%] For >3.0 cm [100%; 17%; 82%] |
Lowe et al., 1994 [8] | Retrospective | 93 | SUR max SUR average SUR visual | ROC | AUC | SUR max 0.96 SUR avg 0.95 SUR vis 0.92 |
Shin et al., 2014 [9] | Retrospective | 62 | Resections | Accurary | 32% | |
Ulusoy et al., 2025 [10] | Retrospective | 76 | SUV max | ROC | Sensitivity Specificity | 93.1% cut-off 7.05 83.3 cut-off 7.05 100% cut-off 4.85 66.7% cut-off 4.85 |
Pellegrino et al., 2019 [11] | Retrospective | 65 | TLG MTV | Multivariate ROC | AUC | TLG 0.76 ΜΤV 0.73 |
Wang et al., 2023 [12] | Retrospective | 187 | Age, gender, smoking history, maximum diameter, lobulation, spike, calcification, hole, GGO status, upper lobe location of the PNs, SUVmax, SUVmean, MTV (20%), MTV (40%), TLG (20%), and TLG (40%) | Machine learning | AUC Sensitivity | 86.5% 0.89 |
Elsadawy et al., 2024 [13] | Retrospective | 40 | SUVmax TLG MTV | ROC | Sensitivity Specificity | SUVmax [92%; 100%] TLG [92.3%; 100%] MTV [84.6%; 100%] |
Larson et al., 1999 [14] | Retrospective | 41 | ΔTLG SUVmax SUVaverage | Correlation | R | ΔTLG −ΔSUVmax: 0.73 ΔTLG −ΔSUVaver: 0.78 |
Van Heek et al., 2022 [15] | Prospective Lymphoma | 107 | MTV TLG | ROC | AUC | MTV 0.69 TLG 0.69 |
Berghmans et al., 2008 [16] | Systematic review | 1474 | SUV | Meta-analysis | HR | SUV cut-off 2.08 HR 2.27 [1.70–3.02] |
Wen et al., 2021 [17] | Systematic review + meta-analysis | 1292 | TLG MTV | Meta-analysis | HR Progression-free survival | TLG 2.02 [1.30–2.13] MTV 3.04 (1.92–4.81) |
Gungor et al., 2023 [18] | Retrospective | 80 | SUV TLG MTV | ROC | Sensitivity Specificity AUC PPV NPV | SUV [97.6; 63.2; 0.97; 74.5; 96.0) MTV [76.2; 78.9; 0.84; 80.0; 75.0] TLG [85.7; 92.1; 0.96; 92.3; 85.4] |
Zhang et al., 2013 [19] | Meta-analysis | 415 | 18FDG-PET/CT | Pooled analysis | Sensitivity Specificity Positive likelihood ratio (LRþ) Negative likelihood ratio (LR–) Diagnostic odds ratio | Sensitivity 79% Specificity 73% PLR 2.61 NLR 0.29 Diagnostic odds ratio 10.25 |
Grisanti et al., 2021 [20] | Retrospective | 43 | RI > 10% SUVmax > 1.0 SUVmax > 1.5 SUVmax > 2.0 SUVmax > 2.5 | ROC | Sensitivity Specificity PPV NPV Accuracy | RI 75.0; 73.7; 78.3; 70.0; 74.4] SUVmax > 1.0 [66.7; 26.3; 53.3; 38.5; 48.8.] SUVmax > 1.5 [33.3; 57.9; 50; 40.7; 44.2] SUVmax > 2.0 [20.8; 100; 100; 50; 55.8] SUVmax > 2.5 [25; 100; 100; 51.4; 58.1] |
Matthies et al., 2002 [21] | Prospective | 36 | SUV | Not reported | Sensitivity Specificity | Sensitivity 0.80 Specificity 0.94 |
Wumener et al., 2024 [22] | Prospective | 147 | SUV | ROC | Sensitivity Specificity AUC | SUV [0.661; 0.870; 0.819] |
Shimizu et al., 2015 [23] | Retrospective | 284 | SUV-E SUV-D RI | Survival | Hazard Ratio | SUV-E: HR [1.20; p = 0.106] SUV-D: HR [0.87; p = 0.117] RI: HR [4.03; p = 0.025] |
Alkhawaldeh et al., 2008 [24] | Retrospective | 265 | SUV1 ≥ 2.5 SUV2 ≥ 2.5 | ROC | Sensitivity Specificity Accuracy PPV NPV | SUV1 ≥ 2.5 [97; 58; 68; 46; 98] SUV2 ≥ 2.5 [84; 91; 89; 79; 93] |
Li et al., 2023 [25] | Retrospective | 112 | CT-CNB | Logistic regression | Sensitivity Specificity | Sensitivity 97.1% Specificity 100% |
Haidey et al., 2025 [26] | Retrospective | 547 | T-guided lung biopsy | Univariate analysis | Diagnostic rate | 90.8% |
Stefanidis et al., 2024 [27] | Retrospective | 340 | 18F-FDG PET/CT | Binary regression | Probability | Overall: 83.9% Malignant:95.8% |
Weir-McCall et al., 2021 [2] | Prospective | 355 | PETgrade SUVmax, SURBlood, SUVliver | ROC | AUC Sensitivity Specificity PPV NPV Accuracy | 0.87; 87.5%; 83.6%; 87.1%; 72.2%; 80.0% 0.87; 75.6%; 84.2%; 87.3%; 70.7%; 79.2% 0.87; 72.6%; 84.9% 87.3%; 68.5%; 77.7%; 84.5%; 77.9%; 84.5%; 77.9%; 81.8% |
An et al., 2022 [3] | Retrospective | 665 | CT-guided CNB | PMS | Accuracy Sensitivity Specificity PPV NPV | 78.6%; 94.5%; 100; 96.6% |
Veronesi et al., 2015 [5] | Prospective | 383 | PET CT | ROC | Sensitivity Specificity Accuracy | 64%; 89%; 76% |
Corica et al., 2023 [28] | Retrospective | 146 | SUVmax SUVmean MTV TLG | ROC | Sensitivity Specificity | 86.6%; 69.1% 79.1%, 76.3% 74.7%; 70.9% 66%; 83.6 |
Nomori et al., 2004 [29] | Prospective | 136 | FDG-PET | ROC | Sensitivity Specificity | 79%; 65% |
Chen et al., 2012 [30] | Prospective | 105 | MTV SUV SUVmean std SUVmax TLG | Survival | Progression-free survival Overall survival | PFS: 0% for TLG > 655 50% for TLG < 655 Overall survival: 58.8% for TLG > 655, 84.1% for TLG < 655 |
Shin et al., 2014 [9] | Retrospective | 62 | Pulmonary resection | Radiologic malignancy diagnosis | Accuracy | 32% |
Sugawara et al., 1999 [31] | Prospective | SUVbw SUVibw SUVlbm SUVbsa | Correlation between SUVs and weight | Pearson’s Rho | SUVbw Rho = 0.705 SUVibw Rho = −0.296 SUVlbm Rho = −0.010 SUVbsa Rho = 0.106 | |
Larson et al., 1999 [14] | Prospective | 41 | DeltaTLG SUV change SUV (max) | Correlation | Pearson’s Rho | DeltaTLG with % change in SUV Rho = 0.73 DeltaTLG with SUV(max) Rho = 0.78 |
Doerr et al., 2024 [32] | Prospective | 386 | Multi-parameter model | Multivariate ROC | Classification AUC | Classification: 96% AUC: 0.94 |
Lin et al., 2012 [33] | Systematic review and meta-analysis | 788 | DTP STP | SROC | AUC | DTP: 0.839 STP: 0.757 |
Zhou et al., 2024 [1] | Retrospective | 273 | SUVmax at interval 1, 2, 3, or 4 h | Not reported | Sensitivity Specificity Accuracy PPV NPV | 68.8%, 81.2%, 85.7%, and 71.4% 52.5%, 74.5%, 70.6%, and 65.0% 8.2%, 77.4%, 76.4%, and 67.6% 44.0%, 68.9%, 64.3%, and 58.8% 75.6%, 85.4%, 88.9%, and 76.5% |
Barger et al., 2012 [34] | Systematic review | 816 | Dual-time-point FDG-PE | Meta-analysis | Sensitivity Specificity | Sensitivity: 85% Specificity: 77% |
Gupta et al., 2024 [35] | Radiomics-based model | 36,300 | Images | SVM LASSO CNN | Accuracy AUC | SVM LASSO: 84.6%; 0.89 CNN: 98.47%; 0.998 |
Liu et al., 2025 [36] | Retrospective | 311 | Ground-glass nodules | CNN | Accuracy Specificity Sensitivity AUC | 84.8% 84.6% 84.9% 0.85 |
Salihoğlu et al., 2022 [37] | Retrospective | 48 | 18F-FDG PET/CT scan | Deep learning | Sensitivity AUC | 88% 0.81 |
Mirshahvalad et al., 2023 [38] | Systematic Review/meta analysis | 1278 | MRI, 18F-FDG PET/MRI | Hierarchical summary ROC | Sensitivity Specificity | MRI: 96%; 100% 18F-FDG PET/C: 99%; 99% |
Types of Standardized Uptake Values (SUVs) in FDG PET/CT | |
---|---|
By normaliztion | Body weight SUV (SUVbw) |
Lean body mass SUV (SUVlbm) | |
Body surface area SUV (SUVbsa) | |
By measurement | SUVmax |
SUVmean | |
SUVpeak | |
Novel semi-quantitative metrics | MTV |
TLG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapsoritakis, N.; Tsitoura, F.; Stathaki, M.; Bourogianni, O.; Georgoulias, P.; Barmparis, G.D.; Bertsias, A.; Tsironis, G.P.; Koukouraki, S. Clinical Impact of FDG PET/CT in Pulmonary Nodule Characterization: Current Perspectives on Dual-Time-Point Imaging and Semi-Quantitative Imaging Metrics. Cancers 2025, 17, 3353. https://doi.org/10.3390/cancers17203353
Kapsoritakis N, Tsitoura F, Stathaki M, Bourogianni O, Georgoulias P, Barmparis GD, Bertsias A, Tsironis GP, Koukouraki S. Clinical Impact of FDG PET/CT in Pulmonary Nodule Characterization: Current Perspectives on Dual-Time-Point Imaging and Semi-Quantitative Imaging Metrics. Cancers. 2025; 17(20):3353. https://doi.org/10.3390/cancers17203353
Chicago/Turabian StyleKapsoritakis, Nikolaos, Foteini Tsitoura, Maria Stathaki, Olga Bourogianni, Panagiotis Georgoulias, Georgios D. Barmparis, Antonios Bertsias, Giorgos P. Tsironis, and Sophia Koukouraki. 2025. "Clinical Impact of FDG PET/CT in Pulmonary Nodule Characterization: Current Perspectives on Dual-Time-Point Imaging and Semi-Quantitative Imaging Metrics" Cancers 17, no. 20: 3353. https://doi.org/10.3390/cancers17203353
APA StyleKapsoritakis, N., Tsitoura, F., Stathaki, M., Bourogianni, O., Georgoulias, P., Barmparis, G. D., Bertsias, A., Tsironis, G. P., & Koukouraki, S. (2025). Clinical Impact of FDG PET/CT in Pulmonary Nodule Characterization: Current Perspectives on Dual-Time-Point Imaging and Semi-Quantitative Imaging Metrics. Cancers, 17(20), 3353. https://doi.org/10.3390/cancers17203353