RNA-seq Splicing Profile of the CDH1 Gene and Its Impact on the Clinical Pathogenicity Classification of CDH1 Variants: A Description of Alternative and Pathogenic Splicing Patterns
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selected Patients
2.1.1. Description of CDH1 Alternative Splicing Patterns
2.1.2. Clinical and Family Data of Patients Carrying CDH1 Variants of Uncertain Significance with an Expected Effect on CDH1 Gene Splicing
2.2. RNA Extraction
2.3. Targeted RNA Sequencing Protocol
2.3.1. RNAseq Library Preparation and Sequencing
2.3.2. Bioinformatics Pipeline for RNAseq Data Analysis
2.3.3. Bioinformatic Validation of the Novel Described Isoforms
2.4. Validation of Highly Expressed CDH1 Alternative Spliced Transcripts
2.4.1. Reverse Transcription PCR (RT-PCR)
2.4.2. Crystal™ Digital PCR Quantification
2.5. Characterization of CDH1 Duplication of Exon 4 to Exon 11
2.5.1. RT-PCR and Sanger Sequencing
2.5.2. Bionano Optical Genome Mapping
2.6. Gene and Alternative Spliced Transcripts Nomenclature
3. Results
3.1. Description of Alternative Splicing Patterns of CDH1 Gene
3.2. Validation and Quantification of the Alternative Splicing Skip of CDH1 Exon 11 (Δ11) Using ddPCR
3.3. Characterization and Classification of CDH1 Exon 4 to Exon 11 Duplication
3.3.1. RNA Analysis Results (RT-PCR and Sanger Sequencing)
3.3.2. Bionano Optical Genome Mapping Results
3.3.3. RNA Study of CDH1 Splicing Variants of Uncertain Significance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCL | Lymphoblastoid Cell Line |
VUS | Variants of Uncertain Significance |
NMD | Nonsense-Mediated mRNA Decay |
HBOC | Hereditary Breast and Ovarian Cancer |
HDGC | Hereditary Diffuse Gastric Cancer syndrome |
FFPE | Formalin-Fixed Paraffin-Embedded |
References
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Revil, T.; Shkreta, L.; Chabot, B. Pre-mRNA alternative splicing in cancer: Functional impact, molecular mechanisms and therapeutic perspectives. Bull. Cancer 2006, 93, 909–919. [Google Scholar] [PubMed]
- Popp, M.W.; Maquat, L.E. Nonsense-mediated mRNA Decay and Cancer. Curr. Opin. Genet. Dev. 2018, 48, 44–50. [Google Scholar] [CrossRef]
- David, C.J.; Manley, J.L. Alternative pre-mRNA splicing regulation in cancer: Pathways and programs unhinged. Genes. Dev. 2010, 24, 2343–2364. [Google Scholar] [CrossRef]
- Davy, G.; Rousselin, A.; Goardon, N.; Castéra, L.; Harter, V.; Legros, A.; Muller, E.; Fouillet, R.; Brault, B.; Smirnova, A.S.; et al. Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer. Eur. J. Hum. Genet. EJHG 2017, 25, 1147–1154. [Google Scholar] [CrossRef]
- Frebourg, T. The challenge for the next generation of medical geneticists. Hum. Mutat. 2014, 35, 909–911. [Google Scholar] [CrossRef]
- Soukarieh, O.; Gaildrat, P.; Hamieh, M.; Drouet, A.; Baert-Desurmont, S.; Frébourg, T.; Tosi, M.; Martins, A. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet. 2016, 12, e1005756. [Google Scholar]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Fackenthal, J.D.; Yoshimatsu, T.; Zhang, B.; de Garibay, G.R.; Colombo, M.; De Vecchi, G.; Ayoub, S.C.; Lal, K.; Olopade, O.I.; Vega, A.; et al. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples. J. Med. Genet. 2016, 53, 548–558. [Google Scholar] [CrossRef]
- Colombo, M.; Blok, M.J.; Whiley, P.; Santamariña, M.; Gutiérrez-Enríquez, S.; Romero, A.; Garre, P.; Becker, A.; Smith, L.D.; De Vecchi, G.; et al. Comprehensive annotation of splice junctions supports pervasive alternative splicing at the BRCA1 locus: A report from the ENIGMA consortium. Hum. Mol. Genet. 2014, 23, 3666–3680. [Google Scholar] [CrossRef]
- Garcia-Pelaez, J.; Barbosa-Matos, R.; Lobo, S.; Dias, A.; Garrido, L.; Castedo, S.; Sousa, S.; Pinheiro, H.; Sousa, L.; Monteiro, R.; et al. Genotype-first approach to identify associations between CDH1 germline variants and cancer phenotypes: A multicentre study by the European Reference Network on Genetic Tumour Risk Syndromes. Lancet Oncol. 2022, 24, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.; Song, S.; Lee, J.S.; Yao, Y.; Wei, Q.; Ajani, J.A. Gastric cancer-molecular and clinical dimensions. Nat. Rev. Clin. Oncol. 2013, 10, 643–655. [Google Scholar] [CrossRef]
- Carneiro, F.; Oliveira, C.; Suriano, G.; Seruca, R. Molecular pathology of familial gastric cancer, with an emphasis on hereditary diffuse gastric cancer. J. Clin. Pathol. 2008, 61, 25–30. [Google Scholar] [CrossRef]
- Pinheiro, H.; Carvalho, J.; Oliveira, P.; Ferreira, D.; Pinto, M.T.; Osório, H.; Licastro, D.; Bordeira-Carriço, R.; Jordan, P.; Lazarevic, D.; et al. Transcription initiation arising from E-cadherin/CDH1 intron2: A novel protein isoform that increases gastric cancer cell invasion and angiogenesis. Hum. Mol. Genet. 2012, 21, 4253–4269. [Google Scholar] [CrossRef]
- Sharma, S.; Liao, W.; Zhou, X.; Wong, D.T.W.; Lichtenstein, A. Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells. Mol. Cancer Ther. 2011, 10, 1751–1759. [Google Scholar] [CrossRef]
- Blair, V.R.; McLeod, M.; Carneiro, F.; Coit, D.G.; D’Addario, J.L.; Van Dieren, J.M.; Harris, K.L.; Hoogerbrugge, N.; Oliveira, C.; Van der Post, R.S.; et al. Hereditary diffuse gastric cancer: Updated clinical practice guidelines. Lancet Oncol. 2020, 21, e386–e397. [Google Scholar] [CrossRef]
- Leman, R.; Parfait, B.; Vidaud, D.; Girodon, E.; Pacot, L.; Le Gac, G.; Ka, C.; Ferec, C.; Fichou, Y.; Quesnelle, C.; et al. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum. Mutat. 2022, 43, 2308–2323. [Google Scholar] [CrossRef]
- De Sainte Agathe, J.M.; Filser, M.; Isidor, B.; Besnard, T.; Gueguen, P.; Perrin, A.; Van Goethem, C.; Verebi, C.; Masingue, M.; Rendu, J.; et al. SpliceAI-visual: A free online tool to improve SpliceAI splicing variant interpretation. Hum. Genom. 2023, 17, 7. [Google Scholar] [CrossRef]
- Madic, J.; Jovelet, C.; Lopez, J.; André, B.; Fatien, J.; Miran, I.; Honoré, A.; Mezquita, L.; Besse, B.; Lacroix, L.; et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget 2018, 9, 37393–37406. [Google Scholar] [CrossRef]
- Richardson, M.E.; Chong, H.; Mu, W.; Conner, B.R.; Hsuan, V.; Willett, S.; Lam, S.; Tsai, P.; Pesaran, T.; Chamberlin, A.C.; et al. DNA breakpoint assay reveals a majority of gross duplications occur in tandem reducing VUS classifications in breast cancer predisposition genes. Genet. Med. 2019, 21, 683–693. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Workman, R.E.; Tang, A.D.; Tang, P.S.; Jain, M.; Tyson, J.R.; Razaghi, R.; Zuzarte, P.C.; Gilpatrick, T.; Payne, A.; Quick, J.; et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 2019, 16, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.; Holste, D.; Kreiman, G.; Burge, C.B. Variation in alternative splicing across human tissues. Genome Biol. 2004, 5, R74. [Google Scholar] [CrossRef] [PubMed]
- Nagar, P.; Islam, M.R.; Rahman, M.A. Nonsense-Mediated mRNA Decay as a Mediator of Tumorigenesis. Genes 2023, 14, 357. [Google Scholar] [CrossRef]
- García-Moreno, J.F.; Romão, L. Perspective in Alternative Splicing Coupled to Nonsense-Mediated mRNA Decay. Int. J. Mol. Sci. 2020, 21, 9424. [Google Scholar] [CrossRef]
- Mantere, T.; Neveling, K.; Pebrel-Richard, C.; Benoist, M.; van der Zande, G.; Kater-Baats, E.; Baatout, I.; van Beek, R.; Yammine, T.; Oorsprong, M.; et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 2021, 108, 1409–1422. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Pozo, F.; di Domenico, T.; Vazquez, J.; Tress, M.L. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol. 2020, 16, e1008287. [Google Scholar] [CrossRef]
- Aucouturier, C.; Soirat, N.; Castéra, L.; Bertrand, D.; Atkinson, A.; Lavolé, T.; Goardon, N.; Quesnelle, C.; Levilly, J.; Barbachou, S.; et al. Fine mapping of RNA isoform diversity using an innovative targeted long-read RNA sequencing protocol with novel dedicated bioinformatics pipeline. BMC Genom. 2024, 25, 909. [Google Scholar] [CrossRef]
- Ben Aissa-Haj, J.; Pinheiro, H.; Cornelis, F.; Sebai, M.; Meseure, D.; Briaux, A.; Berteaux, P.; Lefol, C.; Des Guetz, G.; Trassard, M.; et al. The Identification of Large Rearrangements Involving Intron 2 of the CDH1 Gene in BRCA1/2 Negative and Breast Cancer Susceptibility. Genes 2022, 13, 2213. [Google Scholar] [CrossRef]
- Truty, R.; Ouyang, K.; Rojahn, S.; Garcia, S.; Colavin, A.; Hamlington, B.; Freivogel, M.; Nussbaum, R.L.; Nykamp, K.; Aradhya, S. Spectrum of Splicing Variants in Disease Genes and the Ability of RNA Analysis to Reduce Uncertainty in Clinical Interpretation. Am. J. Hum. Genet. 2021, 108, 696–708. [Google Scholar] [CrossRef]
Patient Clinical Presentation | CDH1 Variants of Uncertain Significance | In Silico Splicing Predictions (SPiP and SpliceAI) |
---|---|---|
Female patient with a personal history of papillary thyroid cancer (34 years) and bilateral invasive lobular carcinoma (38 years and 40 years) | CDH1 c.1008+1G>A | SPiP: alteration of the consensus splice site with a risk of 98.41% [91.47% to 99.96%] SpliceAI: loss of the consensus splicing donor site of CDH1 intron 7 with a significant score of 0.95; and gain of a cryptic donor site at CDH1 DNA codon position c.1008+7, six base pairs upstream from the variant position with a significant score of 0.33 |
Female patient with unilateral invasive lobular pleomorphic carcinoma in (39 years) and a metastatic relapse localized at the diaphragmatic cupolas and the ovaries at 51 years | CDH1 c.1936+5G>A | SPiP: alteration of the consensus splice site of CDH1 exon 12 with a risk of 98.41% [91.47% to 99.96%] SpliceAI: loss of the consensus splicing donor site of CDH1 intron 12 with a significant score of 0.78 |
Female patient with invasive lobular carcinoma at 40 years | CDH1 c.1566-10C>T | No predictions |
Female patient with bilateral invasive lobular carcinoma at 47 years | CDH1 large duplication from exon 4 to exon 11 | Not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebai, M.; Tang, R.; Adnani, Y.; Fievet, A.; Cabaret, O.; Marie-Aude, R.d.R.; Auger, N.; Elaribi, Y.; Jilani, H.; Limacher, J.-M.; et al. RNA-seq Splicing Profile of the CDH1 Gene and Its Impact on the Clinical Pathogenicity Classification of CDH1 Variants: A Description of Alternative and Pathogenic Splicing Patterns. Cancers 2025, 17, 3320. https://doi.org/10.3390/cancers17203320
Sebai M, Tang R, Adnani Y, Fievet A, Cabaret O, Marie-Aude RdR, Auger N, Elaribi Y, Jilani H, Limacher J-M, et al. RNA-seq Splicing Profile of the CDH1 Gene and Its Impact on the Clinical Pathogenicity Classification of CDH1 Variants: A Description of Alternative and Pathogenic Splicing Patterns. Cancers. 2025; 17(20):3320. https://doi.org/10.3390/cancers17203320
Chicago/Turabian StyleSebai, Molka, Roseline Tang, Yahia Adnani, Alice Fievet, Odile Cabaret, Robert de Rancher Marie-Aude, Nathalie Auger, Yasmina Elaribi, Houweyda Jilani, Jean-Marc Limacher, and et al. 2025. "RNA-seq Splicing Profile of the CDH1 Gene and Its Impact on the Clinical Pathogenicity Classification of CDH1 Variants: A Description of Alternative and Pathogenic Splicing Patterns" Cancers 17, no. 20: 3320. https://doi.org/10.3390/cancers17203320
APA StyleSebai, M., Tang, R., Adnani, Y., Fievet, A., Cabaret, O., Marie-Aude, R. d. R., Auger, N., Elaribi, Y., Jilani, H., Limacher, J.-M., Caron, O., Jemaa, L. B., & Rouleau, E. (2025). RNA-seq Splicing Profile of the CDH1 Gene and Its Impact on the Clinical Pathogenicity Classification of CDH1 Variants: A Description of Alternative and Pathogenic Splicing Patterns. Cancers, 17(20), 3320. https://doi.org/10.3390/cancers17203320